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1 Introduction

This course is about modelling real-world phenomena using stochastic processes. A stochastic
process is a random quantity which evolves in time, i.e. a collection {Xt : t ∈ T} of random
variables indexed by an ordered time-set T . The set T could be discrete or continuous, and it
is often helpful to think of the process as a random function t 7→ Xt. In general, Xt could take
values in some metric space, although in this course will will focus on the case of a countable
state-space, often the natural numbers. In general, the elements of {Xt : t ∈ T} will be
dependent, and that this considerably complicates the task of studying them.

What sort of real-world phenomena might one seek to model using such a process?

1.1 Examples

1. Population size
The number of individuals in a population of some animal or plant species: individuals live
for some length of time, during which they give birth to children, before dying. How does the
population evolve? Can it go extinct?

2. Epidemics
The number of people suffering from an infectious disease: one might want to model the number
of susceptible individuals, the number infected, and the number who have recovered or died.
Under what circumstances will the epidemic take off and infect a large proportion of the popu-
lation, and when will it peter out without infecting many people?

3. Queues
In a supermarket, people queue at different check-outs, waiting until they reach the front of the
queue to be served. Alternatively, in the post office, people wait in a single queue until one of
several servers becomes free. How long will a customer wait to be served? How long is a busy
period?

4. Insurance ruin
An insurance company is paid a regular stream of premium income by its customers, and claims
of different sizes arrive through time. The premium is set sufficiently high that the company
typically makes a profit, but there is still some chance that a large claim will arrive which causes
it to go bankrupt. How likely is that?

5. Stock prices
The price of stocks in a company change (essentially) continuously over the course of time and
are influenced by many complex factors. Can we make predictions about the behaviour of a
stock price? How much should one charge for an option on the stock?

In all of these examples, it makes sense to use a model containing randomness. The first
four examples have continuous time and discrete state-spaces, and will be treated in this course.
Example 5 has both continuous time and continuous space. The mathematical framework
needed to deal with such processes is developed in B8.2 Continuous Martingales and Stochastic
Calculus, and the modelling aspects are addressed in B8.3 Mathematical Models of Financial
Derivatives.

In order to develop sensible models, we will first need to develop a certain amount of theory.
This course very much follows on from the Part A Probability course, and so you will probably
find it helpful to go back to your notes for that course and re-familiarise yourself with it.
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1.2 A note about rigour

B8.1 Probability, Measure and Martingales is not a pre-requisite for this course so, in particular,
we will not focus on measure-theoretic issues. However, any properly rigorous treatment of
probability requires measure theory, and so there will be some places where we will make
appeal to standard results from measure theory. If you have not seen these before, and would
like to know more, the Appendix to the book Markov chains by James Norris is a good place to
start. Those who have attended B8.1 and are looking to understand some of these issues more
thoroughly should go to B8.2 Continuous Martingales and Stochastic Calculus.

2 Poisson processes

In this section, we will recap some material about Poisson processes from Part A Probability
and set things up in a way that will be useful for the rest of the course.

2.1 Building blocks

We will use the notation N := {0, 1, 2, . . .}.
We begin by recalling the definition of two probability distributions which will play a key

role in this course.
A discrete random variable X has the Poisson distribution with mean λ ≥ 0 (we will write

Po(λ)) if

P (X = n) =
e−λλn

n!
, n ≥ 0.

A continuous random variable T has the exponential distribution with parameter λ ≥ 0 (we will
write Exp(λ)) if it has density

f(t) = λe−λt, t ≥ 0.

In particular, P (T > t) = e−λt and E [T ] = 1/λ.

2.2 Poisson processes

Definition 2.1. A random process X = (Xt)t≥0 is a counting process if it takes values in N
and Xs ≤ Xt whenever s ≤ t.

Poisson processes are important examples of counting processes.

Definition 2.2 (Holding-time definition). Let (Zn)n≥1 be a sequence of i.i.d. Exp(λ) random
variables, for some λ ∈ (0,∞). Set T0 = 0 and, for n ≥ 1, Tn =

∑n
k=1 Zk. Define

Xt = #{n ≥ 1 : Tn ≤ t}, t ≥ 0,

so that, in particular, X0 = 0. Then the process (Xt)t≥0 is called a Poisson process of rate λ
(PP(λ) for short). The random variables Z1, Z2, . . . are called holding times or inter-arrival
times.

We may think of T1, T2, . . . as the arrival times of customers at a shop, or cars driving along
St Giles’, or particles detected by a Geiger counter. Then Xt gives the number of customers,
cars or particles which have arrived by time t. (Of course, this is a mathematical model, and
we have said nothing about how well it might model these phenomena! We will come back to
this issue.)

[picture]
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Note that we have drawn the process as a (random) right-continuous function [0,∞) → N
given by t 7→ Xt. (Recall that right-continuous means that f(y) → f(x) as y ↓ x, for all
x ∈ [0,∞).)

Observe that {Xt : t ≥ 0} is a dependent collection of random variables. For example, we
have P (X3.6 = 0) = exp(−3.6λ) > 0 but P (X3.6 = 0|X3.5 = 3) = 0.

2.3 Markov property

Let S be a countable state-space. Recall from Part A Probability that a process (Yn)n≥0 is a
discrete-time Markov chain with state-space S if it satisfies the Markov property:

P (Yn = yn|Y0 = y0, Y1 = y1, . . . , Yn−1 = yn−1) = P (Yn = yn|Yn−1 = yn−1)

for all n ≥ 1 and all y0, y1, . . . , yn ∈ S. Assuming time-homogeneity (i.e. that P (Yn = j|Yn−1 = i)
does not depend on n), the distribution of (Yn)n≥0 is entirely specified by an initial dis-
tribution µ = (µi)i∈S and a transition matrix P = (pij)i,j∈S, where µi = P (Y0 = i) and
pij = P (Yn = j|Yn−1 = i). Then

P (Y0 = y0, Y1 = y1, . . . , Yn = yn) = µy0py0y1 . . . pyn−1yn .

Suppose that (Yn)n≥0 is a Markov chain with transition matrix P started from some state i ∈ S
i.e.

µk = δik =

{
1 if k = i

0 otherwise

(we write µ = δi for short). Then an equivalent formulation of the Markov property is that
(Yk)0≤k≤n and (Yk)k≥n are conditionally independent given Yn = j, for any j ∈ S. Moreover,
given Yn = j, (Yn+k)k≥0 is a Markov chain with transition matrix P started from j.

It turns out that a Markov property also holds for the Poisson process. By a Poisson process
started from k, we mean a process (Xt)t≥0 such that Xt = k + X̃t where (X̃t)t≥0 is a Poisson
process started from 0, as in our earlier definition.

Theorem 2.3 (Markov property). Let X = (Xt)t≥0 be a Poisson process of rate λ started from
0. Fix t ≥ 0. Then, given Xt = k, (Xr)r≤t and (Xt+s)s≥0 are independent and (Xt+s)s≥0 is a
Poisson process of rate λ started from k.

Remark 2.4. We could, equivalently, have said that (Xt+s−Xt)s≥0 is a Poisson process of rate
λ started from 0 independent of (Xr)0≤r≤t. But the version stated above will generalise better.

The key to this result is the following property of the exponential distribution.

Lemma 2.5 (Memoryless property). Let E ∼ Exp(λ). Then for all x, y ≥ 0,

P (E > x+ y|E > y) = P (E > x) = e−λx.

Proof. This is a straightforward calculation:

P (E > x+ y|E > y) =
P (E > x+ y,E > y)

P (E > y)
=

P (E > x+ y)

P (E > y)
=
e−λ(x+y)

e−λy
= e−λx.

Lemma 2.6 (Extended memoryless property). Suppose E ∼ Exp(λ) and that L ≥ 0 is a random
variable independent of E. Then, given E > L, E − L is conditionally independent of L and

P (E − L > x|E > L) = P (E > x) = e−λx.
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Proof. See Problem Sheet 1.

Proof of Theorem 2.3. Set X̃s = Xt+s. Conditional on Xt = k, the holding times of (X̃s)s≥0
are Z̃1, Z̃2, . . . where

Z̃1 = Tk+1 − t = Zk+1 − (t− Tk), Z̃n = Zk+n, n ≥ 2.

Note that Z1, Z2, . . .
i.i.d.∼ Exp(λ). We have

{Xt = k} = {Tk ≤ t < Tk+1} = {Tk ≤ t} ∩ {Zk+1 > t− Tk}.

By the extended memoryless property, conditionally on Zk+1 > t − Tk we have that Z̃1 =
Zk+1 − (t − Tk) ∼ Exp(λ) independently of Tk. Furthermore, Zk+2, Zk+3, . . . are i.i.d. Exp(λ)
independent of Z1, Z2, . . . Zk. It follows that, given Xt = k, Z̃1, Z̃2, . . . are i.i.d. Exp(λ) and
independent of Z1, Z2, . . . Zk.

Since, given Xt = k,

Xr = #

{
1 ≤ n ≤ k :

n∑
i=1

Zi ≤ r

}
, r ≤ t

X̃s = k + #

{
n ≥ 1 :

n∑
i=1

Z̃i ≤ s

}
, s ≥ 0

we see that (Xr)r≤t and (X̃s)s≥0 are conditionally independent, and that (X̃s)s≥0 is a PP(λ)
started from k.

Remark 2.7. As you will see on Problem Sheet 1, the exponential distribution is the only
continuous distribution to possess the memoryless property. So if we had trying to build our
counting process with any other holding times, we would not have obtained the Markov property.
We will come back to this idea when we study renewal processes.

2.4 Dealing with processes in continuous time

There are various technical subtleties associated with working in continuous time which are not
present in discrete time. These stem from the fact that {Xt : t ≥ 0} is an uncountable collection
of random variables and, in principle, we have problems making sense of probabilities of unions
and intersections of uncountably many events. For example, we might want to calculate

P (Xt = i for some t ∈ [0,∞)) = P (∪t≥0{Xt = i}) ,

where the union on the right-hand side is uncountable. Fortunately, there is a result from
measure theory which says that the distribution of a right-continuous process (Xt)t≥0 with
values in a countable state-space S is entirely determined by its finite-dimensional distributions:

P (Xt1 = x1, Xt2 = x2, . . . , Xtn = xn)

for n ≥ 1, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn and x1, x2, . . . , xn ∈ S. To give an idea of why this works, for
our example, if we assume right-continuity then we can say that

P (Xt = i for some t ∈ [0,∞)) = 1− lim
n→∞

∑
j1,j2,...,jn 6=i

P (Xq1 = j1, . . . , Xqn = jn) ,

where q1, q2, . . . is an enumeration of the rationals, and the right-hand side then only concerns
countably many events. (Since this is a course in applied probability, we won’t go further into
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the details here.) So we shall always consider right-continuous processes and, when necessary,
make appeal to this result.

Coming back to our statement of the Markov property for a Poisson process (Xt)t≥0, we
are really treating each of (Xr)r≤t and (Xt+s)s≥0 as a random variable in its own right, rather
than as a collection of a random variables. Indeed, each of these can be thought of as a random
variable taking values in the space of right-continuous integer-valued functions (with domains
[0, t] and [0,∞) respectively).

What might an event look like for such a random variable? An example is

{(Xr)r≤t ∈ A},

where

A = {right-continuous functions f : [0, t]→ N such that f(r) ≤ 2 for 0 ≤ r ≤ t}.

Of course, we would usually write this more simply as

{Xr ≤ 2 for 0 ≤ r ≤ t}.

When we say that for a Poisson process (Xt)t≥0, (Xr)r≤t and (Xt+s)s≥0 are conditionally
independent given Xt = k, we mean that for all (suitable measurable) sets A and B,

P ((Xr)r≤t ∈ A, (Xt+s)s≥0 ∈ B|Xt = k) = P ((Xr)r≤t ∈ A|Xt = k)P ((Xt+s)s≥0 ∈ B|Xt = k) .

Moreover, since finite-dimensional distributions characterise such processes, this is equivalent
to having that

P (Xr1 = x1, . . . , Xrm = xm, Xt+s1 = y1, . . . , Xt+sn = yn|Xt = k)

= P (Xr1 = x1, . . . , Xrm = xm|Xt = k)P (Xt+s1 = y1, . . . , Xt+sn = yn|Xt = k)

for all n,m, r1 ≤ . . . ≤ rm, s1 ≤ . . . ≤ sn, x1, . . . , xm, y1, . . . , yn ∈ S.

2.5 Alternative Poisson process definitions

Proposition 2.8 (Transition probability definition). A right-continuous integer-valued process
X = (Xt)t≥0 started from 0 is a Poisson process of rate λ if and only if it has the following
properties:

1. Xt ∼ Po(λt) for all t ≥ 0.

2. X has independent increments i.e. for any sequence of times 0 = t0 ≤ t1 ≤ . . . ≤ tn <∞,
the random variables

{Xtk −Xtk−1
, 1 ≤ k ≤ n}

are independent.

3. X has stationary increments, i.e. for all s, t ≥ 0,

Xt+s −Xt
d
= Xs −X0 = Xs.

Proof. First suppose that X is a Poisson process. We prove that the three properties hold.
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1. We have P (Xt = 0) = P (T1 > t) = e−λt. For n ≥ 1, we have

P (Xt = n) = P (Tn ≤ t, Tn+1 > t)

= P (Tn ≤ t)− P (Tn+1 ≤ t) .

Recall that a sum of n independent Exp(λ) random variables has Gamma(n, λ) distribution,
with density λnxn−1e−λx/(n− 1)!, x ≥ 0. So Tn ∼ Gamma(n, λ) and Tn+1 ∼ Gamma(n+ 1, λ).
Hence, for n ≥ 1,

P (Xt = n) =

∫ t

0

λnxn−1e−λx

(n− 1)!
dx−

∫ t

0

λn+1xne−λx

n!
dx

and integrating the first term by parts gives

=

[
λnxne−λx

n!

]t
0

+

∫ t

0

λn+1xne−λx

n!
dx−

∫ t

0

λn+1xne−λx

n!
dx

=
e−λt(λt)n

n!
,

which implies that Xt ∼ Po(λt).

2. We proceed by induction on n. The statement is trivial for n = 1. Let i1, i2, . . . , in ∈ N.
Then

P

(
n⋂
k=1

{
Xtk −Xtk−1

= ik
})

= P

(
Xtn −Xtn−1 = in

∣∣∣∣∣
n−1⋂
k=1

{
Xtk −Xtk−1

= ik
})

P

(
n−1⋂
k=1

{
Xtk −Xtk−1

= ik
})

.

Recall that t0 = 0. Now, the first term equals

P

(
Xtn =

n−1∑
k=1

ik + in

∣∣∣∣∣ Xtn−1 =

n−1∑
k=1

ik, Xtn−2 =

n−2∑
k=1

ik, . . . , Xt1 = i1

)

= P

(
Xtn =

n−1∑
k=1

ik + in

∣∣∣∣∣ Xtn−1 =
n−1∑
k=1

ik

)
by the Markov property applied at time tn−1

= P
(
Xtn −Xtn−1 = in

)
,

since (Xtn−1+s−Xtn−1)s≥0 is another Poisson process, independent of (Xr)r≤tn−1 . By induction,

P

(
n⋂
k=1

{
Xtk −Xtk−1

= ik
})

=

n∏
k=1

P
(
Xtk −Xtk−1

= ik
)
,

and so
{
Xtk −Xtk−1

, 1 ≤ k ≤ n
}

are independent.

3. This follows directly from the fact that (Xt+s −Xt)s≥0 is also a Poisson process of rate λ.
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Suppose now that X is a right-continuous integer-valued process satisfying the three condi-
tions. Then for 0 = t0 ≤ t1 ≤ . . . ≤ tn and k0 = 0, k1, . . . , kn ∈ N, we have

P (Xt1 = k1, . . . , Xtn = kn)

= P (Xt1 = k1)P (Xt2 −Xt1 = k2 − k1) . . .P
(
Xtn −Xtn−1 = kn − kn−1

)
=

n∏
i=1

e−λ(ti−ti−1)(λ(ti − ti−1))ki−ki−1

(ki − ki−1)!

= e−λtnλkn
n∏
i=1

(ti − ti−1)ki−ki−1

(ki − ki−1)!
.

But since the finite-dimensional distributions characterise the distribution of such a process, we
must have X ∼ PP (λ).

There is a third characterisation of a Poisson process which will also play an important role
in this course.

Proposition 2.9 (Infinitesimal definition). Suppose X = (Xt)t≥0 is a right-continuous integer-
valued increasing process started from 0. Then X is a Poisson process of rate λ > 0 if and only
if it has independent increments and, as h ↓ 0, uniformly in t,

P (Xt+h −Xt = 0) = 1− λh+ o(h), P (Xt+h −Xt = 1) = λh+ o(h). (1)

Proof. We have already shown that a Poisson process has independent increments. The rest of
the proof of the “only if” part follows from Problem Sheet 1.

Let us turn to the “if” part. The given conditions imply, in particular, that for k ≥ 2,

P (Xt+h −Xt = k) = o(h),

uniformly in t ≥ 0. Set pk(t) = P (Xt = k) for k ≥ 0. We will derive a system of differential
equations satisfied by (pk(t))k≥0 and demonstrate that it has unique solution given by the
Poisson probability mass function.

To this end, note that by the law of total probability, for t ≥ 0 and k ≥ 1,

pk(t+ h) =
k∑
i=0

P (Xt+h −Xt = i)P (Xt = k − i)

= (1− λh+ o(h))pk(t) + (λh+ o(h))pk−1(t) + o(h).

So
pk(t+ h)− pk(t)

h
= λ(pk−1(t)− pk(t)) +O(h).

Substituting s = t− h, we also obtain that for s ≥ h and k ≥ 1,

pk(s)− pk(s− h)

h
= λ(pk−1(s− h)− pk(s− h)) +O(h).

Letting h ↓ 0, we see that pk(t) is continuous and differentiable with

p′k(t) = λ(pk−1(t)− pk(t)).

Similarly, we see that
p′0(t) = −λp0(t).
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Now note that we have X0 = 0 and so the initial conditions are p0(0) = 1, pk(0) = 0, k ≥ 2.
It is clear that the unique solution to the last differential equation is p0(t) = e−λt. But then
we can solve the remaining differential equations inductively, each time with an exponential
integrating factor (note that they are linear, and so have unique solutions), to obtain

pk(t) =
e−λt(λt)k

k!
, k ≥ 0.

Now observe that (Xt+s −Xt)s≥0 also satisfies (1) and so we deduce that Xt+s −Xt ∼ Po(λt).
It then follows from Proposition 2.8 that X is a Poisson process of rate λ.

The system of differential equations appearing in the proof are known as the forward equa-
tions, which we will come across in much greater generality when we come to continuous-time
Markov chains.

2.6 Further properties

Theorem 2.10. Let X = (Xt)t≥0 be a Poisson process. Then conditional on {Xt = n} the
jump times T1, T2, . . . , Tn have the same distribution as an ordered sample of size n from the
uniform distribution on [0, t].

Proof. First note that if U1, U2, . . . , Un are i.i.d. U[0, t], then

P (U1 ≤ U2 ≤ . . . ≤ Un) =
1

n!
,

as there are n! possible orderings, all equally likely. The joint density of an ordered sample of
size n from the uniform distribution on [0, t] is the same as the joint density of (U1, U2, . . . , Un)
conditioned on {U1 ≤ U2 ≤ . . . ≤ Un}, which is

t−n1{0≤t1≤t2≤...≤tn≤t}

1/n!
=
n!1{0≤t1≤t2≤...≤tn≤t}

tn
.

Now the holding times Z1, . . . , Zn+1 are i.i.d. Exp(λ), with joint density

λn+1 exp(−λ(z1 + · · ·+ zn)), z1, . . . , zn+1 ∈ R+.

Changing variable to T1 = Z1, T2 = Z1 +Z2, . . . , Tn+1 =
∑n+1

i=1 Zi, and noting that the Jacobian
is 1, we get

λn+1 exp(−λtn+1), 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn+1.

So for A ⊆ [0, t]n,

P ((T1, . . . , Tn) ∈ A|Xt = n) =
P ((T1, . . . , Tn) ∈ A, Tn+1 > t)

P (Xt = n)

=
λn+1

∫
(t1,...,tn)∈A

∫∞
t exp(−λtn+1)dtn+11{0≤t1≤...≤tn≤t}dt1 . . . dtn

e−λt(λt)n/n!

=
n!

tn

∫
(t1,...,tn)∈A

1{0≤t1≤...≤tn≤t}dt1 . . . dtn,

as required.

We recall some useful facts which were proved in Part A Probability. It is a good exercise
to try to reprove them for yourself. (Which of the three definitions is easiest to work with in
each case?)
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Theorem 2.11 (Superposition of Poisson processes). Let X = (Xt)t≥0 and Y = (Yt)t≥0 be
independent Poisson processes of rates λ and µ respectively. Let Zt = Xt+Yt. Then Z = (Zt)t≥0
is a Poisson process of rate λ+ µ.

Theorem 2.12 (Thinning of Poisson processes). Let Z be a Poisson process of rate λ and
let p ∈ [0, 1]. Mark each point of the process independently with probability p. Let X be the
counting process of marked points, and let Y be the counting process of unmarked points. Then
X is a Poisson process of rate λp, Y is a Poisson process of rate λ(1 − p) and X and Y are
independent.

2.7 Summary of the rest of the course

The theoretical content of this course is concerned with two generalisations of the Poisson
process.

• The construction of the Poisson process in terms of exponential holding times and the
resulting Markov property can be considerably generalised. This is done essentially by
allowing different parameters for the holding times in different states and allowing jumps,
which instead of always being +1, are random and depend on the current state. This
gives the class of continuous-time Markov chains. We will spend roughly the first half of
the course studying continuous-time Markov chains. Our main reference will be Markov
Chains by Norris.

• The Poisson process is the prototype of a counting process. Many quantities can be ex-
plicitly calculated for it. However, in applications, exponential inter-arrival times may
not be a appropriate, for example when modelling the arrival of insurance claims. If we
relax the assumption of exponentiality of the inter-arrival times (but keep their indepen-
dence and identical distribution) we obtain the class of counting processes called renewal
processes. Since exact calculations are often impossible or not helpful in this context, the
most important results of renewal theory are limiting results. Our main reference will be
Chapter 10 of Probability and Random Processes by Grimmett and Stirzaker.

We will also spend a lot of time on applications.

• Many of these applications are in queueing theory. The easiest, so-called M/M/1 queue
consists customers arriving according to a Poisson process at a single server. Independently
of the arrival times, each customer has an exponential service time for which they will
occupy the server, when it is their turn. If the server is busy, customers queue until they
can be served. Everything has been designed so that the queue length is a continuous-time
Markov chain, and various quantities can be studied or calculated (equilibrium distribu-
tion, lengths of idle periods, waiting time distributions etc). More complicated queues
arise if the Poisson process is replaced by a renewal process or the exponential service
times by any other distribution. There are also systems with k = 2, 3, . . . ,∞ servers.
The abstract queueing systems can be more concretely applied in telecommunications,
computing networks, etc.

• Some other applications include insurance ruin and propagation of diseases.
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3 Birth processes

Suppose we want to model a growing population in continuous time. If new individuals are born
(or arrive) at a constant rate, then we could use a Poisson process. If, however, the birth rate
depends on the number of individuals present, the Poisson process will not be a good model.

Definition 3.1. Let (λn)n≥0 be a sequence such that 0 ≤ λn <∞ for all n ≥ 0. Fix k ∈ N and
let Z1, Z2, . . . be independent random variables such that Zn ∼ Exp(λk+n−1) for n ≥ 1. Then
the process (Xt)t≥0 defined by

Xt = k + #

{
n ≥ 1 :

n∑
i=1

Zi ≤ t

}
,

is called a simple birth process, started from k.

Remark 3.2. Note that X is a counting process which, when it first reaches state n, waits a
length of time distributed as Exp(λn) and then jumps to n+ 1. “Simple” refers to the fact that
no two births occur at the same time.

Proposition 3.3 (Competing exponentials). Let E1, E2, . . . , En be independent and identically
distributed Exp(λ) random variables, thought of as the times until n alarm clocks ring. Then

M := min{E1, E2, . . . , En},

the time until the first clock rings, has Exp(nλ) distribution. Let K be the index of the first
clock to ring. Then K is uniformly distributed on {1, 2, . . . , n} and conditionally on K = k, the
random variables M and {Ej −M : j 6= k} are independent and Ej −M ∼ Exp(λ).

Proof. This is a special case of a question on Problem Sheet 1.

3.1 Example: the Yule process

Consider a population in which each individual gives birth after an Exp(λ) time, independently
and repeatedly. If n individuals are present then each waits an Exp(λ) time until it gives
birth. So the first birth occurs after an Exp(nλ) time. Then we have n+ 1 individuals and, by
Proposition 3.3, the process begins afresh:

• the n− 1 individuals which didn’t reproduce must each wait a further Exp(λ) time;

• the individual which did reproduce gets a new Exp(λ) time until it next gives birth;

• so does the individual which was born.

So the size of the population performs a simple birth process with rates λn = nλ, n ≥ 1. This
is often known as a Yule process of rate λ.

Suppose Y0 = 1 and let Yt be the number of individuals alive at time t > 0. Let m(t) :=
E [Yt].

Proposition 3.4. We have m(t) = eλt, for t ≥ 0.

Proof. Write T for the time of the first birth, i.e. T = inf{t ≥ 0 : Yt = 2}. Notice that after the
first birth has occurred, by construction we have two independent copies of the original Yule

11



process. Now, let us split the expectation according to whether T has occurred by time t or
not:

m(t) = E [Yt] = E
[
Yt1{T≤t}

]
+ E

[
Yt1{T>t}

]
=

∫ t

0
E [Yt|T = u]λe−λudu+ P (T > t) ,

since Yt = 1 on the event {T > t}. Now, if T = u then (Ys+u)s≥0 evolves as the sum of two
independent copies of the original Yule process. So we have E [Yt|T = u] = 2E [Yt−u] = 2m(t−u).
Putting this together, we obtain

m(t) =

∫ t

0
2m(t− u)λe−λudu+ e−λt.

We need to solve this integral equation. Changing variable in the integral to s = t− u gives

m(t) = e−λt
∫ t

0
2λeλsm(s)ds+ e−λt

and so

eλtm(t) = 2λ

∫ t

0
eλsm(s)ds+ 1.

Differentiating in t, we obtain

λeλtm(t) + eλtm′(t) = 2λeλtm(t)

which is equivalent to
m′(t) = λm(t).

Since m(0) = E [Y0] = 1, we obtain m(t) = eλt.

So, on average, the population size grows exponentially with rate λ. You will see on Problem
Sheet 1 that, in fact, the population size also grows exponentially in an almost sure sense.

3.2 Markov property

Like Poisson processes, simple birth processes have the Markov property.

Proposition 3.5. Let X be a simple birth process with rates (λn)n≥0 started from X0 = k. Fix
t ≥ 0 and i ≥ k. Then, given Xt = i, (Xr)r≤t and (Xt+s)s≥0 are conditionally independent,
and the conditional distribution of (Xt+s)s≥0 is that of a simple birth process with rates (λn)n≥0
started from i.

Proof. This proceeds in exactly the same way as for the Poisson process, just replacing λ by λn
for the appropriate n.

3.3 Explosion

There are two phenomena which may arise in the setting of birth processes which cannot happen
for a Poisson process. The first is simple to understand: if it happens that λ0, . . . , λn−1 > 0 but
λn = 0 for some n ≥ 0 then if X0 ≤ n, the birth process will eventually get stuck at population
size n. (We interpret an Exp(0) as being almost surely infinite.) This is not completely absurd
from the modelling perspective: consider the situation where there is only a finite amount of
space or resources for the population, beyond which point it is impossible for individuals to
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reproduce. We have actually already come across this phenomenon, absorption, in the setting
of discrete-time Markov chains.

The other phenomenon is explosion: if the rates λn increase too quickly, it may happen that
infinitely many individuals are born in finite time. Note that this would not be a desirable feature
of a model: real-world populations do not become infinite! So it is useful from the modelling
perspective to know for which models explosion cannot occur, and restrict our attention to
those.

Definition 3.6. Consider a simple birth process X with rates (λn)n≥0 started from k ∈ N, and
let Tn = inf{t ≥ 0 : Xt = k + n} for n ≥ 1. Let T∞ = limn→∞ Tn =

∑∞
i=1 Zi (where we allow

∞ as a possible value for the limit). Then we say explosion is possible if P (T∞ <∞) > 0.

There turns out to be a simple criterion for whether explosion is possible.

Theorem 3.7. Let X be a simple birth process started from k.

(a) If
∑∞

i=k
1
λi
<∞ then P (T∞ <∞) = 1 i.e. explosion occurs with probability 1.

(b) If
∑∞

i=k
1
λi

=∞ then P (T∞ <∞) = 0 i.e. the probability that explosion occurs is 0.

Proof. Without loss of generality, we shall suppose that k = 0 (otherwise, simply shift the
indices).

(a) We have

E [T∞] = E

[ ∞∑
i=1

Zi

]
=

∞∑
i=1

E [Zi] =

∞∑
i=1

1

λi
,

where we may interchange the sum and expectation by Tonelli’s theorem. Since the series is
finite, E [T∞] <∞, which implies that P (T∞ <∞) = 1.

(b) Note that P (T∞ <∞) = 0 iff P (T∞ =∞) = 1, and that the latter is implied by E
[
e−T∞

]
=

0. Now for any n,

E
[
e−T∞

]
≤ E

[
exp

(
−

n∑
i=1

Zi

)]
=

n∏
i=1

E [exp(−Zi)]

by independence of the holding times. Each term in the product is the moment generating
function E [exp(θZi)] evaluated at θ = −1. So

E [exp(−Zi+1)] =
λi

λi + 1
=

(
1 +

1

λi

)−1
.

Taking logs, we obtain

− logE
[
e−T∞

]
≥

n−1∑
i=0

log

(
1 +

1

λi

)
and since this holds for each n we get

− logE
[
e−T∞

]
≥
∞∑
i=0

log

(
1 +

1

λi

)
.

Now, if λi ≤ 1 for infinitely many values of i then clearly the right-hand side is infinite. On the
other hand, if λi > 1 for all sufficiently large i, say i ≥ I, then we have log(1+1/λi) ≥ log(2)/λi
for all i ≥ I and then

− logE
[
e−T∞

]
≥ log(2)

∑
i≥I

1

λi
.
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Since we have only omitted finitely many terms from the sum
∑∞

i=0 1/λi, the right-hand side
must also be infinite, from which it follows that E

[
e−T∞

]
= 0, as desired.

Note that this theorem boils down to the fact that a sum of independent exponential random
variables is finite if and only if its mean is finite. This is not true in general: finiteness of the
expectation of a random variable implies finiteness of the random variable, but the converse is
false.

3.4 Quick recap: branching processes

In Prelims Probability, we saw a different model for a growing population, in discrete time:
a branching process. In that setting, we have a population in which each individual lives for
a unit time and, just before dying, gives birth to a random number of children, distributed
according to the offspring distribution. Different individuals then reproduce independently in
the same manner. Let Pn be the size of the population in generation n. Then (Pn)n≥0 is a
branching process. Let N be a random variable with the offspring distribution. Suppose that
G(s) = E

[
sN
]

is the probability generating function and E [N ] = µ <∞. Let us assume P0 = 1.
Then we saw in Prelims that

E
[
sPn
]

= G(n)(s)

(the n-fold composition of G with itself) and that the probability q of extinction is given by
the minimal non-negative solution of s = G(s). We also saw that q = 1 if µ ≤ 1, while q < 1 if
µ > 1. You will see a continuous-time version of a branching process on Problem Sheet 1.

4 Continuous-time Markov chains: basic theory

4.1 Right-continuous processes

Let S be a countable state-space. A right-continuous process X = (Xt)t≥0 taking values in S
must remain for a while in each state, and there are three possible behaviours:

(a) (b) (c)

Let T0 = 0 and Tn+1 = inf{t ≥ Tn : Xt 6= XTn}, n ≥ 1. Set Zn = Tn − Tn−1, n ≥ 1. Then
T0, T1, T2, . . . are the jump-times of X and Z1, Z2, . . . are its holding times. In case (b), we have
Tn =∞ for some n. In case (c), T∞ := limn→∞ Tn <∞. If the process explodes, we will adjoin
an extra state, ∞, to the state space, and always set Xt = ∞ for t > T∞. A process which
is set to ∞ after any explosion is called minimal because it is active for the smallest possible
time. Now let Yn = XTn , n ≥ 0 be the sequence of successive states taken by the process. The
discrete-time process (Yn)n≥0 is called the jump chain.

We will be interested in processes (Xt)t≥0 which possess the Markov property. It turns out
that these can be totally determined by specifying the distributions of the holding times and
jump chain.
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4.2 Jump chain and holding times

Important information will be summarised by a special matrix.

Definition 4.1. A Q-matrix or generator is a matrix Q = (qij)i,j∈S such that

(i) 0 ≤ −qii <∞ for all i ∈ S (negative diagonal entries)

(ii) qij ≥ 0 for all i 6= j (non-negative off-diagonal entries)

(iii)
∑

j∈S qij = 0 (zero row sums).

Write qi := −qii and note that we also have qi =
∑

j 6=i qij.

Recall that a stochastic matrix has all non-negative entries and rows which sum to 1. We
derive a stochastic matrix Π = (πij)i,j∈S from Q as follows:

πij :=


qij/qi if j 6= i, qi 6= 0

0 if j = i, qi 6= 0

0 if j 6= i, qi = 0

1 if j = i, qi = 0.

Informally, a continuous-time Markov chain is a process which, whenever it is in state i ∈ S,
waits an Exp(qi) time and then jumps to a different state, chosen to be j with probability πij .

We will make use of the fact (proved on Problem Sheet 1) that if E ∼ Exp(1) then E/λ ∼
Exp(λ).

Definition 4.2 (Jump chain/holding time definition). A minimal right-continuous process
(Xt)t≥0 is a continuous-time Markov chain with initial distribution ν and Q-matrix Q if

• (Yn)n≥0 is a discrete-time Markov chain with initial distribution ν and transition matrix
Π;

• conditional on Y0 = i0, Y1 = i1, . . . , Yn−1 = in−1, the holding times Z1, Z2, . . . , Zn are
independent exponential random variables with parameters qi0 , qi1 , . . . , qin−1 respectively.

We will write X ∼ Markov(ν,Q).

We think of the initial distribution ν = (νi)i∈S as a row vector. In the case where the chain
starts in some fixed state k ∈ S, we have ν = δk.

We can construct such a process by taking (Yn)n≥0 to be a discrete-time Markov chain with
initial distribution ν and transition matrix Π and taking E1, E2, . . . to be i.i.d. Exp(1) random
variables. Then for i ≥ 1 set Zi = Ei/qYi−1 , T0 = 0, Tn =

∑n
i=1 Zi for n ≥ 1 and let

Xt =

{
Yn if Tn ≤ t < Tn+1 for some n

∞ otherwise.

Then (Xt)t≥0 satisfies the conditions of the definition.

Remark 4.3. When the process jumps, it never jumps to itself. If qi = 0 for some i ∈ S then i
is an absorbing state: if X ever hits i, it stays there forever. This is encoded in the jump-chain,
exceptionally, as a “phantom jump” back to i.
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Example 4.4. A simple birth process with birth rates (λn)n≥0 started from k. We have νi = δik,
qi i+1 = λi, i ∈ N, qij = 0 for j 6= i, i+ 1 i.e.

Q =


−λ0 λ0 0 0 · · ·

0 −λ1 λ1 0 · · ·
0 0 −λ2 λ2 · · ·
...

...
...

. . .
. . .


The jump chain is deterministic: Yn = k + n.

The memoryless property of the exponential distribution translates into the following key
fact.

Proposition 4.5 (Competing exponentials). Let I be a finite or countably infinite index-set.
Let {Ei : i ∈ I} be independent random variables such that Ei ∼ Exp(λi) for i ∈ I, where λi ≥ 0
and

∑
i∈I λi <∞. Then

M := inf
i∈I

Ei ∼ Exp

(∑
i∈I

λi

)
and

P
(
Ek < inf

i 6=k
Ei

)
=

λk∑
i∈I λi

.

It follows that the infimum is attained at a (random) index K such that

P (K = k) =
λk∑
i∈I λi

, k ∈ I.

Moreover, conditionally on K = k, the random variables {Ej −M : j 6= k} are independent
with Ej −M ∼ Exp(λj).

Proof. See Problem Sheet 1.

Let Y0 ∼ ν and, for i, j ∈ S such that i 6= j, let (Nij(t))t≥0 ∼ PP(qij), independently for
distinct pairs i, j and independent of Y0. Define T0 = 0 and, inductively for n ≥ 0,

Tn+1 = inf{t > Tn : NYnj(t) 6= NYn j(Tn), for some j 6= Yn}

and

Yn+1 = j if Tn+1 <∞ and NYn j(Tn+1) 6= NYn j(Tn).

Then define

Xt =

{
Yn if Tn ≤ t < Tn+1 for some n ≥ 0

∞ otherwise.

Proposition 4.6. We have that (Xt)t≥0 ∼ Markov(ν,Q).

Proof. We need to check that X has the correct jump chain, holding times and dependence
structure.

Clearly, X0 = Y0 ∼ ν. Given Y0 = i, the first jump occurs at the first time one of the
Poisson processes Nij , j 6= i has a jump. But this is the minimum of independent exponentials
with parameters qi,j , j 6= i. Since qi =

∑
j 6=i qij < ∞, we have T1 ∼ Exp(qi). Moreover, the

minimum is attained by the Poisson process Nij with probability qij/qi = πij .
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By the memoryless property, (Nkl(T1 + s)−Nkl(T1))s≥0 is a new PP(qkl) for each k, l ∈ S,
k 6= l, independent of {Nkl(t), 0 ≤ t ≤ T1, k, l ∈ S}. Hence, the second holding time and jump
are independent of the first. By induction, the same is true for subsequent holding times and
jumps.

Remark 4.7. This construction makes it clear that qij is the rate of going from i to j, i 6= j.
Moreover, qi = −qii is the rate at which the chain leaves the state i.

Proposition 4.8 (Markov property). Let X ∼ Markov(ν,Q) and let t ≥ 0 be a fixed time.
Then, given Xt = k, (Xr)r≤t and (Xt+s)s≥0 are independent and the conditional distribution of
(Xt+s)s≥0 is Markov(δk, Q).

Proof. This follows straightforwardly from the last construction and the Markov property of
the Poisson processes involved.

4.3 Stopping times and the strong Markov property

The Markov property tells us that for a fixed time t ≥ 0, conditional on Xt = k, the process
after time t begins afresh from k. It is also very useful to be able to say something about the
way the process evolves after certain random times.

Definition 4.9. A random time T taking values in [0,∞] is a stopping time for a process
(Xt)t≥0 if the event {T ≤ t} depends only on (Xs)0≤s≤t.

Intuitively, we can tell from looking at the process up to time t whether T has occurred or
not. In other words, if asked to stop at time T , you know when to stop.

Example 4.10. (a) Let T = inf{t ≥ 0 : Xt = k} for some fixed k. Then {T ≤ t} = {∃0 ≤
s ≤ t : Xs = k} and so T is a stopping time.

(b) Let T̃ = sup{t ≥ 0 : Xt = k} for some fixed k. In general, we cannot tell just from looking
at (Xs)0≤s≤t whether we have hit k for the last time or not. So T̃ is not a stopping time.

(c) Let T = inf{t ≥ 0 : Xt = 10} − 1 Then

{T ≤ t} = {∃ 0 ≤ s ≤ t+ 1 : Xs = k},

which clearly depends on (Xs)0≤s≤t+1. So T is not a stopping time.

Remark 4.11. Note that a stopping time can take the value ∞. For example, if (Xt)t≥0 is a
continuous-time Markov chain, it is perfectly possible that for a fixed state k ∈ S we never hit
k. In that case, the set {t ≥ 0 : Xt = k} is empty, and so has infimum ∞.

Consider Example 4.10 (c). We cannot expect the process started from T to look like a new
copy of the original process because we now it must hit 10 at time T +1. On the other hand, for
T a stopping time, a continuous-time Markov chain started from T is a new continuous-time
Markov chain.

Theorem 4.12 (Strong Markov property). Let X ∼ Markov(ν,Q) and let T be a stopping
time. Then for all k ∈ S such that P (XT = k) > 0, given T < ∞ and XT = k, we have that
(Xr)r≤t and (XT+s)s≥0 are independent. Moreover, the conditional distribution of (XT+s)s≥0
is Markov(δk, Q).

The proof is beyond the scope of this course, but can be found in Section 6.5 of Markov
Chains by Norris.
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4.4 Transition semigroups

By the Markov property, P (Xt+s = j|Xt = i) does not depend on t. Write

pij(s) = P (Xt+s = j|Xt = i)

and P (s) = (pij(s))ij∈S as a matrix.

Example 4.13. For a PP(λ),

pi i+n =
(λs)ne−λs

n!
, n ≥ 0, i ≥ 0.

Proposition 4.14. (P (t))t≥0 is a semigroup i.e. P (0) = I and for all s, t ≥ 0, P (t + s) =
P (t)P (s).

Proof. P (0) = I is obvious. For all i, k ∈ S,

pik(t+ s) =
∑
j∈S

P (Xt+s = k,Xt = j|X0 = i)

=
∑
j∈S

P (Xt = j|X0 = i)P (Xt+s = k|Xt = j,X0 = i)

=
∑
j∈S

pij(t)pjk(s) by the Markov property.

When we have a fixed initial state X0 = i, we will write P (·|X0 = i) or Pi(·).

4.5 The backward and forward equations

Theorem 4.15. The transition matrices (P (t))t≥0 of a minimal (ν,Q)-CTMC satisfy the back-
ward equation:

P ′(t) = QP (t), t ≥ 0, (2)

where we differentiate each entry of the matrix. Moreover, with the initial condition P (0) = I,
we have that P (t) is the minimal non-negative solution to this system of differential equations
i.e. any other solution (P̃ (t))t≥0 has

p̃ij(t) ≥ pij(t), for all i, j ∈ S.

Proof. Condition on the time of the first jump, T1:

pik(t) = Pi (Xt = k, T1 ≤ t) + Pi (Xt = k, T > t)

=

∫ t

0
Pi (Xt = k|T1 = s) qie

−qisds+ δike
−qit

=

∫ t

0

∑
j∈S

Pi (Xt = k,Xs = j|T1 = s) qie
−qisds+ δike

−qit

=

∫ t

0

∑
j∈S

Pi (Xt = k|Xs = j, T1 = s)Pi (Xs = j|T1 = s) qie
−qisds+ δike

−qit

=

∫ t

0

∑
j 6=i

pjk(t− s)πijqie−qisds+ δike
−qit

=

∫ t

0

∑
j 6=i

pjk(u)πijqie
−qi(t−u)du+ δike

−qit
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So

eqitpik(t) = δik +

∫ t

0

∑
j 6=i

pjk(u)πijqie
qiudu

and differentiating gives

eqitp′ik(t) + qie
qitpik(t) =

∑
j 6=i

qijpjk(t)e
qit.

Cancelling the exponentials, using the fact that qi = −qii and rearranging gives (2).
Suppose now we have another non-negative solution p̃ij(t). Then reversing the last few steps

we must have

p̃ik(t) = δike
−qit +

∫ t

0

∑
j 6=i

qij p̃jk(u)e−qi(t−u)du. (3)

Now note that pik)(t) = limn→∞ Pi(Xt = k, t < Tn). We will compare p̃ik(t) and Pi(Xt = k, t <
Tn). First since T0 = 0 and p̃ik(t) ≥ 0, we have

Pi(Xt = k, t < T0) = 0 ≤ p̃ik(t).

We now proceed by induction. Suppose that for some n ∈ N and all i, k ∈ S,

Pi(Xt = k, t < Tn) ≤ p̃ik(t).

Then we have, by the same argument as before,

Pi(Xt = k, t < Tn+1) = δike
−qit +

∫ t

0

∑
j 6=i

qijPj(Xt−s = k, t− s < Tn)e−qisds

≤ δike−qit +

∫ t

0

∑
j 6=i

qij p̃jk(u)e−qi(t−u)du

= p̃ik(t)

by (3). Hence, by induction, Pi(Xt = k, t < Tn) ≤ p̃ik(t) for all n ∈ N. Taking the limit as
n→∞, we obtain pik(t) ≤ p̃ik(t) for all i, k ∈ S.

Remark 4.16. The condition
∑

j∈S pij(t) = 1 for all i ∈ S and all t ≥ 0 is sufficient to give
uniqueness of the solution to the backward equation. So in order to have non-uniqueness we must
have

∑
j∈S pij(t) < 1 for some i i.e. the chain must explode in the sense that P (T∞ <∞) > 0.

Theorem 4.17. The transition matrices (P (t))t≥0 of a minimal continuous-time Markov chain
with initial distribution ν and Q-matrix Q satisfy the forward equation:

P ′(t) = P (t)Q.

Moreover, with the initial condition P (0) = I, (P (t))t≥0 is the minimal non-negative solution
to this system of equations.

Proof. For finite state-space: see Problem Sheet 2. The proof for infinite state-space is beyond
the scope of the course; see Section 2.8 of Markov Chains by Norris.

We will deal almost exclusively with non-explosive continuous-time Markov chains for which
uniqueness of the solution to the backward and forward equations is guaranteed.
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4.6 Matrix exponentials

Suppose, for the moment, that the state-space S is finite so that P (t) is an N ×N matrix for
some N and each t ≥ 0. Consider the backward equation,

P ′(t) = QP (t),

and the forward equation,
P ′(t) = P (t)Q,

both with initial condition P (0) = I. Recall that we also have the semigroup property: P (t +
s) = P (s)P (t). In view of all this, seems natural to want to write P (t) = etQ, although we are,
of course, dealing with matrices and so have to be a bit careful. The correct way to define the
right-hand side is via a series expansion:

etQ =
∞∑
k=0

tk

k!
Qk.

It can be shown (see Norris Markov Chains Section 2.10) that this series converges in an appro-
priate sense for all t ≥ 0 and that, moreover, it satisfies the forward and backward equations
(which have unique solutions for S finite). This is a very useful view-point but one which we
can only easily make use of for finite S. For infinite S, the matrices are of infinite size and so it
is much harder to make sense of such exponentials.

4.7 Finding transition probabilities in finite systems

In many cases, the forward and backward equations are not at all easy to solve. However, we
have seen some cases where they are straightforward (for example, for a Poisson process.) In
finite state-spaces, there is a reasonably general technique which you can employ. (The worked
example which follows is adapted from Example 2.1.3 of Markov Chains by Norris.)

Consider the continuous-time Markov chain with Q-matrix

Q =

−2 1 1
1 −1 0
2 1 −3

 .

To see what is going on, a diagram helps:

1

1

1

2

1

1

2

3

What is p11(t)? Since we have a finite state-space, we can write P (t) = etQ =
∑∞

k=0
tkQk

k! . We
can diagonalize Q as Q = UΛU−1, where Λ is a diagonal matrix,

Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 .
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Then Qk = UΛU−1UΛU−1 . . . UΛU−1 = UΛkU−1 and so

P (t) =
∞∑
k=0

tk

k!
UΛkU−1 = U

( ∞∑
k=0

tk

k!
Λk

)
U−1

= U


∑∞

k=0
(λ1t)k

k! 0 0

0
∑∞

k=0
(λ2t)k

k! 0

0 0
∑∞

k=0
(λ3t)k

k!

U−1 = U

eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

U−1.

It follows that there exist constants α, β, γ such that

p11(t) = αeλ1t + βeλ2t + γeλ3t.

In our example, Q has eigenvalues 0,−2,−4, so that p11(t) = α+βe−2t+γe−4t. To find α, β, γ,
note that p11(0) = 1 and so

α+ β + γ = 1. (4)

The backward equation gives P ′(0) = Q and so p′11(0) = −2. Hence,

−2β − 4γ = −2. (5)

Applying the backward equation twice gives P ′′(0) = Q2 and so p′′11(0) = 7. Hence,

4β + 16γ = 7. (6)

We have three equations in three unknowns and so can solve to obtain

p11(t) =
3

8
+

1

4
e−2t +

3

8
e−4t.

5 Properties of continuous-time Markov chains

Many aspects of the behaviour of continuous-time Markov chains can be deduced from corre-
sponding facts for the jump chain.

5.1 Class structure

Definition 5.1. Let X be a continuous-time Markov chain.

(a) We say i leads to j and write i→ j if

Pi(Xt = j for some t ≥ 0) > 0.

(b) We say i communicates with j and write i↔ j if both i→ j and j → i.

(c) A ⊆ S is a communicating class if for all i, j ∈ A, we have i ↔ j and for all k ∈ S \ A,
at most one of i→ k and k → i holds. Note that the communicating classes partition S.

(d) A is a closed class if the chain cannot leave A i.e. there are no i ∈ A, j ∈ S \A such that
i→ j.

(e) i is an absorbing state if {i} is closed.

(f) X is irreducible if S is the only communicating class.
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Class structure is inherited from the jump chain.

Proposition 5.2. Let X be a minimal continuous-time Markov chain with jump chain Y . For
i, j ∈ S, i 6= j, the following are equivalent:

(i) i→ j for X

(ii) i→ j for Y

(iii) there exists n ≥ 1 and state i0 = i, i1, . . . , in−1, in = j such that
∏n−1
k=0 qik ik+1

> 0

(iv) pij(t) > 0 for all t > 0

(v) pij(t) > 0 for some t > 0.

Proof. The implications (iv)⇒ (v)⇒ (i)⇒ (ii) are clear.

(ii) ⇒ (iii): In discrete time, i→ j for Y implies

n−1∏
k=0

πik ik+1
> 0,

for some states i0 = i, i1, . . . , in−1, in = j, and so

n∏
k=0

πik ik+1
qik =

n−1∏
k=0

qik ik+1
> 0,

since qi = 0 if and only if πii = 1.

(iii) ⇒ (iv): If qij > 0 then

pij(t) ≥ Pi(Z1 ≤ t, Z2 > t, Y1 = j)

= Pi(Z1 ≤ t)Pi(Y1 = j)P (Z2 > t|Y1 = j)

= (1− e−qit)πije−qjt > 0 (7)

for all t > 0. We do not necessarily have qij > 0. But if qij = 0, for the path (i0, i1, . . . , in)
given by (iii) we have qik ik+1

> 0 for all 0 ≤ k ≤ n− 1 and then

pij(t) ≥ Pi(Xt/n = i1, X2t/n = i2, . . . , Xt = in) =
n−1∏
k=0

pik ik+1
(t/n) > 0

for all t > 0 by (7).

Remark 5.3. It is not possible to have periodic behaviour in a continuous-time Markov chain,
even if the underlying jump-chain is periodic.

5.2 Hitting probabilities

Suppose that (Xt)t≥0 is a continuous-time Markov chain with Q-matrix Q and let (Yn)n≥0 be
its jump-chain (with transition matrix Π). Define the first hitting time of a set A ⊆ S by

τXA := inf{t ≥ 0 : Xt ∈ A}.
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This is a stopping time. Also let

τYA := inf{n ≥ 0 : Yn ∈ A},

the equivalent quantity for the jump-chain. Then

{τXA <∞} = {τYA <∞}

and so the hitting probability hAi := Pi(τXA <∞) is equal to Pi(τYA <∞) i.e. hitting probabilities
are the same for the jump-chain and the original chain. If A is a closed class, hAi is called the
absorption probability.

We know (from Part A Probability) that the hitting probabilities (hAi , i ∈ S) of the set A
are the minimal non-negative solution to the following system of equations:{

hAi = 1 if i ∈ A
hAi =

∑
j∈S πijh

A
j if i /∈ A.

(See your Part A notes, or Theorem 1.3.2 of Norris. The proof, once again, essentially involves
conditioning on which state we jump to first.) Using the definition of Π in terms of entries of
Q, we see that this can be re-phrased directly as the minimal non-negative solution to{

hAi = 1 if i ∈ A∑
j∈S qijh

A
j = 0 if i /∈ A.

5.3 Recurrence and transience

Recall that for a discrete-time Markov chain, recurrence of a state i means that we come back
infinitely often to i, and transience means we eventually leave i forever.

Definition 5.4. Let X be a continuous-time Markov chain. We say that {t ≥ 0 : Xt = i} is
bounded if there exists M such that Xt 6= i for all t > M and unbounded otherwise.

(a) i ∈ S is recurrent if
Pi ({t ≥ 0 : Xt = i} is unbounded) = 1.

(b) i ∈ S is transient if
Pi ({t ≥ 0 : Xt = i} is bounded) = 1.

Note that if X can explode started from i and X is minimal then i must be transient.

Let Hi = inf{t ≥ T1 : Xt = i} be the first passage time to i (note that we force the chain to
make at least one jump, so that if X0 = i, X must leave and then come back.)

Proposition 5.5. i ∈ S is recurrent (transient) for a minimal continuous-time Markov chain
X iff it is recurrent (transient) for the jump chain Y .

Proof. Suppose i is transient for Y . Then if X0 = i, N = sup{n ≥ 0 : Yn = i} <∞. So

{t ≥ 0 : Xt = i} ⊆ [0, TN+1),

which is finite since TN+1 is a sum of finitely many exponential random variables.
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Suppose now that i is recurrent for Y . Then if X0 = i, there exists an infinite sequence
N1 ≤ N2 ≤ . . . of times such that YNk

= i. Then the time spent at i by X is bounded below by

∞∑
k=1

ZNk
,

where ZNk
∼ Exp(qi) for all k ≥ 1. But we saw in the proof of the explosion criterion for a birth

process that a sum
∑∞

k=1Ek where E1, E2, . . . are independent and Ek ∼ Exp(λk) is finite iff∑∞
k=1 1/λk <∞. Here, λk = qi for all k ≥ 1 and so

∑∞
k=1 ZNk

=∞ with probability 1. Hence,
X spends an unbounded amount of time at i.

Since i must be either recurrent or transient for Y , the result follows.

Corollary 5.6. Every state i ∈ S is either recurrent or transient for X. Moreover, recurrence
and transience are class properties.

Proof. This follows immediately from the corresponding results for the jump chain.

Recall that for a discrete-time Markov chain Y with transition matrix Π and first passage
time

HY
i = inf{n ≥ 1 : Yn = i},

i is recurrent iff Pi
(
HY
i <∞

)
= 1 iff

∑∞
i=0 π

(n)
ii =∞.

Theorem 5.7. For any state i ∈ S, the following are equivalent:

(i) i is recurrent

(ii) qi = 0 or Pi (Hi <∞) = 1

(iii)
∫∞
0 pii(t)dt =∞.

Proof. If qi = 0, X cannot leave i and so i is recurrent. Also in that case pii(t) = 1 for all t > 0
and so

∫∞
0 pii(t)dt =∞.

Now suppose that qi > 0. Then i is recurrent iff it is recurrent for the jump chain, which is
equivalent to

Pi
(
HY
i <∞

)
= 1 and

∞∑
n=0

π
(n)
ii =∞.

Now Pi (Hi <∞) = Pi
(
HY
i <∞

)
. Moreover,∫ ∞

0
pii(t)dt =

∫ ∞
0

Pi (Xt = i) dt

=

∫ ∞
0

Ei
[
1{Xt=i}

]
dt

= Ei
[∫ ∞

0
1{Xt=i}dt

]
by Tonelli’s theorem

= Ei

[ ∞∑
n=0

Zn+11{Yn=i}

]

=
∞∑
n=0

Ei [Zn+1|Yn = i]Pi (Yn = i) by Tonelli’s theorem

=
1

qi

∞∑
n=0

π
(n)
ii .

The result follows, since qi > 0.
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5.4 Examples

A birth-and-death process
Consider a population in which each individual gives birth after an Exp(λ) time, independently
and repeatedly, and has a lifetime which is distributed as Exp(µ), independently of the births
and of the other individuals. Let X0 = 1 and let Xt be the number of individuals in the
population at time t. Because everything is built out of competing exponentials, (Xt)t≥0 evolves
as a continuous-time Markov chain with state-space N and Q-matrix

Q =


0 0 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 · · ·
0 2µ −2(λ+ µ) 2λ 0 · · ·
0 0 3µ −3(λ+ µ) 3λ · · ·
...

...
...

...
...

 .

There are two communicating classes: {0} which is absorbing, and {1, 2, . . .} which is open. So
the chain is clearly transient. The jump chain is a simple random walk with up probability
λ/(λ+ µ) and down probability µ/(λ+ µ), absorbed at 0. So the question of absorption at 0 is
precisely the gambler’s ruin problem. From Part A Probability, we know that the probability
of absorption at 0 started from 1 is 1 if λ ≤ µ and µ/λ if λ > µ.

Suppose we want to know the total number of individuals that are ever born. (This will be
finite if λ ≤ µ and may be infinite if λ > µ.) Let N be the number of children of the initial
individual. This individual has a lifetime L ∼ Exp(µ) and, given L, we have N ∼ Po(λL). So
for n ≥ 0,

P (N = n) =

∫ ∞
0

µe−µxP (Po(λx) = n) dx =

∫ ∞
0

µe−µx
e−λx(λx)n

n!
dx

= λnµ

∫ ∞
0

xn

n!
e−(λ+µ)xdx =

(
λ

λ+ µ

)n µ

λ+ µ
.

So N ∼ Geometric(µ/(λ+µ)). Now observe that each of these children itself has an independent
number of children with the same distribution, and so on. In other words, if we think in terms
of genealogy, we have a branching process. The offspring distribution is the distribution of N .
Write GN (s) = E

[
sN
]

for its probability generating function, and note that

GN (s) =
µ

λ+ µ− λs
.

Let Z be the total number of individuals who are ever born. Then note that Z must have the
same distribution as 1 +

∑N
i=1 Zi, where Z1, Z2, . . . are i.i.d. copies of Z, since we start with

a single individual, and each of its N children is the original progenitor of a new independent
branching process with the same distribution. So the probability generating function GZ of Z
must satisfy

GZ(s) = E
[
s1+

∑N
i=1 Zi

]
= sE

[
GZ(s)N

]
= sGN (GZ(s)) =

µs

λ+ µ− λGZ(s)
.

Rearranging gives
λGZ(s)2 − (λ+ µ)GZ(s) + µs = 0

with possible solutions
λ+ µ±

√
(λ+ µ)2 − 4λµs

2λ
.

25



Since GZ(s) is an increasing function of s, we must take the − root, to obtain

GZ(s) =
λ+ µ−

√
(λ+ µ)2 − 4λµs

2λ
.

Expanding the series, for all λ and µ we obtain

P (Z = n) =
1

2(2n− 1)

(
2n
n

)(
λ

λ+ µ

)n−1( µ

λ+ µ

)n
, n ≥ 1, (8)

and if λ > µ we also have P (Z =∞) = 1−GZ(1) = 1− µ/λ.
You can also check that the extinction probability for the branching process, which is the

minimal non-negative solution to the equation s = GN (s) is, in this case, the minimal non-
negative solution to (λs− µ)(s− 1) = 0, which is indeed 1 if λ ≥ µ and µ/λ if λ > µ.

The M/M/1 queue
Suppose customers arrive at a bank according to a Poisson process of rate λ. There is a single
server and each customer is served for a length of time distributed as Exp(µ), independently
for different customers. If someone is already being served when a customer arrives, they join
the back of the queue and wait their turn.

Let Xt be the number of people in the queue at time t, including the person being served.
Since the holding times are constructed out of competing exponential random variables, (Xt)t≥0
is a continuous-time Markov chain (indeed, a birth-and-death process) with Q-matrix

Q =


−λ λ 0 0 · · ·
µ −λ− µ λ 0 · · ·
0 µ −λ− µ λ · · ·
...

...
...

...


The state-space is clearly irreducible. We will investigate recurrence and transience on Problem
Sheet 2.

6 Application: a stochastic epidemic

Suppose we want to model the spread of a disease in a population of size N . We will consider
an idealised model in which individuals can have one of three states: susceptible (S), infected
(and infectious) (I) or recovered (R). We make the following assumptions:

• only susceptible individuals may become infected;

• after having been infectious for some time, an individual recovers and becomes immune,
or dies.

In particular, an individual may only make two moves: from S to I or from I to R. For this
reason, the model we now describe is often known as an SIR model.

We assume that all individuals come into close contact randomly and independently at a
common rate λ, whether or not they are infected. Close contact between an infected individual
and a susceptible individual results in the susceptible individual becoming infected. Individu-
als remain infectious for an Exp(γ) amount of time before recovering, independently of other
individuals. In particular, we can model the dynamics of the epidemic as a continuous-time
Markov chain (St, It, Rt)t≥0 with (finite) state-space {(s, i, r) : s, i, r ≥ 0, s + i + r = N}. We

26



take the initial state to be (N −m,m, 0) for some 1 ≤ m ≤ N (i.e. there are m infected initially
individuals and everyone else is susceptible) and transition rates

q(s,i,r) (s−1,i+1,r) = λsi,

q(s,i,r) (s,i−1,r+1) = γi,

with all other off-diagonal entries of the Q-matrix taken to be 0.
Obviously this model is unrealistic in several ways, but we can already learn something from

it. More sophisticated versions of it are used in practice.
It is clear that the Markov chain is transient. We let T = inf{t ≥ 0 : It = 0} be the

absorption time. A quantity of great interest is then the terminal state RT ; in other words, how
many people were ever infected in the course of the epidemic?

6.1 A deterministic approximation

Usually we are interested in large population size N . Let’s take I0 = bNεc for some ε ∈ (0, 1).
It’s reasonable to suppose that λ = β/N . It turns out that, in that case, we have that the
proportions (St/N, It/N,Rt/N)t≥0 behave approximately like the solution (s(t), i(t), r(t))t≥0 to
the following system of differential equations:

s′(t) = −βs(t)i(t)
i′(t) = (βs(t)− γ)i(t)

r′(t) = γi(t),

with s(0) = 1 − ε, i(0) = ε and r(0) = 0. (Note that we do not, in fact, need to track the
proportion r(t) of recovered individuals separately, since r(t) = 1−s(t)−i(t) at time t ≥ 0.) We
will not prove this here, but instead try to get an idea of its consequences. It is straightforward
to see that s(t) is monotone decreasing to some value s(∞) and r(t) is monotone increasing to
some value r(∞). If β(1− ε) > γ then i(t) initially increases and then eventually decreases to
i(∞) = 0.

The SIR model with s(0) = 0.997, i(0) = 0.03, β = 0.4 and γ = 0.04. Picture by Klaus-Dieter Keller,

CC0, https://commons.wikimedia.org/w/index.php?curid=77633956

On the other hand, if β(1− ε) < γ then i(t) is simply decreasing to 0, and the epidemic never
“takes off”. If we take i(0) = ε close to 0, as is natural, we see that the critical value separating
the two scenarios is ρ := β/γ = 1. The quantity ρ (often called “R0”) is called the basic
reproduction number, and is interpreted as the average number of new infections caused by a
single infectious individual. When ρ > 1, the epidemic takes off and affects a large number of
people; if ρ < 1, the epidemic remains relatively small.
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In either case, RT /N should look approximately like r(∞). Dividing the first differential
equation by the third, we see that

ds

dr
= −ρs,

which implies that s(t) = (1− ε)e−ρr(t). Since s(∞) = 1− r(∞), we see that r(∞) solves

1− r(∞) = (1− ε)e−ρr(∞).

6.2 Stochastic approximation by a birth-and-death process

Deterministic approximations are, however, not sufficient to capture all the possible behaviours
of interest. Suppose we start with a single infectious individual. Then, even if ρ is much larger
than 1, it is clearly possible that the epidemic dies out quickly.

Let us return to our original Markov chain model, and consider what happens close to
the start if I0 = 1, λ = β/N and N is large. It is difficult to make precise distributional
computations, but it turns out that we can make a useful stochastic approximation. (Let
us now ignore the recovered individuals, since we know we can deduce their number from
Rt = N − St − It.) Then

q(s,i) (s−1,i+1) = β
s

N
i

q(s,i) (s,i−1) = γi.

As long as St
N ≈ 1 then these are approximately the transition rates of a birth-and-death process;

indeed, the down-rate is the same, and the up-rate is bounded above by the up-rate of the birth-
and-death process. We can use this to make a comparison between the two. Let us define a
new continuous-time Markov chain (St, It, Gt)t≥0 with transition rates

q(s,i,g) (s−1,i+1,g) = β
s

N
i

q(s,i,g) (s,i,g+1) = β
(

1− s

N

)
i+ βg

q(s,i,g) (s,i−1,g) = γi

q(s,i,g) (s,i,g−1) = γg.

Start from S0 = N − 1, I0 = 1, G0 = 0. The quantity (Gt)t≥0 doesn’t have any meaning in
the epidemic model – we can think of it simply as an immigration of ghost individuals into the
population (at a slightly complicated rate), each of which thereafter reproduces at rate β and
dies at rate γ, without interacting with the other individuals. It’s straightforward to check that
(St, It)t≥0 is still evolving according to the SIR model, that (Gt)t≥0 is non-negative, and that
(It +Gt)t≥0 evolves exactly like the birth-and-death process in Section 5.4, where an individual
gives birth at rate β and dies at rate γ. In particular, the absorption time T = inf{t ≥ 0 : It = 0}
for the epidemic is always smaller than the absorption time T ′ = inf{t ≥ 0 : It+Gt = 0} for the
birth-and-death process. The distribution of T ′ is explicit (see Problem Sheet 2). Moreover, RT
is bounded above by the total number of Z individuals that are ever born in the birth-and-death
process, whose distribution we calculated at (8).

7 Convergence to equilibrium for continuous-time Markov chains

To understand equilibrium behaviour, we must consider the communicating classes of a continuous-
time Markov chain separately. So without loss of generality we will restrict attention here to
the case of irreducible chains.
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7.1 Invariant distributions

Note that if X0 ∼ ν,

P (Xt = j) =
∑
i∈S

νipij(t) = (νP (t))j .

Definition 7.1. A distribution ξ on S is invariant for a continuous-time Markov chain if

ξP (t) = ξ for all t ≥ 0.

If we take X0 ∼ ξ then Xt ∼ ξ for all t ≥ 0 and we say that X is in equilibrium.

Theorem 7.2. Suppose that Q is a Q-matrix and (P (t))t≥0 are the transition matrices of the
associated minimal continuous-time Markov chain. Then ξ is invariant iff ξQ = 0.

Proof. We give the proof for finite S.

Suppose first ξP (t) = ξ for all t ≥ 0. Then

ξQ = ξP (t)Q = ξP ′(t) by the forward equation

= ξ lim
h→0

P (t+ h)− P (t)

h

= lim
h→0

ξP (t+ h)− ξP (t)

h
= 0.

If ξQ = 0, we have

ξP (t) = ξP (0) + ξ

∫ t

0
P ′(s)ds

= ξ +

∫ t

0
ξQP (s)ds by the backward equation

= ξ.

(We used the finiteness of S when interchanging limits/integrals and matrix multiplication. The
argument for countably infinite S is more complicated and beyond the scope of this course.)

Definition 7.3. Recall that that Hi = inf{t ≥ T1 : Xt = i} is the first passage time to i. A
state i ∈ S is positive recurrent if either qi = 0 or mi = Ei [Hi] < ∞. Otherwise, a recurrent
state i is null recurrent.

Theorem 7.4. Let Q be an irreducible and non-explosive Q-matrix. The following are equiva-
lent:

(i) every state is positive recurrent

(ii) some state i is positive recurrent

(iii) Q has an invariant distribution ξ which satisfies ξi = 1
miqi

, i ∈ S.

Proof omitted (see Norris Theorem 3.5.3).
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7.2 Convergence to equilibrium

This is of central importance in applications.

Theorem 7.5. Let X = (Xt)t≥0 ∼ Markov(ν,Q) be a minimal irreducible positive recurrent
continuous-time Markov chain and let ξ be an invariant distribution. Then

P (Xt = j)→ ξj as t→∞, for all j ∈ S.

Proof. Let X(1) ∼ Markov(ν,Q) and, independently, let X(2) ∼ Markov(ξ,Q), so that X
(2)
t ∼ ξ

for all t ≥ 0. Note that (X
(1)
t , X

(2)
t )t≥0 is a continuous-time Markov chain on the state-space

S × S. Let T = inf{t ≥ 0 : X
(1)
t = X

(2)
t }. The bivariate chain has invariant distribution

η(i,j) = ξiξj for (i, j) ∈ S × S. Thus it is positive recurrent, and in particular recurrent, which
implies that P (T <∞) = 1. Now set

Xt =

{
X

(1)
t t < T

X
(2)
t t ≥ T.

Then by the strong Markov property, (Xt)t≥0 ∼ Markov(ν,Q). But then

P (Xt = j) = P
(
X

(1)
t = j, T > t

)
+ P

(
X

(2)
t = j, T ≤ t

)
= P

(
X

(1)
t = j, T > t

)
+ ξjP (T ≤ t) .

Since P (T <∞) = 1 we get P (T > t) → 0 as t → ∞ and so the right-hand side converges to
ξj , as desired.

Remark 7.6. It follows that the invariant distribution is unique.

It is also the case that the long-run average proportion of time we spend in a state i converges
almost surely to ξi.

Theorem 7.7 (Ergodic theorem). Let X = (Xt)t≥0 ∼ Markov(ν,Q) be a minimal irreducible
positive recurrent continuous-time Markov chain and let ξ be an invariant distribution. Then

1

t

∫ t

0
1{Xs=i}ds→ ξi almost surely

as t→∞.

Proof. We will prove a more general result for renewal processes later, and deduce this from
it.

As a consequence, we can estimate the invariant distribution (in the statistical sense) by
looking at the proportion of time spent in each state over a long period of time.

7.3 Reversibility and detailed balance

Let us consider for the moment an irreducible discrete-time Markov chain Y = (Yn)n≥0 with
transition matrix Π and invariant distribution µ, started in equilibrium. Fix n and define

Ŷm := Yn−m.

We call (Ŷm)0≤m≤n the time-reversal of (Ym)0≤m≤n.
Let π̂ij := µjπji/µi and set Π̂ = (π̂ij)i,j∈S.
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Proposition 7.8. (Ŷm)0≤m≤n is a discrete-time Markov chain with initial distribution µ and
transition matrix Π̂. Moreover, µ is invariant for Π̂.

Proof. First note that ∑
j∈S

π̂ij =
∑
j∈S

µjπji/µi = µi/µi = 1

by stationarity of µ for Π. So Π̂ is a stochastic matrix.
For i0, i1, . . . , in ∈ S,

P
(
Ŷ0 = i0, Ŷ1 = i1, . . . , Ŷn = in

)
= P (Y0 = in, Y1 = in−1, . . . , Yn = i0)

= µinπinin−1 . . . πi1i0

= µi0 π̂i0i1 . . . π̂in−1in .

Finally, we have ∑
i∈S

µiπ̂ij =
∑
i∈S

µjπji = µj

and so µ is indeed invariant for Π̂.

This result means that we can, in fact, make sense of an eternal stationary version of the
Markov chain with time indexed by all of Z: take Y0 ∼ µ, then let (Yn)n≥0 be the chain run
forwards in time with transition matrix Π and let (Yn)n≤0 be the chain run backwards in time
with transition matrix Π̂. Putting these together gives (Yn)n∈Z which is such that Yn ∼ µ for
all n ∈ Z, P (Yn+1 = j|Yn = i) = πij for every n ∈ Z and P (Yn−1 = j|Yn = i) = π̂ij for every
n ∈ Z.

If it happens that Π̂ = Π then we say that Y is reversible, since then the time-reversal has
the same distribution as the forward chain. This is the case if and only if

µiπij = µjπji for all i, j ∈ S. (9)

The equations (9) are known as the detailed balance equations and if they hold we say Π and µ
are in detailed balance.

Lemma 7.9. Suppose that µ and Π are in detailed balance. Then µ is invariant for Π.

Proof. Summing (9) in i gives ∑
i∈S

µiπij = µj
∑
i∈S

πji = µj ,

as required.

This is a very useful result because it is often easier to solve the detailed balance equations
for µ than µ = µΠ. However, it is perfectly possible that an invariant distribution exists (for
example, if the chain has a finite state-space and is irreducible we know that this must be the
case) but that there is no solution to the detailed balance equations.

There are some situations where it is easy to exclude the possibility of reversibility, and in
those cases trying to solve the detailed balance equations to find an invariant distribution is
clearly a bad strategy!

Example: random walk on a path with reflecting barriers. Fix p ∈ (0, 1). Suppose we
have a random walk on {0, 1, . . . , N} such that πi i+1 = p and πi i−1 = 1 − p, 1 ≤ i ≤ N − 1,
π01 = p, π00 = 1− p, πNN−1 = 1− p, πNN = p. Then the detailed balance equations are

µiπi i+1 = µi+1πi+1 i for 0 ≤ i ≤ N − 1
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i.e.
µi+1 =

p

1− p
µi for 0 ≤ i ≤ N − 1.

Then µi =
(

p
1−p

)i
µ0 for 0 ≤ i ≤ N solves the detailed balance equations, and taking µ0 =

(1−2p)(1−p)N
(1−p)N+1−pN+1 gives a distribution. So the chain is reversible.

Compare with the more complicated system of equations µΠ = µ:

µ0(1− p) + µ1(1− p) = µ0

µ0p+ µ2(1− p) = µ1

µ1p+ µ3(1− p) = µ2
...

µN−2p+ µN (1− p) = µN−1

µN−1p+ µN (1− p) = µN .

Example: the frog on an infinite ladder (from Part A Probability Problem Sheet 4). A frog
jumps on an infinite ladder. At each jump, with probability 1− p he jumps up one step, while
with probability p he slips off and falls all the way to the bottom. The stationary distribution
is µi = p(1 − p)i, i ≥ 0. Now note that from state 0, the frog can only move to 0 or to 1 (we
have π00 = p and π01 = 1 − p). However, running backwards in time, the frog can jump from
0 to any element of N. So clearly the chain cannot be reversible: we can tell the direction of
time by observing the behaviour of the chain. You can indeed check that the detailed balance
equations do not have a solution.

It will probably not surprise you to learn that there are continuous-time analogues of these
ideas. Let X = (Xt)t≥0 be a continuous-time Markov chain. Fix a time t and define the
time-reversal X̂ = (X̂s)0≤s≤t by

X̂s = X(t−s)− := lim
r ↑ t−s

Xr.

We take the value just before t− s in order to make X̂ right-continuous.

Theorem 7.10. Let X be an irreducible positive-recurrent minimal continuous-time Markov
chain with Q-matrix Q started from its invariant distribution ξ. Then X̂ = (X̂s)0≤s≤t is a
continuous-time Markov chain with Q-matrix Q̂ such that

q̂ij = ξjqji/ξi, i, j ∈ S.

Proof. Let us first check that Q̂ is a Q-matrix: it has non-negative off-diagonal entries and for
i ∈ S, by the invariance of ξ,∑

j∈S
q̂ij =

∑
j∈S

ξjqji
ξi

=
1

ξi

∑
j∈S

ξjqji = 0.

Now (P (t))t≥0 is the minimal non-negative solution to the forward equation

P ′(t) = P (t)Q, P (0) = I.

Define P̂ (t) by
ξip̂ij(t) = ξjpji(t).
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It is straightforward to check that (P̂ (t))t≥0 are transition matrices. Moreover,

p̂′ij(t) =
ξj
ξi
p′ji(t) =

ξj
ξi

∑
k∈S

pjk(t)qki by the forward equation

=
ξj
ξi

∑
k∈S

p̂kj(t)
ξk
ξj
q̂ik

ξi
ξk

=
∑
k∈S

q̂ikp̂kj(t),

i.e. P̂ ′(t) = Q̂P̂ (t). Hence (P̂ (t))t≥0 solves the backward equation for Q̂. (It is clear that
P̂ (0) = I.) It remains to prove that (P̂ (t))t≥0 are the transition matrices of X̂. For 0 ≤ t1 ≤
t2 ≤ . . . ≤ tn ≤ t,

P
(
X̂t1 = i1, . . . , X̂tn = in

)
= P

(
X(t−t1)− = i1, . . . , X(t−tn)− = in

)
= ξinpin in−1(tn − tn−1) . . . pi2 i1(t2 − t1)
= ξi0 p̂i1 i2(t2 − t1) . . . p̂in−1 in(tn − tn−1).

(For the second equality, we used that the transition probabilities are continuous.) So the
finite-dimensional distributions are correct and hence X̂ ∼ Markov(ξ, Q̂).

Again, we can define an eternal stationary version of the chain, (Xt)t∈R.
If Q̂ = Q then (X̂s)0≤s≤t has the same distribution as (Xs)0≤s≤t and we say that (Xt)t≥0 is

reversible. This happens if and only if

ξiqij = ξjqji for all i, j ∈ S. (10)

These equations are again known as the detailed balance equations and if ξ is a solution we say
that ξ and Q are in detailed balance.

Lemma 7.11. Suppose that Q and ξ are in detailed balance. Then ξ is invariant.

Proof. As in the discrete case, sum (10) over i ∈ S to show that ξQ = 0.

8 Application: queueing theory

The theory of queues originated with the study of calls at a telephone exchange. It is now a
large and well-developed area of Applied Probability. Here, we will talk about some of the basic
models and their properties, using the theory that we have developed earlier in the course. Most
of what follows will be worked examples. We will make the following general assumptions:

• Inter-arrival times are i.i.d. r.v.’s.

• Arriving customers join the end of the queue and are served in the order they arrive.

• Service times are i.i.d. r.v.’s which do not depend on the arriving stream of customers.

The queueing processes we will study are

• M/M/s: Memoryless inter-arrival times, Memoryless service times, s servers.

• M/G/1: Memoryless inter-arrival times, General service times, 1 server

• G/M/1: General inter-arrival times, Memoryless service times, 1 server.
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8.1 The M/M/1 queue

Customers arrive according to a Poisson process of rate λ and service times are Exp(µ). Write
ρ = λ/µ, and call it the traffic intensity. Xt is the number of customers in the queue at
time t, including the customer being served, if there is one. X = (Xt)t≥0 is irreducible and
non-explosive. It is a birth-and-death process:

...

543210

µµ µ µ µ

λ λ λ λλ

We saw earlier that

• if ρ ≤ 1, X is recurrent

• if ρ > 1, X is transient.

If ρ < 1, an invariant distribution ξ exists and is given by

ξn = ρn(1− ρ), n ≥ 0.

If ρ = 1, no invariant distribution exists. To see this, note that the jump-chain is the modulus
of a simple symmetric random walk on Z, which is null recurrent. So X cannot be positive
recurrent here, and so cannot possess an invariant distribution.

We will focus on the case ρ < 1.

8.1.1 Busy and idle periods

A busy period is a time-interval [r, s) such that Xt ≥ 1 for all t ∈ [r, s), Xr− = 0 and Xs = 0
(i.e. the queue is empty just before and just after the interval). An idle period is a time-interval
[r, s) such that Xt = 0 for all t ∈ [r, s), Xr− ≥ 1 and Xs ≥ 1 (i.e. the queue is non-empty just
before and just after the interval).

idle busy busyidle

By the ergodic theorem, the long-run proportion of time for which the server is idle is

lim
t→∞

1

t

∫ t

0
1{Xs=0}ds = ξ0 = 1− ρ a.s.
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Likewise, the long-run proportion of time for which the server is busy is

lim
t→∞

1

t

∫ t

0
1{Xs≥1}ds = ρ a.s.

Write H0 = inf{t ≥ T1 : Xt = 0} for the first passage time to 0. Then we know that m0 :=
E0[H0] satisfies

ξ0 =
1

m0q0
,

where q0 is the rate of leaving state 0. Since ξ0 = 1− ρ and q0 = λ, we get

m0 =
1

λ(1− ρ)
.

But the server isn’t busy until a customer has arrived and so the mean length of a busy period
is

E0[H0]− E0[T1] =
1

λ(1− ρ)
− 1

λ
=

1

µ− λ
.

8.1.2 The departure process and Burke’s theorem

Continue to assume ρ < 1. Let

As = the number of customers who have arrived by time s

Ds = the number of customers who have departed by time s.

Recall that for a function f : [0,∞)→ [0,∞), we write f(t−) = lims↑t f(s) for the left limit of
f at t. Then we could also have written

As = #{0 ≤ r ≤ s : Xr −Xr− = +1}
Ds = #{0 ≤ r ≤ s : Xr −Xr− = −1}.

By assumption, (As)s≥0 ∼ PP(λ). What can we say about (Ds)s≥0? Note that

Xs = X0 +As −Ds.

It seems that the distribution of (Ds)s≥0 will be complicated to describe. But we will be able
to do so, using a very beautiful and powerful application of reversibility.

Recall that ξn = ρn(1− ρ), n ≥ 0 is the invariant distribution, where ρ = λ/µ. For n ≥ 0,

ξnqn,n+1 = ρn(1− ρ)λ = ρn+1(1− ρ)µ = ξn+1qn+1,n.

So ξ and Q are in detailed balance. It follows that (Xt)t≥0 is reversible in equilibrium.
So suppose that the queue is in equilibrium (i.e. X0 ∼ ξ). Fix t > 0 and let (X̂s)0≤s≤t be

the time-reversal of (Xs)0≤s≤t. Then (X̂s)0≤s≤t
d
= (Xs)0≤s≤t. Define

Âs = #{0 ≤ r ≤ s : X̂r − X̂r− = +1}
D̂s = #{0 ≤ r ≤ s : X̂r − X̂r− = −1}.

Since (X̂s)0≤s≤t
d
= (Xs)0≤s≤t we must also have

(Âs)0≤s≤t
d
= (As)0≤s≤t.
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So (Âs)0≤s≤t ∼ PP(λ). Notice that the times of the jumps of a Poisson process in [0, t] are
uniformly distributed. Jumps of (Ds)0≤s≤t correspond to jumps of (Âs)0≤s≤t and so, using the
symmetry of the Poisson process,

(Ds)0≤s≤t
d
= (Âs)0≤s≤t.

It follows that the departure process (Ds)0≤s≤t is a Poisson process of rate λ for any t > 0.
This somewhat surprising result is known as Burke’s theorem.

Remark 8.1. One might expect that departures had more to do with the parameter µ than λ.
The point is that (As)0≤s≤t and (Ds)0≤s≤t are dependent and the link between them is provided
by the equilibrium distribution ξ.

8.2 Tandem queues

Suppose now we have two single-server queues with independent service times of lengths Exp(µ1)
and Exp(µ2) respectively. Customers arrive at the first queue as a Poisson process of rate λ.
When they have been served by the first server, they proceed directly to the second queue.

Let

X
(1)
t = length of the first queue at time t

X
(2)
t = length of the second queue at time t.

Then X = (X(1), X(2)) is a continuous-time Markov chain with transition rates

q(i,j),(i+1,j) = λ, q(i+1,j),(i,j+1) = µ1, q(i,j+1),(i,j) = µ2, i, j ∈ N.

Proposition 8.2. X = (X(1), X(2)) is positive recurrent iff ρ1 := λ/µ1 < 1 and ρ2 := λ/µ2 < 1.
The unique stationary distribution is then given by

ξ(i,j) = ρi1(1− ρ1)ρ
j
2(1− ρ2), i, j ∈ N.

This implies that, in equilibrium, the length of the two queues at any fixed time t are indepen-
dent.

Proof. Let m
(1)
0 be the expected return time to 0 for X(1). Let m(0,0) be the expected return

time to (0, 0) for X. Then m(0,0) ≥ m
(1)
0 . But if ρ1 ≥ 1 then m

(1)
0 = ∞ and so we cannot

have positive recurrence for X. So suppose that ρ1 < 1. If X(1) is in equilibrium, its departure
process is a PP(λ). But this is the arrival process for the second queue. If we were to have
ρ2 ≥ 1, we could not obtain equilibrium for the second queue. So we must have ρ2 < 1 also.
Finally, it is straightforward to check that ξ as specified satisfies ξQ = 0.

Since ξ(i,j) is the product of the invariant probabilities of being in states i and j for the first
and second queues respectively, we have independence of the queue lengths in equilibrium for
any fixed time.
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8.3 Networks of queues

Suppose now we have m single-server queues, labelled by {1, 2, . . . ,m}. Customers move around
the network according to a Markov chain on {1, 2, . . . ,m}. If there are r customers in total,
new customers cannot enter the system and existing customers cannot leave, then the system
is called a closed migration network. If, on the other hand, new customers can arrive at some
of the queues according to a Poisson process, and customers can leave after service at some
of the queues, then the system is called a open migration network. The tandem queue is an
open migration network with m = 2, where new customers can only arrive at the first queue
and existing customers can only leave after service at the second server. The Markov chain is
deterministic and just sends a customer leaving queue 1 straight to queue 2. Customers leaving
the system go to an absorbing exit state, which we can label 0.

Take an open or closed migration network. Suppose service times are Exp(µk) at server k,
k ∈ {1, 2, . . . ,m} and new arrivals at queue k form a PP(λk), k ∈ {1, 2, . . . ,m}. Suppose depar-
tures are always to another queue, or to an exit state denoted 0, according to transition probabil-
ities πi,j . Then the process of queue lengths at each of them servers, X = (X(1), X(2), . . . , X(m)),
is a continuous-time Markov chain on Nm.

8.4 The M/M/s queue

Now suppose that instead of a single server we have s servers. Arrivals form a PP(λ) and service
times are Exp(µ). When 1 ≤ k ≤ s servers are occupied, the first service is completed at rate
kµ. The length of the queue forms a birth-and-death process with rates

qi,i+1 = λ, for all i ≥ 0,

qk,k−1 = kµ for 1 ≤ k ≤ s,
qk.k−1 = sµ for k > s.

3210
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The chain is transient if λ > sµ and recurrent otherwise. It is positive recurrent if λ < sµ.
Then the unique invariant distribution is most easily found by solving the detailed balance
equations to obtain

ξi =

{
ξ0
ρi

i! 1 ≤ i ≤ s,
ξ0

ρi

si−ss!
i > s,

where ξ0 is the constant which gives
∑∞

i=0 ξi = 1 and ρ = λ/µ.
Note that if s =∞ (i.e. no-one ever has to wait), the queue is always positive recurrent and

has Poisson(ρ) invariant distribution.

8.5 The telephone exchange

Calls arrive at the exchange as a Poisson process of rate λ. A call lasts an Exp(µ) time
(independently of everything else). There are s telephone lines, and if all s lines are busy then
arriving calls are lost. (This is effectively an M/M/s queue but where customers are turned
away if all the servers are busy.) The number of busy lines evolves as a continuous-time Markov
chain with state-space {0, 1, 2, . . . , s}.
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Since the state-space is finite and irreducible, there must exist an invariant measure. Solving
the detailed balance equations gives

ξi =
ρi

i!

/ s∑
j=0

ρj

j!
, 0 ≤ i ≤ s.

In consequence, in stationarity, the probability that all of the lines are busy is

ξs =
ρs

s!

/ s∑
j=0

ρj

j!
.

This is called Erlang’s formula.

8.6 The M/G/1 queue

Here, the arrival process is still a Poisson process of rate λ, but the service times are i.i.d. with
a general distribution on (0,∞). Let Xt be the length of the queue at time t. Since the service
times are no longer memoryless, (Xt)t≥0 is no longer a Markov chain. In particular, after an
arrival, we have a residual amount of service time whose distribution we do not know. To get
around this problem, consider the length of the queue just after a departure. Then we know
both the distribution of time time until the next arrival (Exp(λ)) and the time until the next
departure (a full service time).

Let D0 = 0 and, for n ≥ 1, Dn be the time of the nth departure in (Xt)t≥0 i.e.

Dn = inf{t > Dn−1 : Xt −Xt− = −1}.

Let Vn = XDn .

Proposition 8.3. Let G have the service time distribution. Then (Vn)n≥0 is a continuous-time
Markov chain with transition probabilities

dk,k−1+m = E
[
e−λG

(λG)m

m!

]
, k ≥ 1, m ≥ 0

and d0,m = d1,m, m ≥ 0 (since no departures can occur when there are no customers).

Proof. Suppose that G has density g. Given that a service time is of length t, a Po(λt) number
customers arrive during that time. So the number N of customers arriving in a generic service
interval (of length G) has distribution given by

P (N = m) =

∫ ∞
0

P (N = m|G = t) g(t)dt

=

∫ ∞
0

e−λt
(λt)m

m!
g(t)dt

= E
[
e−λG

(λG)m

m!

]
.
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So, if we had k ≥ 1 customers in the queue at the beginning of the service time, we have
k − 1 +m afterwards with the above probability.

Let G1, G2, . . . be the service times of successive customers. These are independent. Let
N1, N2, . . . be the numbers of customers arriving in each of these service intervals. Then
N1, N2, . . . are independent because they are the numbers of Poisson arrivals in disjoint in-
tervals whose lengths are independent.

If the queue is empty after a departure, then the next event is an arrival with probability 1.
The next departure will occur at the end of that customer’s service time. So d0,m is the same
as d1,m. It follows that (Vn)n≥0 is a Markov chain with the claimed transition probabilities.

Let G have moment generating function ψ(θ) = E
[
eθG
]
. Then, since G ≥ 0, this is finite

for all θ ≤ 0. Now define the traffic intensity to be ρ = λE [G].

Proposition 8.4. If ρ < 1 then V = (Vn)n≥0 has a unique invariant distribution ξ whose
probability generating function φ is given by

φ(s) =

∞∑
k=0

ξks
k = (1− ρ)(1− s) ψ(λ(s− 1))

ψ(λ(s− 1))− s
.

Proof. We need to check that ξ with p.g.f. φ is a solution to

ξj =

j+1∑
i=0

ξidi,j , j ≥ 0.

It is sufficient to check that the p.g.f.’s of the left- and right-hand sides are equal. Uniqueness
will then follow from the irreducibility of V .

The left-hand side has p.g.f. φ(s). For the right-hand side, first note that for any k ≥ 0,

∞∑
m=0

dk+1,k+ms
m =

∞∑
m=0

E
[
e−λG

(λsG)m

m!

]
= E

[
e(s−1)λG

]
= ψ(λ(s− 1)).

So then

∞∑
j=0

(
j+1∑
i=0

ξidi,j

)
sj = ξ0

∞∑
j=0

d0,js
j +

∞∑
k=0

∞∑
m=0

ξk+1dk+1,k+ms
k+m

= ξ0

∞∑
j=0

d1,js
j +

∞∑
k=0

ξk+1s
k
∞∑
m=0

dk+1,k+ms
m

=

(
ξ0 +

∞∑
k=0

ξk+1s
k

)
ψ(λ(s− 1))

=

ξ0 + s−1
∞∑
j=0

ξjs
j − ξ0s−1

ψ(λ(s− 1)).

Since ξ0 = φ(0) = (1− ρ), we obtain

s−1(φ(s)− (1− ρ)(1− s))ψ(λ(s− 1)) = φ(s),

by definition of φ(s).
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How long must a customer wait to be served in a M/G/1 queue? Let us suppose that X is
such that the departure process (Vn)n≥0 is in equilibrium. Let Q be the total time the customer
spends in the queue, W his time waiting to be served and G his service time, so that Q = W+G.

Given that Q = x, we know that a Po(λx) number of customers arrive during the time
from our customer’s arrival until his departure. Call this number N . Moreover, this is the
queue length just after he leaves. Since the departure process is in equilibrium, N must have
distribution ξ and hence p.g.f. φ.

In particular,

φ(s) =

∫ ∞
0

E
[
sN
∣∣Q = x

]
fQ(x)dx =

∫ ∞
0

eλx(s−1)fQ(x)dx,

since Po(λx) has p.g.f. eλx(s−1). The last expression is equal to

E
[
eλQ(s−1)

]
= E

[
eλW (s−1)

]
E
[
eλG(s−1)

]
,

since W and Q are independent.
Recall that E

[
eθG
]

= ψ(θ). Setting θ = λ(s− 1), we have

φ(s) = φ(θ/λ+ 1) = E
[
eθW

]
ψ(θ).

Now

φ(θ/λ+ 1) =
(1− ρ)θψ(θ)

θ + λ− λψ(θ)
.

Hence, putting things together,

E
[
eθW

]
=
φ(s)

ψ(θ)
=

(1− ρ)θ

θ + λ− λψ(θ)
.

In other words, if we know the moment generating function of the service-time distribution, we
can calculate the moment generating function of the length of time a customer has to wait to
be served (assuming the departure process is in equilibrium).

8.7 The G/M/1 queue

For the G/M/1 queue, the arrival process is no longer a Poisson process. Service times are
Exp(µ). Let A denote a generic inter-arrival time and suppose that E [A] <∞.

Let Un be the number of other customers in the queue at the time of the nth arrival.

Proposition 8.5. (Un)n≥0 is a Markov chain on N with transition probabilities

ai,i−j+1 = E
[
e−µA

(µA)j

j!

]
, 0 ≤ j ≤ i, ai,0 = 1−

i∑
j=0

ai,i−j+1.

Proof. Consider the number of customers who are served between two arrival times i.e. in a
length of time with the same distribution as A. Suppose that just after the first arrival there
are i + 1 people in the queue (i.e. Un = i). Conditional on A = a, the departures occur as a
Poisson process of rate µ, run for time a and stopped if it ever hits i + 1 (since no more than
i + 1 people can depart). So the number of people who depart has the same distribution as
max{P, i+ 1} where P ∼ Po(µa).

We get
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• max{P, i+ 1} = j with probability e−µa(µa)j/j! for 0 ≤ j ≤ i;

• max{P, i+ 1} = i+ 1 with probability 1−
∑i

j=0 e
−µa(µa)j/j!.

Hence,

ai,i−j+1 =

∫ ∞
0

e−µa
(aµ)j

j!
fA(a)da = E

[
e−µA

(µA)j

j!

]
,

ai,0 = 1−
i∑

j=0

ai,i−j+1.

Finally, because the inter-arrival times are independent and the service times are memoryless,
the number of departures in a particular inter-arrival period is independent of previous numbers
of departures, given the queue length at the beginning of the interval. So (Un)n≥0 is a Markov
chain.

We define the traffic intensity to be ρ = 1/(µE [A]).

Proposition 8.6. If ρ < 1 then (Un)n≥0 has a unique invariant distribution given by

ξk = (1− q)qk, k ≥ 0,

where q is the smallest positive solution of the equation s = E
[
eµ(s−1)A

]
.

Proof. We show first that ξ as defined in the statement is invariant. Fix k ≥ 1. Then

∞∑
i=k−1

ξiai,k =
∞∑
j=0

ξj+k−1aj+k−1,j

=

∞∑
j=0

(1− q)qj+k−1E
[
e−µA

(µA)j

j!

]

= (1− q)qk−1E

e−µA ∞∑
j=0

(µqA)j

j!


= (1− q)qk−1E

[
eµ(q−1)A

]
= (1− q)qk,

since q = E
[
eµ(q−1)A

]
. ξ0 = 1− q is implied since ξ must be a distribution.

Since the Markov chain is irreducible, there can be at most one invariant distribution. Note
that s = 1 is always a solution to s = E

[
eµ(s−1)A

]
but if q = 1 then ξk = 0 for all k ≥ 0 which

is not a distribution. So we need to find a solution in (0, 1); if we can do so then it must unique
since otherwise there would be at least 2 invariant distributions, which is impossible.

Now φ(s) := E
[
eµ(s−1)A

]
is differentiable in [0, 1) and lims↑1 φ

′(s) = E [µA] = 1/ρ. Since
ρ < 1, φ has gradient > 1 at 1 and so, for sufficiently small ε > 0, φ(1 − ε) < 1 − ε. Since
r = φ(0) > 0, the graph of φ(s) must intersect with that of f(s) = s somewhere in (0, 1).
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So ξk = (1− q)qk, k ≥ 0 must be the invariant distribution.

Note that this is a Geometric distribution.
How long must a customer wait to be served in a G/M/1 queue? Suppose that the Markov

chain (Un)n≥0, which gives the number of customers present in the queue just before arrival
times, is in equilibrium. Let W be the length of time an arriving customer waits until he is
served. He arrives to find N ∼ ξ customers ahead of him in the queue.

If N = 0, he does not have to wait at all, so

P (W = 0) = ξ0 = 1− q.

If N ≥ 1, each of the other customers has an Exp(µ) service time. So he must wait an amount
of time distributed as

∑N
i=1Ei where E1, E2, . . . ∼ Exp(µ) independently of one another and

N .
We find the distribution of

∑N
i=1Ei by calculating its moment generating function. Recall

that E
[
eθE1

]
= µ/(µ− θ), so

E

[
exp

(
θ

N∑
i=1

Ei

)
1{N≥1}

]
=
∞∑
k=1

(1− q)qkE

[
exp

(
θ

k∑
i=1

Ei

)]

=

∞∑
k=1

(1− q)qk
(

µ

µ− θ

)k
= q

(1− q)µ
(1− q)µ− θ

.

Since P (N ≥ 1) = q, this means that, conditional on N ≥ 1, we get a Exp((1 − q)µ) waiting
time. So,

P (W = 0) = 1− q, P (W > w) = qe−µ(1−q)w, w ≥ 0.

9 Renewal theory

Renewal processes are counting processes which generalise the Poisson process. We use them
for modelling in circumstances where exponential inter-arrival times are inappropriate.

Definition 9.1. Let Z1, Z2, . . . be i.i.d. strictly positive random variables with distribution func-
tion F (i.e. F (t) = P (Z1 ≤ t)). Let T0 = 0 and Tn =

∑n
k=1 Zk for n ≥ 1. Then the process

X = (Xt)t≥0 defined by
Xt = #{n ≥ 1 : Tn ≤ t}

is called a renewal process and F is referred to as the inter-arrival distribution.
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Example: return times in a Markov chain.

Let (Yt)t≥0 be a continuous-time Markov chain with Y0 = i. Let H
(1)
i = inf{t > T1 : Yt = i} be

the first passage time to i and define H
(2)
i , H

(2)
i , . . . to be the successive return times to i. Set

H
(0)
i = 0. By the strong Markov property, the random variables {H(n+1)

i − H(n)
i , n ≥ 0} are

i.i.d. and so
Xt = #{n ≥ 1 : H

(n)
i ≤ t}

is a renewal process (which counts the number of visits to i by time t).

9.1 The renewal function

We will investigate various aspects of the distribution of Xt for a general renewal process. First,
note that since

Xt ≥ k iff Tk ≤ t

we have
P (Xt ≥ k) = P (Tk ≤ t)

and
P (Xt = k) = P (Tk ≤ t)− P (Tk+1 ≤ t) .

So we want to investigate the distribution of a sum of i.i.d. random variables.

Lemma 9.2. Suppose that S and T are independent strictly positive random variables having
distribution functions F and G respectively and density functions f and g respectively. Then
S + T has distribution function

P (S + T ≤ t) =

∫ t

0
F (t− u)g(u)du =

∫ t

0
G(t− u)f(u)du

and density ∫ t

0
f(t− u)g(u)du =

∫ t

0
g(t− u)f(u)du.

Proof. S and T have joint density f(x)g(y). So

P (S + T ≤ t) =

∫ t

0

∫ t−y

0
f(x)g(y)dxdy =

∫ t

0
F (t− y)g(y)dy

=

∫ t

0

∫ t−x

0
f(x)g(y)dydx =

∫ t

0
G(t− x)f(x)dx.

Differentiating using Leibniz’s rule gives density∫ t

0
f(t− y)g(y)dy =

∫ t

0
g(t− x)f(x)dx.

For functions f and g, define the convolution product

(f ? g)(t) =

∫ ∞
−∞

f(t− u)g(u)du

and note that, by change of variable, f ? g = g ? f . Write f?(k) for f ? f ? · · · ? f︸ ︷︷ ︸
k

.
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Recall that F (t) = P (Z1 ≤ t) = P (T1 ≤ t) and write Fk(t) := P (Tk ≤ t). Then

Fk+1(t) = (Fk ? f)(t) = (F ? f?(k))(t) for k ≥ 1.

Let
m(t) = E [Xt] .

We refer to m(t) as the renewal function.

Proposition 9.3. Let X be a renewal process with inter-arrival density f . Then

m(t) =
∞∑
k=1

Fk(t) =

∫ t

0

∞∑
k=1

f?(k)(s)ds.

Proof. We have

Xt =
∞∑
k=1

1{Tk≤t}

and so the result follows by taking expectations and using Tonelli’s theorem.

Proposition 9.4. Let X be a renewal process with inter-arrival density f . Then m(t) satisfies
the renewal equation

m(t) = F (t) +

∫ t

0
m(t− s)f(s)ds

(i.e. m = F + m ? f). Moreover, m is the unique solution to the renewal equation which is
bounded on finite intervals (i.e. supt∈[0,K] |m(t)| <∞ for all K <∞).

Proof. Let X̃s = XT1+s − 1 for s ≥ 0. Note that X̃0 = 0 and that (X̃s)s≥0 is a renewal process
with inter-arrival times Z̃n = Zn+1, n ≥ 1, independent of T1.

We condition on T1:

E [Xt] =

∫ ∞
0

E [Xt|T1 = s] f(s)ds.

If s > t then E [Xt|T1 = s] = 0. If s ≤ t then

E [Xt|T1 = s] = 1 + E
[
X̃t−s

]
= 1 +m(t− s).

So

m(t) =

∫ t

0
(1 +m(t− s))f(s)ds = F (t) + (m ? f)(t).

Now suppose, for a contradiction, that ` is another solution which is bounded on finite intervals.
Let α = `−m. Then α is also bounded on finite intervals and α = F + ` ? f − (F +m ? f) =
(`−m) ? f = α ? f . Iterating gives α = α ? f?(k) for all k ≥ 1. Now, by linearity, we have

∞∑
k=1

(
α ? f?(k)

)
= α ?

∞∑
k=1

f?(k) = α ? m′.

So ∣∣∣∣∣
( ∞∑
k=1

α ? f?(k)

)
(t)

∣∣∣∣∣ ≤
∫ t

0
α(t− s)m′(s)ds ≤ m(t) sup

u∈[0,t]
|α(u)| <∞.

But since all of the terms in the sum on the left-hand side are equal, the sum must be infinite,
unless α ≡ 0.
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9.2 Limit theorems

By Problem Sheet 1, we have a strong law of large numbers for X ∼ PP(λ). A version of this
result holds in general for renewal processes.

Theorem 9.5 (Strong law of renewal theory). Let X be a renewal process with E [Z1] = µ ∈
(0,∞). Then

Xt

t
→ 1

µ
a.s. as t→∞.

Proof. By the strong law of large numbers,

Tn
n

=
1

n

n∑
k=1

Zk → µ a.s. as n→∞. (11)

Now note that
TXt ≤ t < TXt+1

and so
1

TXt+1
<

1

t
≤ 1

TXt

and
Xt + 1

TXt+1

Xt

Xt + 1
<
Xt

t
≤ Xt

TXt

.

Now note that we must have P (Xt →∞ as t→∞) = 1 since if limt→∞Xt ≤ m then Tm+1 =∞
which is impossible since Tm+1 is a finite sum of finite random variables. So by (11),

Xt

TXt

→ 1

µ
a.s. and

Xt + 1

TXt+1
→ 1

µ
a.s.

Clearly Xt/(Xt + 1)→ 1 a.s. as t→∞. The result follows by sandwiching.

Theorem 9.6 (Central limit theorem of renewal theory). Let X = (Xt)t≥0 be a renewal process
whose inter-arrival times Z1, Z2, . . . satisfy µ = E [Z1] and 0 < σ2 = var (Z1) <∞. Then

Xt − t/µ√
tσ2/µ3

d→ N(0, 1)

as t→∞.

Proof. See Problem Sheet 4.

Theorem 9.7 (The elementary renewal theorem). Let X be a renewal process with mean inter-
arrival time µ and m(t) = E [Xt]. Then

m(t)

t
→ µ

as t→∞.

Note that this does not follow immediately from the Strong law since convergence almost
surely does not imply convergence of means.

The proof is non-examinable. We need a lemma.
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Lemma 9.8. For a renewal process X with arrival times (Tn)n≥1, we have

E [TXt+1] = µ(m(t) + 1),

where m(t) = E [Xt] and µ = E [T1].

This ought to be true, because TXt+1 is the sum of Xt+1 inter-arrival times, each with mean
µ. Taking expectations, we should get (m(t) + 1)µ. However, if we condition on Xt we have
to know the distribution of the residual inter-arrival time after t but, without the memoryless
property, it’s not clear how to do this.

Proof. We do a one-step analysis of g(t) = E [TXt+1]:

g(t) =

∫ ∞
0

E [TXt+1|T1 = s] f(s)ds =

∫ t

0

(
s+ E

[
TXt−s+1

])
f(s)ds+

∫ ∞
t

sf(s)ds

= µ+ (g ∗ f)(t).

This is almost the renewal equation. In fact, h(t) = g(t)/µ− 1 satisfies the renewal equation:

h(t) =
1

µ

∫ t

0
g(t− s)f(s)ds =

∫ t

0
(h(t− s) + 1)f(s)ds = F (t) + (h ∗ f)(t).

Since we know that m(t) is the unique solution to the renewal equation which is bounded on
finite intervals, h(t) = m(t), i.e. g(t) = µ(1 +m(t)), as required.

Proof of the elementary renewal theorem. We certainly have t < TXt+1 and so t < E [TXt+1] =
µ(m(t) + 1) gives the lower bound

lim inf
t→∞

m(t)

t
≥ 1

µ
.

For the upper bound we use a truncation argument: introduce

Z̃j = Zj ∧ a =

{
Zj if Zj < a

a if Zj ≥ a,

with associated renewal process X̃. Z̃j ≤ Zj for all j ≥ 0 implies X̃t ≥ Xt for all t ≥ 0 and so
m̃(t) ≥ m(t). We can apply the lemma again to obtain

t ≥ E
[
T̃
X̃t

]
= E

[
T̃
X̃t+1

]
− E

[
Z̃
X̃t+1

]
= µ̃(m̃(t) + 1)− E

[
Z̃
X̃t+1

]
≥ µ̃(m(t) + 1)− a.

Therefore,
m(t)

t
≤ 1

µ̃
+
a− µ̃
µ̃t

so that

lim sup
t→∞

m(t)

t
≤ 1

µ̃
.

Now µ̃ = E
[
Z̃1

]
= E [Z1 ∧ a]→ E [Z1] = µ as a→∞ (by monotone convergence). Therefore,

lim sup
t→∞

m(t)

t
≤ 1

µ
,

which completes the proof.

Remark 9.9. Note that truncation was necessary to get E
[
Z̃
X̃t+1

]
≤ a. It would have been

enough to have had E [ZXt+1] = E [Z1] = µ, but this is not true. Consider at the Poisson process
as an example. We know that the residual lifetime already has mean µ = 1/λ, but there is also
the part of ZXt+1 before time t to take care of.
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9.3 The renewal property

We cannot expect the Markov property to hold for a renewal process which does not have
exponential inter-arrival times.

Example.
Suppose that P (Z1 = 1) = P (Z1 = 3) = 1/2 and take t = 1. Let X̃s = Xt+s −Xt and consider
Z̃1, the first inter-arrival time of X̃. Then

• If Z1 = 1 and Z2 = 1 then Z̃1 = 1.

• If Z1 = 1 and Z2 = 3 then Z̃1 = 3.

• If Z1 = 3 then Z̃1 = 2.

So P
(
Z̃1 = 1

)
= 1/4, P

(
Z̃1 = 2

)
= 1/2 and P

(
Z̃1 = 3

)
= 1/4. Self-evidently Z̃1 does not

have the same distribution as Z1.
Suppose now we consider the distribution of Z̃1 conditional on X1. If X1 = 0 we know that

Z1 = 3 and so Z̃1 = 2 i.e. P
(
Z̃1 = 2|X1 = 0

)
= 1. So the distribution of Z̃1 depends on (Xr)r≤1

and so (X̃s)s≥0 is not independent of (Xr)r≤1.

If we want a version of the Markov property, we have to look at the jump times.

Proposition 9.10 (The renewal property). Let X be a renewal process. Fix i ≥ 1 and let Ti =
inf{t ≥ 0 : Xt = i}. Then (Xr)r≤Ti and (XTi+s−XTi)s≥0 are independent and (XTi+s−XTi)s≥0
has the same distribution as X.

Proof. For n ≥ 1, set Z̃n = Zi+n. Then Z̃1, Z̃2, . . . are i.i.d. and independent of Z1, . . . , Zi.
Write X̃s = XTi+s − XTi . Then X̃0 = 0 and X̃ is a counting process with inter-arrival times
Z̃1, Z̃2, . . .. So X̃ has the same distribution as X and is independent of (Xr)r≤Ti .

Let us define the age process (At)t≥0 by

At = t− TXt

(this is the time since the last arrival) and the excess lifetime process (Et)t≥0 by

Et = TXt+1 − t

(the time until the next arrival). In particular, if we fix t ≥ 0 and consider X̃s = Xt+s−Xt then
Z̃1 = Et. In general, unless we have something like the memoryless property, At and Et will be
dependent, and the distribution of Et will depend on t. However, this only causes problems for
Z̃1: subsequent inter-arrival times of X̃ are unaffected. This motivates the following definition.

Definition 9.11. Let Z2, Z3, . . . be i.i.d. strictly positive random variables and let Z1 be an
independent strictly positive random variable with a (possibly) different distribution. Then the
associated counting process X = (Xt)t≥0 with

Xt = #

{
n ≥ 1 :

n∑
k=1

Zk ≤ t

}

is called a delayed renewal process.

Remark 9.12. (a) The renewal property remains true for delayed renewal processes, and in
this case the post-Ti process is an undelayed renewal process.
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(b) It can also be shown that the renewal property holds at more general stopping times,
provided that they take values only in the set of jump times. So, for example, T = inf{s ≥
t : Xs = 10} wouldn’t qualify (since we might be at 10 at time t) but TXt+1 (the next jump
after time t) would qualify.

Proposition 9.13. Given a (possibly delayed) renewal process X, for each t ≥ 0 the process
X̃ = (Xt+s −Xt)s≥0 is a delayed renewal process with Z̃1 = Et.

Proof. Apply the renewal property at TXt+1. This establishes that the inter-arrival times
Z̃2, Z̃3, . . . of X̃ are i.i.d. and independent of (Xr)r≤TXt+1

. So, in particular, Z̃2, Z̃3, . . . are

independent of Z̃1 = TXt+1 − t = Et.

9.4 Size-biasing, stationarity and renewal theorems

The previous discussion shows that it we cannot hope to obtain independent increments for a
renewal process. But by picking a good delay distribution for Z1, it is possible that we can
achieve stationarity of increments.

Proposition 9.14. Let X be a delayed renewal process such that the distribution of the excess

life Et does not depend on t ≥ 0. Then X has stationary increments i.e. Xt+s −Xt
d
= Xs for

all s, t ≥ 0.

Proof. By the previous proposition, X̃ = (Xt+s − Xt)s≥0 is a delayed renewal process with
Z̃1 = Et. If the distribution of Z̃1 does not depend on t then nor does the distribution of X̃.

(Et)t≥0 is a process taking values in [0,∞):

Xt

Et

0

1

2

3

Z1

Z1

It in fact turns out that (Et)t≥0 is a Markov process with a continuous state-space. Intu-
itively, this is because whenever it hits 0, it jumps up by a random amount with distribution
F , independent of everything which has gone before. When (Et)t≥0 is away from 0, on the
other hand, it just decreases deterministically and linearly at rate 1. Such continuous-state
Markov processes are beyond the scope of this course, so we will not prove this. If we wish the
distribution of Et to be independent of t then we should be looking for an invariant distribution
for it. We can do this in the case where the inter-arrival times are discrete random variables.

Example: discrete renewal process
Suppose that the inter-arrival distribution is discrete, so that Z1 is integer-valued. Assume that
P (Z1 = 0) = 0, E [Z1] <∞ and gcd{i ≥ 1 : P (Z1 = i) > 0} = 1.

48



Consider the renewal process (Xt)t ≥ 0 at discrete times (we will write (Xn)n≥0). Let En
be the time until the next renewal at step n. Then (En)n≥0 is a discrete-time Markov chain
with transition probabilities

πi i−1 = 1, i ≥ 2,

π1 k = P (Z1 = k) , k ≥ 1.

(Checking this forms part of a question on Problem Sheet 4.) You can check that the chain is
irreducible and positive recurrent (is it reversible?), so has a unique stationary distribution η.
Moreover, it is aperiodic and so, by the theorem on convergence to equilibrium,

En
d→ η as n→∞.

We don’t have the theoretical tools to do the same in continuous time. But we can identify
what the stationary distribution should be by finding limt→∞ P (Et > x).

Proposition 9.15. Suppose that Z1 has density f and mean µ = E [Z1] <∞. Then

P (Et > x)→ 1

µ

∫ ∞
x

(y − x)f(y)dy.

Proof. See Problem Sheet 4.

Before going any further, we will interpret the limiting probability distribution.

Definition 9.16. • Suppose (pn)n≥0 is a probability distribution on N with mean µ =∑∞
k=1 kpk <∞. Then the size-biased distribution (p̂n)n≥0 is given by

p̂n =
npn
µ
, n ≥ 0.

• If f is a probability density function on [0,∞) with µ =
∫∞
0 tf(t)dt < ∞ then the size-

biased distribution has density f̂ given by

f̂(t) =
tf(t)

µ
, t ≥ 0.

Lemma 9.17. Suppose that F is a distribution on [0,∞) with density f and mean µ < ∞.
Then if L has the size-biased distribution and U ∼ U[0, 1] independently of L,

P (LU > x) =
1

µ

∫ ∞
x

(y − x)f(y)dy,

and LU has density

g(x) =
1

µ
(1− F (x)), x ≥ 0.

Proof. Conditioning on the value of L, we obtain

P (LU > x) =

∫ ∞
x

P (U > x/y)
yf(y)

µ
dy

=

∫ ∞
x

(
1− x

y

)
yf(y)

µ
dy =

1

µ

∫ ∞
x

(y − x)f(y)dy.

The density is obtained by differentiating.
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Why should this give the stationary distribution for Et? Imagine inspecting the process
at some large time t. What is the distribution of the inter-arrival interval we fall into? We
are more likely to fall into a longer interval. So, in fact, we fall into a size-biased inter-arrival
interval. Moreover, intuitively, we are equally likely to fall anywhere in the interval. So the
excess life, which is the time until the end of the interval, should have the same distribution as
LU .

Theorem 9.18. Let X be a delayed renewal process with inter-arrival times Z1, Z2, . . . such

that Z2, Z3, . . . have density f and Z1
d
= LU , where L has density f̂ and U ∼ U[0, 1]. Then

Et
d
= LU for all t ≥ 0 and, moreover, X has stationary increments.

Proof. See Problem Sheet 4.

There is an accompanying notion of convergence to equilibrium for a renewal process. Such
a process is increasing, so we cannot hope to obtain that Xt converges in distribution as t→∞.
But we can instead fix s and consider Xt+s −Xt as t→∞.

Theorem 9.19. Let X be a (possibly delayed) renewal process having a continuous inter-arrival
distribution of finite mean µ. Then

Xt+s −Xt
d→ X̃s as t→∞,

where X̃ = (X̃s)s≥0 is the associated stationary renewal process.
Moreover,

(At, Et)
d→ (L(1− U), LU)

as t→∞, where L has density f̂ and U ∼ U[0, 1], independently of L.

Recall that m(t) = E [Xt] is the renewal function. The corresponding result for the expec-
tation of an increment of length s is the renewal theorem.

Theorem 9.20 (Renewal theorem). Under the conditions of the previous theorem, for all s ≥ 0,

m(t+ s)−m(t)→ s

µ
as t→∞.

The following result is often useful in applications.

Theorem 9.21 (Key renewal theorem). Let X be a renewal process with continuous inter-
arrival distribution of mean µ <∞. If h : [0,∞)→ [0,∞) is integrable and non-increasing,

(h ∗m′)(t) =

∫ t

0
h(t− x)m′(x)dx→ 1

µ

∫ ∞
0

h(x)dx

as t→∞.

10 Application: the insurance ruin model

Insurance companies deal with large numbers of policies. These policies are grouped according
to type and other factors into portfolios. We will concentrate on such a portfolio and model the
associated process of arrivals of claims, the claim sizes and the reserve process.

We make the following assumptions:

• Claims arrive according to a Poisson process (Xt)t≥0 of rate λ.
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• Claim amounts (Aj)j≥0 are positive, independent of the arrival process and are i.i.d. with
density f(x), x > 0 and mean µ = E [A1] <∞.

• The insurance company provides an initial reserve of u ≥ 0 units of money.

• Premiums are paid continuously at a constant rate c, so that the accumulated premium
income by time t is ct. Let ρ = λµ/c. We will assume that ρ < 1, which says that on
average we have more premium income coming in than claims going out.

We ignore all expenses and other influences. We will be interested in

• The aggregate claims process, (Ct)t≥0, given by At =
∑Xt

n=1Cn;

• The reserve process, (Rt)t≥0, given by Rt = u+ ct−At;

• The ruin probability, r(u) = Pu(Rt < 0 for some t ≥ 0) as a function of the initial reserve
R0 = u.

10.1 Aggregate claims and reserve processes

Proposition 10.1. The process R = (Rt)t≥0 has stationary independent increments. Its mo-
ment generating function is given by

E
[
eθRt

]
= exp

(
θu+ θct− λt

∫ ∞
0

(1− e−θa)f(x)dx

)
.

Proof. Let 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn. Then

(At1 −At0 , At2 −At1 , . . . , Atn −Atn−1) =

 Xt1∑
n=Xt0+1

Cn,

Xt2∑
n=Xt1+1

Cn, . . . ,

Xtn∑
n=Xtn−1+1

Cn

 ,

which are clearly independent. Moreover,

At+s −At =

Xt+s∑
n=Xt+1

Cn
d
=

Xs∑
n=1

Cn,

since Xt+s − Xt
d
= Xs and C1, C2, . . . are i.i.d. So A has stationary independent increments.

The same properties for R follow because Rt = u+ ct−At. We have

E
[
eθAt

]
= E

exp

θ Xt∑
j=1

Cj


=
∞∑
n=0

P (Xt = n)E

exp

θ n∑
j=1

Cj


= e−λt

∞∑
n=0

(λt)n

n!
E
[
eθC1

]n
= exp

(
λt
(
E
[
eθC1

]
− 1
))

= exp

(
λt

∫ ∞
0

(eθx − 1)f(x)dx

)
.
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Furthermore,

E
[
eθRt

]
= E

[
eθ(u+ct−At)

]
= eθu+θctE

[
e−θAt

]
from which the result follows.

On average, how much will have been paid out on claims which arrive before time t? We
can differentiate the moment generating function to get the mean of At:

E [At] =
∂

∂θ
E
[
eθAt

] ∣∣∣
θ=0

=
∂

∂θ
exp

(
λt
(
E
[
eθC1

]
− 1
)) ∣∣∣

θ=0

= λt
∂

∂θ
E
[
eθC1

] ∣∣∣
θ=0

= λtµ.

It follows that E [Rt] = u + (c− λµ)t which is positive and increasing since c > λµ. Note that
since R has stationary independent increments, we may apply the strong law of large numbers
to see that

Rn
n

=
u

n
+ c− 1

n

n∑
i=1

(Ai −Ai−1)→ c− λµ a.s.

In particular, this implies that Rt → ∞ a.s. as t → ∞. However, this doesn’t tell us anything
about the probability that Rt ever hits 0 i.e. the probability of ruin.

10.2 Ruin probabilities

Recall that r(u) = Pu(Rt < 0 for some t ≥ 0), where u is the initial reserve (i.e. R0 = u). Let
F̄ (x) =

∫∞
x f(y)dy = P (C1 > x).

Proposition 10.2. The ruin probabilities satisfy the (renewal-type) equation

r(x) =
λ

c

∫ ∞
x

F̄ (y)dy +
λ

c

∫ x

0
r(x− y)F̄ (y)dy. (12)

Sketch proof. Condition on the time T1 of the first claim arrival and C1 the first claim amount.
Note that T1 ∼ Exp(λ) and C1 has density f , so

r(x) =

∫ ∞
0

∫ ∞
0

r(x+ ct− y)f(y)dyλe−λtdt

=

∫ ∞
x

λ

c
e−(s−x)λ/c

∫ ∞
0

r(s− y)f(y)dyds,

changing variable with s = x+ ct. Differentiating, we obtain

r′(x) =
λ

c
r(x)− λ

c

∫ ∞
0

r(x− y)f(y)dy

=
λ

c
r(x)− λ

c

∫ x

0
r(x− y)f(y)dy − λ

c

∫ ∞
x

f(y)dy.

Now note that we also have the terminal condition r(∞) = 0. With this condition, it turns
out that the above integro-differential equation has a unique solution. It, thus, suffices to show
that any solution of the renewal equation (12) also solves the integro-differential equation and
has r(∞) = 0.
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Write the convolution product in (12) with the variables interchanged, i.e.

r(x) =
λ

c

∫ ∞
x

F̄ (y)dy +
λ

c

∫ x

0
r(y)F̄ (x− y)dy.

Differentiating, we get

r′(x) = −λ
c
F̄ (x) +

λ

c
r(x)F̄ (0)− λ

c

∫ x

0
r(y)f(x− y)dy

= −λ
c

∫ ∞
x

f(y)dy +
λ

c
r(x)− λ

c

∫ x

0
r(x− y)f(y)dy,

which is what we wanted. The condition r(∞) = 0 can be checked with a little care.

Note that r(0) = λ
c

∫∞
0 F̄ (y)dy = λµ

c = ρ, so that even with 0 initial reserve, the company
is not certain to be ruined.

Where is the renewal process? Imagine we start with 0 reserve but don’t stop when (Rt)t≥0
goes negative. The process (Rt)t≥0 has stationary independent increments. This holds not
only at deterministic times but also at the stopping times defined by τ0 = 0 and, for i ≥ 0,
τi+1 := inf{t ≥ τi : Rt < Rτi}. These are the successive times at which (Rt)t≥0 hits a new
minimum. Since Rt →∞ a.s. as t→∞, there is a last time that (Rt)t≥0 hits its past-minimum.
So for some n <∞, τn =∞. Now, if τi <∞, the process

(Rτi+s −Rτi)s≥0

is independent of (Rt)0≤t≤τi and has the same distribution as (Rt)t≥0. Every time we hit a new
low, we have a probability ρ of hitting a lower point later (since this is just like starting at 0 and
asking if (Rt)t≥0 goes negative). The ith time that the process goes below its last minimum,
assuming that it does (i.e. that τi <∞), it overshoots by an amount ξi = Rτi−1 −Rτi , i ≥ 1:

t

Rt

ξ1

ξ2

Moreover, ξ1, ξ2, . . . are i.i.d. Since we have independent trials with probability 1 − ρ of
never hitting a new low, eventually the process will reach its lowest point and never come back.
So (Rt)t≥0 hits a geometric number T of new lows before never going lower:

P(T = n) = P(τn <∞, τn+1 =∞) = ρn (1− ρ) , n ≥ 0.

Since hitting 0 started from u is the same as hitting −u started from 0, we can express r(u) as
follows:

r(u) = P

(
T∑
i=1

ξi > u

)
(13)
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The idea is that ξ1, ξ2, . . . are the inter-arrival times of a renewal process, but that we only use
the first T of them.

It turns out that the right distribution for ξ1, ξ2, . . . is the distribution of LU , where L has
the size-biased density f̂ associated with f , and U ∼ U[0, 1] independently. Intuitively, it takes
a larger-than-average claim to go below the previous minimum level, and it turns out that the
correct distribution is the size-biased distribution. Moreover, the overshoot is the portion which
goes below the past-minimum; this turns out to be a uniformly distributed fraction of the claim
amount.

Let us now check that r(u) defined as in (13) satisfies (12). Suppose u ≥ 0. Firstly note
that if T = 0 then the sum is empty and so does not exceed u. Conditioning on the value of T ,
then, we obtain

r(u) =
∞∑
n=1

(1− ρ)ρnP

(
n∑
i=1

ξi > u

)
=
∞∑
n=1

(1− ρ)ρn(1−Gn(u)),

where G is the distribution function of ξ1 and Gn is the distribution function of
∑n

i=1 ξi. Let g
be the density corresponding to G. Then we have

r(u) = ρ− (1− ρ)

∞∑
n=1

ρnGn(u). (14)

Now note that g is the density of LU and so

g(y) =
1

µ
(1− F (y)) =

1

µ
F̄ (y).

Taking the convolution product of (14) with λ
c F̄ , we get

λ

c

∫ x

0
r(y)F̄ (x− y)dy =

∫ x

0
ρ2g(x− y)dy −

∫ x

0
(1− ρ)

∞∑
n=1

ρn+1Gn(y)g(x− y)dy

= ρ2G(x)− (1− ρ)

∞∑
n=1

ρn+1Gn+1(x)

= ρG(x)− (1− ρ)
∞∑
n=1

ρnGn(x)

=
λ

c

∫ x

0
F̄ (y)dy − (1− ρ)

∞∑
n=1

ρnGn(x)

=
λ

c

∫ x

0
F̄ (y)dy + r(x)− ρ

= r(x)− λ

c

∫ ∞
x

F̄ (y)dy.

Rearranging, we get (12), as claimed.
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