PROBLEM SHEET 1, INFORMATION THEORY, HT 2021 DESIGNED FOR THE FIRST TUTORIAL CLASS

Question 1 We are given a deck of n cards in order $1, 2, \dots, n$. Then a randomly chosen card is removed and placed at a random position in the deck. What is the entropy of the resulting deck of card?

Question 2 (Polling inequalities) Let $a \ge 0, b \ge 0$ are given with a + b > 0. Show that

$$-(a+b)\log(a+b) \le -a\log(a) - b\log(b) \le -(a+b)\log(\frac{a+b}{2})$$

and that the first inequality becomes an equality iff ab = 0, the second inequality becomes an equality iff a = b.

Question 3 Let X, Y, Z be discrete random variables. Prove or provide a counterexample to the following statements:

- (a) H(X) = H(42X);
- (b) $H(X|Y) \ge H(X|Y,Z)$;
- (c) H(X,Y) = H(X) + H(Y).

Question 4 Does there exist a discrete random variable X with a distribution such that $H(X) = +\infty$? If so, describe it as explicitly as possible.

Question 5 Let \mathcal{X} be a finite set, f a real-valued function $f: \mathcal{X} \mapsto \mathbb{R}$ and fix $\alpha \in \mathbb{R}$. We want to maximise the entropy H(X) of a random variable X taking values in \mathcal{X} subject to the constraint

$$\mathbb{E}[f(X)] \le \alpha. \tag{1}$$

Denote by U a uniformly distributed random variable over \mathcal{X} . Prove the following optimal solutions for the maximisation.

- (a) If $\alpha \in [\mathbb{E}[f(U)], \max_{x \in \mathcal{X}} f(x)]$, then the entropy is maximised subject to (1) by the uniformly distributed random variable U.
- (b) If f is non-constant and $\alpha \in [\min_{x \in \mathcal{X}} f(x), \mathbb{E}[f(U)]]$, then the entropy is maximised subject to (1) by the random variable Z given by

$$P(Z = x) = \frac{e^{\lambda f(x)}}{\sum_{y \in \mathcal{X}} e^{\lambda f(y)}}$$
 for $x \in \mathcal{X}$.

where $\lambda < 0$ is chosen such that $\mathbb{E}[f(Z)] = \alpha$.

(c) (Optional) Prove that under the assumptions of (b), the choice for λ is unique and we have $\lambda < 0$.

Question 6 (A revision on strong law of large numbers (SLLN) in probability theory, please take this question as a reference) Let X be a real-valued random variable.

(a) Assume additionally that X is non-negative. Show that for every x > 0, we have

$$\mathbb{P}(X \ge x) \le \frac{\mathbb{E}[X]}{x}.$$

(b) Let X be a random variable of mean μ and variance σ^2 . Show that

$$\mathbb{P}(|X - \mu| > \varepsilon) \le \frac{\sigma^2}{\epsilon^2}.$$

(c) Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d random variables with mean μ and variance σ^2 . Show that $\frac{1}{m}\sum_{n=1}^m X_n$ converges to μ in probability, i.,e., for every $\varepsilon > 0$,

$$\lim_{m \to +\infty} \mathbb{P}\left(\left|\frac{1}{m}\sum_{n=1}^{m} X_n - \mu\right| > \epsilon\right) = 0.$$

This is a weak version of SLLN. It can be strengthen by Borel-Cantelli lemma to the often-used version: $\mathbb{P}(\lim_{m\to+\infty}\frac{1}{m}\sum_{n=1}^m X_n=\mu)=1$.

Question 7 (Optional) Partition the interval [0,1] into n disjoint sub-intervals of length p_1, \dots, p_n . Let X_1, X_2, \dots be i.i.d. random variables, uniformly distributed on [0,1], and $Z_m(i)$ be the number of the X_1, \dots, X_m that lie in the i^{th} interval of the partition. Show that the random variables

$$R_m = \prod_{i=1}^n p_i^{Z_m(i)}$$
 satisfy $\frac{1}{m} \log(R_m) \stackrel{m \to +\infty}{\longrightarrow} \sum_{i=1}^n p_i \log(p_i)$ with probability 1.