Problem Sheet 3

(1) Show that L_0 and the sequent calculus SQ are equivalent. I.e., using the language $\mathcal{L}_0 = \mathcal{L}[\{\neg, \rightarrow\}]$ of propositional calculus, for all $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and for all $\phi \in \text{Form}(\mathcal{L}_0)$:

$$\Gamma \vdash_{L_0} \phi \text{ iff } \Gamma \vdash_{SQ} \phi.$$

- (2) The Four Colour Theorem asserts that if a region in the plane is divided into finitely many countries, then each country may be coloured either red, green, blue, or yellow in such a way that no two countries with a common border (of positive length) get the same colour. Use the Compactness Theorem to show that this remains true even if there are countably infinitely many countries.
 - (3) State and prove the unique readability theorem for predicate calculus
- (a) for terms
- (b) for atomic formulas
- (c) for all formulas.
- (4) Let $\mathcal{L} = \{f\}$ be a first-order language containing a unary function symbol f, and no other non-logical symbols. Write down sentences ϕ and ψ of \mathcal{L} such that for any \mathcal{L} -structure $\mathcal{A} = \langle A, f_{\mathcal{A}} \rangle$
 - (i) $\mathcal{A} \models \phi$ if and only if $f_{\mathcal{A}}$ is one-one;
 - (ii) $\mathcal{A} \models \psi$ if and only if $f_{\mathcal{A}}$ is onto.
- (iii) Write down a sentence χ of \mathcal{L} which is satisfiable in some structure with an infinite domain but is false in every structure with a finite domain. What can you say about the size of the domains of the models of the sentence $\neg \chi$?
- (iv) Write down a sentence ρ such that whenever $\mathcal{A} \models \rho$ and A is finite, then A contains an even number of elements and, further, every finite set with an even number of elements is the domain of some model of ρ . What can you say about the size of the domains of the models of the sentence $\neg \rho$?

p.t.o.

- (5) Let $\mathcal{L} = \{P\}$ be a first-order language with a binary relation symbol P as only non-logical symbol. By exhibiting three suitable \mathcal{L} -structures prove (informally) that no two of the following sentences logically implies the other one:
 - (i) $\forall x \forall y \forall z (P(x,y) \to (P(y,z) \to P(x,z))),$
 - (ii) $\forall x \forall y (P(x,y) \to (P(y,x) \to x \doteq y)),$
 - (iii) $(\forall x \exists y P(x, y) \rightarrow \exists y \forall x P(x, y)).$
- (6) Let $\mathcal{L} = \{f, c\}$ be a first-order language containing as non-logical symbols the unary function symbol f and the constant symbol c. Let $\mathcal{L}_1 = \mathcal{L} \cup \{P\}$, where P is a unary predicate symbol. Consider the following strings (of \mathcal{L}_1):

$$\phi: ((P(x_0) \land \forall x_0(P(x_0) \to P(f(x_2)))) \to \forall x_2 P(x_0))$$

$$\psi: ((P(c) \land \forall x_0(P(x_0) \to P(f(x_0)))) \to \forall x_0 P(x_0))$$

- (a) Prove that both ϕ and ψ are formulas of \mathcal{L}_1 and indicate the free and bound occurrences of variables in them. Which of these formulas are sentences?
- (b) Describe the collection of closed terms of \mathcal{L} and of \mathcal{L}_1 . (A term is called *closed* if it contains no occurrences of variables.)
- (c) Characterise those \mathcal{L} -structures $\mathcal{A} = \langle A; f_{\mathcal{A}}; c_{\mathcal{A}} \rangle$ where the domain A is an infinite set, and where $\langle A; f_{\mathcal{A}}; c_{\mathcal{A}}; P_{\mathcal{A}} \rangle \models \psi$ for every unary relation $P_{\mathcal{A}}$ on A.