PROBLEM SHEET 2, INFORMATION THEORY, HT 2021 DESIGNED FOR THE SECOND TUTORIAL CLASS

Question 1 We are given a fair coin, and want to generate a random variable X from i.i.d. sampling from tossing the coin, such that X follows the distribution

$$\mathbb{P}(X=1) = p, \ \mathbb{P}(X=0) = 1 - p$$

with any given constant $p \in (0, 1)$.

Suppose Z_1, Z_2, \cdots are the results of independent tossing of the coin, i.e., $\{Z_i\}$ is an i.i.d. sequence of random variable with the distribution $\mathbb{P}(Z=0) = \mathbb{P}(Z=1) = \frac{1}{2}$. Denote $U = \sum_{i=1}^{+\infty} Z_i 2^{-i}$, and define

$$X = \left\{ \begin{array}{ll} 1 & \text{if } U$$

- (a) Show that U follows a uniform distribution over [0,1), and hence show that $\mathbb{P}(X=1)=p$, $\mathbb{P}(X=0)=1-p$.
- (b) Denote I as the minimal number of n such that we we can tell U < p based on $Z_1, \dots Z_n$. Calculate $\mathbb{E}[I]$ and show that $\mathbb{E}[I] \leq 2$.

Question 2 For any $q \in [0,1]$ and $n \in \mathbb{N}$ such that nq is an integer, show that

$$\frac{2^{nH(q)}}{n+1} \le \binom{n}{nq} \le 2^{nH(q)}.$$

Hint: Consider the i.i.d. Bernoulli sequence X_1, X_2, \cdots, X_n with $\mathbb{P}(X=1) = q$, $\mathbb{P}(X=0) = 1-q$).

Question 3 Let X_1 be a random variable valued in $\mathcal{X}_1 = \{1, 2, \dots, m\}$ and X_2 be a random variable valued in $\mathcal{X}_2 = \{m+1, \dots, n\}$ for integers n > m. Let θ be a random variable with $\mathbb{P}(\theta = 1) = \alpha$, $\mathbb{P}(\theta = 2) = 1 - \alpha$ for some $\alpha \in [0, 1]$. Define a new random variable

$$X = X_{\theta}$$
.

Furthermore, suppose θ, X_1, X_2 are independent to each other.

(a) Express H(X) in terms of $H(X_1)$, $H(X_2)$ and $H(\theta)$.

(b) Show that $2^{H(X)} \leq 2^{H(X_1)} + 2^{H(X_2)}$. Can the equality hold in this inequality?

Question 4 The differential entropy of a \mathbb{R}^n -valued random variable X with density function $f(\cdot)$ is defined as

$$h(X) := -\int_{\mathbb{R}^n} f(\mathbf{x}) \log(f(\mathbf{x})) d\mathbf{x}$$

with the convention $0 * \log(0) = 0$.

- (a) Calculate h(X) for the following cases with n = 1.
 - (1) X is uniformly distributed on an interval $[a, b] \subset \mathbb{R}$;
 - (2) X is a standard normal distribution;
 - (3) X is exponential distributed with parameter $\lambda > 0$.
- (b) For general *n*-dimensional case, if $\mathbb{E}[X] = 0$, and Var(X) = K, (K is the variance-covariance matrix). Show that

$$h(X) \le n \log(\sqrt{2\pi e}) + \log(\sqrt{|K|})$$

with the equality hold iff X is multivariable normal.

Hint: you can firstly prove the continuous version of Gibbs' inequality: For any two density functions $f(\cdot)$ and $g(\cdot)$,

$$-\int f(\mathbf{x})\log(f(\mathbf{x}))d\mathbf{x} \le -\int f(\mathbf{x})\log(g(\mathbf{x}))d\mathbf{x}.$$

Also, you can try to prove (or use it without proof) the following property of variance-covariance matrix: If $X=(X_1,\cdots,X_n)^{\top}$ has variance-covariance matrix $\mathrm{Var}(X)=K$, then

$$\mathbb{E}[X^{\top}K^{-1}X] = n.$$

Question 5 (Strong AEP in Proposition 2.10) Let X be a random variable with pmf p over the image space \mathcal{X} with finite elements $k = |\mathcal{X}|$, $\vec{X} = (X_1, \dots, X_n)$, we label elements in \mathcal{X} by a non-decreasing order of p(x), such that $p_i = \mathbb{P}(X = x_i)$ is non-decreasing in i. By this labelling, we can easily rank the probability $\mathbb{P}(\vec{X} = \vec{x})$ for all $\vec{c} \in \mathcal{X}^n$, and explicitly construct the smallest set $\mathcal{S}_n^{\varepsilon}$ by greedily including the element in \mathcal{X}^n with highest probabilities one-by-one until we have $\mathbb{P}(\vec{X} \in \mathcal{S}_n^{\varepsilon}) \geq 1 - \varepsilon$.

Show that for any $\varepsilon > 0$, we have

$$(1 - 2\varepsilon)2^{n(H(X) - \varepsilon)} \le |\mathcal{S}_n^{\varepsilon}| \le 2^{n(H(X) + \varepsilon)}.$$

Hint: For any $\varepsilon_1 \in [0,1), \varepsilon_2 \in [0,1)$ and events A,B with $\mathbb{P}(A) \geq 1 - \varepsilon_1, \mathbb{P}(B) \geq 1 - \varepsilon_2$, show that $\mathbb{P}(A \cap B) \geq 1 - \varepsilon_1 - \varepsilon_2$. Use this inequality to estimate $\mathbb{P}(\mathcal{S}_n^{\varepsilon} \cap \mathcal{T}_n^{\varepsilon})$.

Question 6 (Optional, revision/outlook on Markov chain) A Markov chain is a sequence of discrete random variables $(X_n)_{n\geq 1}$ such that for all x_1, \dots, x_{n+1} valued in \mathcal{X} ,

$$\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, \dots, X_1 = x_1) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n).$$

The Markov chain is called homogenous if $p_n(x,y) := \mathbb{P}(X_{n+1} = y | X_n = x)$ does not depend on n (for every $(x,y) \in \mathcal{X}^2$). In this case we call $(p(x,y))_{(x,y)\in\mathcal{X}^2}$ the transition matrix of (X_n) .

- (a) Repeat rolling a fair die independently, and denote by $\{Z_n\}$ the resulted numbers. Which of the following are Markov chains? For those that are, give the transition matrix.
 - (1) $X_n = \max_{i \le n} Z_i$, which is the largest roll up to the n^{th} roll;
 - (2) X_n is the number of sixes in the first n rolls;
 - (3) X_n is the number of rolls since the most recent six;
 - (4) X_n is the time until the next six.
- (b) Let $(X_n)_{n\geq 1}$ be a Markov chain. Which of the following are Markov chains?
 - (1) $(X_{m+n})_{n\geq 1}$ for a fixed integer m>0;
 - $(2) (X_{2n})_{n>1};$
 - (3) $(Y_n)_{n>1}$ with $Y_n := (X_n, X_{n+1})$.