
15. Another example:

Algebraically closed fields

15.1 Let Lr = {+,×,0,1} be the language of

rings. In this language one can formulate ax-

ioms that say that a given Lr structure is a

ring, or that it is a field:

ψ1 : ∀x∀yx+ y = y+ x
ψ2 : ∀x∀y∀z(x+ y) + z = x+ (y+ z)
ψ3 : etc

15.2 There are many examples of fields:

〈A;+,×,0,1〉 where A is: Q, R, C, and also

finite fields Fp = Z/pZ, where p is a prime

number, and their extensions (see later).

These are not elementarily equivalent: e.g. C

has a solution to x2 = −1 but R doesn’t. Both

solve x2 = 2 but Q doesn’t, while a finite field

has Fp characteristic p, i.e. p = 0 while Q, R,

C have characteristic 0 (Definition: no positive

integer n = 0).
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15.3 A field K contains a prime field, smallest

subfield, which is either Fp if char(K) = p > 0

or Q if char(K) = 0.

15.4 One can extend fields algebraically, like

Q(
√
2) extends Q, or C = R(i) extends R, or

by transcendental elements, like the field of

rational functions Q(x) extends Q.

15.5 If K ⊂ L are fields, a transcendence

basis for L over K is a set X ⊂ L of alge-

braically independent elements such that L is

algebraic over K(X). Any two of these have

the same cardinality (that’s a theorem), called

the transcendence degree of the extension

L/K.

15.6. Examples.

tr.deg.(Q(
√
2)/Q) = 0,

tr.deg.(C/R) = 0,

tr.deg.(Q(x)/Q) = 1,

tr.deg.(C/Q) = |C| = 2ℵ0.
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15.7 Theorem (Steinitz). Two algebraically

closed fields are isomorphic if they have same

prime field and same transcendence degree over

the prime field.

“Proof”. By back and forth construction of

an ismorphism starting with transcendence bases

X1, X2 of each field K1,K2 over prime field F .

F (X1), F (X2) are isomorphic under any bijec-

tion X1 → X2. Further elements are algebraic.

Taking an element of K1 (say) we can solve

the “same” equation in K2.

Thus we see that any algebraically closed field

of characteristic 0 and transcendence degree

over Q equal to 2ℵ0 is isomorphic to C.
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15.8. We can axiomatize the theory of alge-

braically closed fields of characteristic p ≥ 0

(recall 10.9). Characteristic 0 is axiomatized

by the sequence of formulas

1 + . . .+1 6= 0 (with n 1’s, n = 2,3, . . .)

Algebraic closedness can be axiomatized by a

sequence of axioms (for each degree d = 2, . . .)

saying that every monic polynomial of degree

d has a root:

∀a0 . . .∀ad−1∃xa0 + a1x+ . . . ad−1x
d−1 + xd = 0

We get Theories ACF0, ACFp.

15.9. By (a stronger version of) Löwenheim-

Skolem, ACF0 is complete (max consistent)

and is the theory of Th(〈C,+,×,0,1〉). Like-

wise ACFp is complete.
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This means that a theorem about C that can

be expressed in Lr holds in any algebraically

closed field of char 0, and has a proof in FOPC,

even if it was proved using methods of analysis.

15.10. We can also prove things about C by

going to positive characteristic! (i.e. p > 0)

Any proof in ACF0 can only use finitely many

of the axioms 1 + . . .+ 1 6= 0 and hence goes

through in any algebraically closed field whose

characteristic is sufficiently large.

15.11. Theorem. Let φ be a sentence in Lr.
TFAE:

∗ C |= φ

∗ φ holds in all alg closed fields of char 0

∗ . . . some . . .

∗ For arbitrarily large p, φ holds in some ACFp
∗ φ holds in any ACFp provided p > N(φ)
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One rather surprising application:

15.12. Theorem (Ax-Grothendieck) Consider

a polynomial map F : Cn → Cn. If F is injective

then it is surjective.

“Proof” A finite field Fp has a unique exten-

sion of each finite degree n, denoted Fq, q = pn.
Likewise Fq, q = pn, and the algebraic closure

F of Fp is the union of these. If we consider

a polynomial map F : Fn → Fn then the coef-

ficients will be in Fq for some (large enough)

q, and then F maps Fnq → Fnq for this field and

all its extensions. These fields are finite, so

if a map is injective it must be surjective (and

vice versa). So the statement holds in posi-

tive characteristic. But it is expressible in Lr:
for each n, d, with F a “general” degree d poly

map:

∀ coefficients(F injective →F surjective)

So it holds in (is a theorem of) ACF0.
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16. Normal Forms

(a) Prenex Normal Form

A formula is in prenex normal form (PNF)

if it has the form

Q1xi1Q2xi2 · · ·Qrxir ψ,

where each Qi is a quantifier

(i.e. either ∀ or ∃), and where

ψ is a formula containing no quantifiers.

16.1 PNF-Theorem

Every φ ∈ Form(L) is logically equivalent to an

L-formula in PNF.

Proof: Induction on φ

(working in the language with ∀, ∃,¬,∧):

φ atomic: OK
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φ = ¬ψ,
say φ↔ ¬Q1xi1Q2xi2 · · ·Qrxir χ

Then φ↔ Q−
1 xi1Q

−
2 xi2 · · ·Q−

r xir ¬χ,
where Q− = ∃ if Q = ∀, and Q− = ∀ if Q = ∃

φ = (χ ∧ ρ) with χ, ρ in PNF

Note that ⊢ (∀xjψ[xj/xi] ↔ ∀xiψ),
provided xj does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ

do not occur in ρ and vice versa.

But then, e.g. (∀xα ∧ ∃yβ) ↔ ∀x∃y(α ∧ β) etc.

✷
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(b) Skolem Normal Form

Recall: In the proof of CT, we introduced wit-

nessing new constants for existential formulas

such that

∃xφ(x) is satisfiable iff φ(c) is satisfiable.

This way an ∃x in front of a formula could be

removed at the expense of a new constant.

Now we remove existential quantifiers ‘inside’ a

formula at the expense of extra function sym-

bols:

16.2 Observation:

Let φ = φ(x, y) be an L-formula with x, y ∈Free(φ).
Let f be a new unary function symbol (not in

L).
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Then ∀x∃yφ(x, y) is satisfiable iff ∀xφ(x, f(x))
is satisfiable.

(f is called a Skolem function for φ.)

Proof: ‘⇐’: clear

‘⇒’: Let A be an L-structure with A |= ∀x∃yφ(x, y)

⇒ for every a ∈ A there is some b ∈ A with

φ(a, b)

Interpret f by a function assigning to each a ∈
A one such b

(this uses the Axiom of Choice!). ✷

16.3. Example: R |= ∀x∃y(x .
= y2∨x .

= −y2).
Here f(x) =

√

| x | will do.
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16.4. Theorem

For every L-formula φ

there is a formula φ⋆

(with new constant and function symbols)

having only universal quantifiers in its PNF

such that

φ is satisfiable iff φ⋆ is.

More precisely,

any L-structure A
can be made into a structure A⋆

interpreting the new constant and function sym-

bols

such that

A |= φ iff A⋆ |= φ⋆.
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