15. Another example: Algebraically closed fields

15.1 Let $\mathcal{L}_r = \{+, \times, 0, 1\}$ be the language of rings. In this language one can formulate axioms that say that a given \mathcal{L}_r structure is a ring, or that it is a field:

$$\psi_{1}: \forall x \forall yx + y = y + x$$

$$\psi_{2}: \forall x \forall y \forall z(x + y) + z = x + (y + z)$$

$$\psi_{3}: etc$$

15.2 There are many examples of fields: $\langle A; +, \times, 0, 1 \rangle$ where A is: \mathbb{Q} , \mathbb{R} , \mathbb{C} , and also **finite fields** $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, where p is a prime number, and their extensions (see later).

These are not elementarily equivalent: e.g. \mathbb{C} has a solution to $x^2 = -1$ but \mathbb{R} doesn't. Both solve $x^2 = 2$ but \mathbb{Q} doesn't, while a finite field has \mathbb{F}_p characteristic p, i.e. p = 0 while \mathbb{Q} , \mathbb{R} , \mathbb{C} have characteristic 0 (Definition: no positive integer n = 0).

Lecture 16 - 1/11

15.3 A field K contains a **prime field**, smallest subfield, which is either \mathbb{F}_p if char(K) = p > 0 or \mathbb{Q} if char(K) = 0.

15.4 One can **extend** fields algebraically, like $\mathbb{Q}(\sqrt{2})$ extends \mathbb{Q} , or $\mathbb{C} = \mathbb{R}(i)$ extends \mathbb{R} , or by **transcendental elements**, like the field of rational functions $\mathbb{Q}(x)$ extends \mathbb{Q} .

15.5 If $K \subset L$ are fields, a **transcendence basis** for L over K is a set $X \subset L$ of algebraically independent elements such that L is algebraic over K(X). Any two of these have the same **cardinality** (that's a theorem), called the **transcendence degree** of the extension L/K.

15.6. Examples.

tr.deg. $(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = 0$, tr.deg. $(\mathbb{C}/\mathbb{R}) = 0$, tr.deg. $(\mathbb{Q}(x)/\mathbb{Q}) = 1$, tr.deg. $(\mathbb{C}/\mathbb{Q}) = |\mathbb{C}| = 2^{\aleph_0}$.

Lecture 16 - 2/11

15.7 Theorem (Steinitz). Two algebraically closed fields are isomorphic if they have same prime field and same transcendence degree over the prime field.

"**Proof**". By back and forth construction of an ismorphism starting with transcendence bases X_1, X_2 of each field K_1, K_2 over prime field F. $F(X_1), F(X_2)$ are isomorphic under any bijection $X_1 \rightarrow X_2$. Further elements are algebraic. Taking an element of K_1 (say) we can solve the "same" equation in K_2 .

Thus we see that any algebraically closed field of characteristic 0 and transcendence degree over \mathbb{Q} equal to 2^{\aleph_0} is **isomorphic** to \mathbb{C} .

Lecture 16 - 3/11

15.8. We can axiomatize the theory of algebraically closed fields of characteristic $p \ge 0$ (recall 10.9). Characteristic 0 is axiomatized by the sequence of formulas

 $1 + \ldots + 1 \neq 0$ (with *n* 1's, *n* = 2, 3, ...)

Algebraic closedness can be axiomatized by a sequence of axioms (for each degree d = 2, ...) saying that every monic polynomial of degree d has a root:

 $\forall a_0 \dots \forall a_{d-1} \exists x a_0 + a_1 x + \dots a_{d-1} x^{d-1} + x^d = 0$

We get **Theories** ACF_0 , ACF_p .

15.9. By (a stronger version of) Löwenheim-Skolem, ACF₀ is **complete** (max consistent) and is the theory of Th($\langle \mathbb{C}, +, \times, 0, 1 \rangle$). Likewise ACF_p is complete.

Lecture 16 - 4/11

This means that a theorem about \mathbb{C} that can be expressed in \mathcal{L}_r holds in any algebraically closed field of char 0, and has a proof in FOPC, even if it was proved using methods of analysis.

15.10. We can also prove things about \mathbb{C} by going to positive characteristic! (i.e. p > 0)

Any proof in ACF₀ can only use finitely many of the axioms $1 + \ldots + 1 \neq 0$ and hence goes through in any algebraically closed field whose characteristic is sufficiently large.

15.11. Theorem. Let ϕ be a sentence in \mathcal{L}_r . *TFAE:*

- $* \mathbb{C} \models \phi$
- * \$\phi\$ holds in all alg closed fields of char 0
 * ... some ...
- * For arbitrarily large p, ϕ holds in some ACF_p * ϕ holds in any ACF_p provided $p > N(\phi)$

Lecture 16 - 5/11

One rather surprising application:

15.12. Theorem (Ax-Grothendieck) Consider a polynomial map $F : \mathbb{C}^n \to \mathbb{C}^n$. If F is injective then it is surjective.

"Proof" A finite field \mathbb{F}_p has a unique extension of each finite degree n, denoted $\mathbb{F}_q, q = p^n$. Likewise $\mathbb{F}_q, q = p^n$, and the algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F}_p is the union of these. If we consider a polynomial map $F : \overline{\mathbb{F}}^n \to \overline{\mathbb{F}}^n$ then the coefficients will be in \mathbb{F}_q for some (large enough) q, and then F maps $\mathbb{F}_q^n \to \mathbb{F}_q^n$ for this field and all its extensions. These fields are **finite**, so if a map is injective it must be surjective (and *vice versa*). So the statement holds in positive characteristic. But it is expressible in \mathcal{L}_r : for each n, d, with F a "general" degree d poly map:

 \forall coefficients(F injective \rightarrow F surjective)

So it holds in (is a theorem of) ACF_0 .

Lecture 16 - 6/11

16. Normal Forms(a) Prenex Normal Form

A formula is in **prenex normal form (PNF)** if it has the form

$$Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \psi,$$

where each Q_i is a quantifier (i.e. either \forall or \exists), and where ψ is a formula containing no quantifiers.

16.1 PNF-Theorem

Every $\phi \in Form(\mathcal{L})$ is logically equivalent to an \mathcal{L} -formula in **PNF**.

Proof: Induction on ϕ (working in the language with $\forall, \exists, \neg, \land$):

 ϕ atomic: OK

Lecture 16 - 7/11

$$\phi = \neg \psi,$$

say $\phi \leftrightarrow \neg Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \chi$

Then $\phi \leftrightarrow Q_1^- x_{i_1} Q_2^- x_{i_2} \cdots Q_r^- x_{i_r} \neg \chi$, where $Q^- = \exists$ if $Q = \forall$, and $Q^- = \forall$ if $Q = \exists$

 $\phi = (\chi \land \rho)$ with χ, ρ in PNF Note that $\vdash (\forall x_j \psi[x_j/x_i] \leftrightarrow \forall x_i \psi)$, provided x_j does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ do not occur in ρ and vice versa.

But then, e.g. $(\forall x \alpha \land \exists y \beta) \leftrightarrow \forall x \exists y (\alpha \land \beta)$ etc.

Lecture 16 - 8/11

(b) Skolem Normal Form

Recall: In the proof of CT, we introduced witnessing new constants for existential formulas such that

 $\exists x \phi(x)$ is satisfiable iff $\phi(c)$ is satisfiable.

This way an $\exists x$ in front of a formula could be removed at the expense of a new constant.

Now we remove existential quantifiers 'inside' a formula at the expense of extra function symbols:

16.2 Observation:

Let $\phi = \phi(x, y)$ be an \mathcal{L} -formula with $x, y \in Free(\phi)$. Let f be a new unary function symbol (not in \mathcal{L}).

Lecture 16 - 9/11

Then $\forall x \exists y \phi(x, y)$ is satisfiable iff $\forall x \phi(x, f(x))$ is satisfiable. (f is called a **Skolem function** for ϕ .)

Proof: '⇐': clear

' \Rightarrow ': Let \mathcal{A} be an \mathcal{L} -structure with $\mathcal{A} \models \forall x \exists y \phi(x, y)$

 \Rightarrow for every $a \in A$ there is some $b \in A$ with $\phi(a,b)$

Interpret f by a function assigning to each $a \in A$ one such b(this uses the Axiom of Choice!).

16.3. Example: $\mathbb{R} \models \forall x \exists y (x \doteq y^2 \lor x \doteq -y^2)$. Here $f(x) = \sqrt{|x|}$ will do.

Lecture 16 - 10/11

16.4. Theorem

For every \mathcal{L} -formula ϕ there is a formula ϕ^* (with new constant and function symbols) having only universal quantifiers in its PNF such that

 ϕ is satisfiable iff ϕ^* is.

More precisely, any \mathcal{L} -structure \mathcal{A} can be made into a structure \mathcal{A}^* interpreting the new constant and function symbols such that

$$\mathcal{A} \models \phi \text{ iff } \mathcal{A}^{\star} \models \phi^{\star}.$$

Lecture 16 - 11/11