Problem sheet 2, Information Theory, HT 2021
 Designed for the second tutorial class

Question 1 We are given a fair coin, and want to generate a random variable X from i.i.d. sampling from tossing the coin, such that X follows the distribution

$$
\mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p
$$

with any given constant $p \in(0,1)$.
Suppose Z_{1}, Z_{2}, \cdots are the results of independent tossing of the coin, i.e., $\left\{Z_{i}\right\}$ is an i.i.d. sequence of random variable with the distribution $\mathbb{P}(Z=0)=\mathbb{P}(Z=1)=\frac{1}{2}$. Denote $U=$ $\sum_{i=1}^{+\infty} Z_{i} 2^{-i}$, and define

$$
X= \begin{cases}1 & \text { if } U<p \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that U follows a uniform distribution over $[0,1)$, and hence show that $\mathbb{P}(X=1)=$ $p, \mathbb{P}(X=0)=1-p$.
(b) Denote I as the minimal number of n such that we we can tell $U<p$ based on $Z_{1}, \cdots Z_{n}$. Calculate $\mathbb{E}[I]$ and show that $\mathbb{E}[I] \leq 2$.

Question 2 For any $q \in[0,1]$ and $n \in \mathbb{N}$ such that $n q$ is an integer, show that

$$
\frac{2^{n H(q)}}{n+1} \leq\binom{ n}{n q} \leq 2^{n H(q)}
$$

Hint: Consider the i.i.d. Bernoulli sequence $X_{1}, X_{2}, \cdots, X_{n}$ with $\mathbb{P}(X=1)=q, \mathbb{P}(X=$ $0)=1-q$).

Question 3 Let X_{1} be a random variable valued in $\mathcal{X}_{1}=\{1,2, \cdots, m\}$ and X_{2} be a random variable valued in $\mathcal{X}_{2}=\{m+1, \cdots, n\}$ for integers $n>m$. Let θ be a random variable with $\mathbb{P}(\theta=1)=\alpha, \mathbb{P}(\theta=2)=1-\alpha$ for some $\alpha \in[0,1]$. Define a new random variable

$$
X=X_{\theta} .
$$

Furthermore, suppose θ, X_{1}, X_{2} are independent to each other.
(a) Express $H(X)$ in terms of $H\left(X_{1}\right), H\left(X_{2}\right)$ and $H(\theta)$.
(b) Show that $2^{H(X)} \leq 2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)}$. Can the equality hold in this inequality?

Question 4 The differential entropy of a \mathbb{R}^{n}-valued random variable X with density function $f(\cdot)$ is defined as

$$
h(X):=-\int_{\mathbb{R}^{n}} f(\mathbf{x}) \log (f(\mathbf{x})) d \mathbf{x}
$$

with the convention $0 * \log (0))=0$.
(a) Calculate $h(X)$ for the following cases with $n=1$.
(1) X is uniformly distributed on an interval $[a, b] \subset \mathbb{R}$;
(2) X is a standard normal distribution;
(3) X is exponential distributed with parameter $\lambda>0$.
(b) For general n-dimensional case, if $\mathbb{E}[X]=0$, and $\operatorname{Var}(X)=K$, (K is the variancecovariance matrix). Show that

$$
h(X) \leq n \log (\sqrt{2 \pi e})+\log (\sqrt{|K|})
$$

with the equality hold iff X is multivariable normal.
Hint: you can firstly prove the continuous version of Gibbs' inequality: For any two density functions $f(\cdot)$ and $g(\cdot)$,

$$
-\int f(\mathbf{x}) \log (f(\mathbf{x})) d \mathbf{x} \leq-\int f(\mathbf{x}) \log (g(\mathbf{x})) d \mathbf{x} .
$$

Also, you can try to prove (or use it without proof) the following property of variance-covariance matrix: If $X=\left(X_{1}, \cdots, X_{n}\right)^{\top}$ has variance-covariance matrix $\operatorname{Var}(X)=K$, then

$$
\mathbb{E}\left[X^{\top} K^{-1} X\right]=n
$$

Question 5 (Strong AEP in Proposition 2.10) Let X be a random variable with pmf p over the image space \mathcal{X} with finite elements $k=|\mathcal{X}|, \vec{X}=\left(X_{1}, \cdots, X_{n}\right)$, we label elements in \mathcal{X} by a non-decreasing order of $p(x)$, such that $p_{i}=\mathbb{P}\left(X=x_{i}\right)$ is non-decreasing in i. By this labelling, we can easily rank the probability $\mathbb{P}(\vec{X}=\vec{x})$ for all $\vec{c} \in \mathcal{X}^{n}$, and explicitly construct the smallest set $\mathcal{S}_{n}^{\varepsilon}$ by greedily including the element in \mathcal{X}^{n} with highest probabilities one-by-one until we have $\mathbb{P}\left(\vec{X} \in \mathcal{S}_{n}^{\varepsilon}\right) \geq 1-\varepsilon$.

Show that for any $\varepsilon>0$, we have

$$
(1-2 \varepsilon) 2^{n(H(X)-\varepsilon)} \leq\left|\mathcal{S}_{n}^{\varepsilon}\right| \leq 2^{n(H(X)+\varepsilon)} .
$$

Hint: For any $\varepsilon_{1} \in[0,1), \varepsilon_{2} \in[0,1)$ and events A, B with $\mathbb{P}(A) \geq 1-\varepsilon_{1}, \mathbb{P}(B) \geq 1-$ ε_{2}, show that $\mathbb{P}(A \cap B) \geq 1-\varepsilon_{1}-\varepsilon_{2}$. Use this inequality to estimate $\mathbb{P}\left(\mathcal{S}_{n}^{\varepsilon} \cap \mathcal{T}_{n}^{\varepsilon}\right)$.

Question 6 (Optional, revision/outlook on Markov chain) A Markov chain is a sequence of discrete random variables $\left(X_{n}\right)_{n \geq 1}$ such that for all x_{1}, \cdots, x_{n+1} valued in \mathcal{X},

$$
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \cdots, X_{1}=x_{1}\right)=\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right)
$$

The Markov chain is called homogenous if $p_{n}(x, y):=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right)$ does not depend on n (for every $(x, y) \in \mathcal{X}^{2}$). In this case we call $(p(x, y))_{(x, y) \in \mathcal{X}^{2}}$ the transition matrix of $\left(X_{n}\right)$.
(a) Repeat rolling a fair die independently, and denote by $\left\{Z_{n}\right\}$ the resulted numbers. Which of the following are Markov chains? For those that are, give the transition matrix.
(1) $X_{n}=\max _{i \leq n} Z_{i}$, which is the largest roll up to the $n^{t h}$ roll;
(2) X_{n} is the number of sixes in the first n rolls;
(3) X_{n} is the number of rolls since the most recent six;
(4) X_{n} is the time until the next six.
(b) Let $\left(X_{n}\right)_{n \geq 1}$ be a Markov chain. Which of the following are Markov chains?
(1) $\left(X_{m+n}\right)_{n \geq 1}$ for a fixed integer $m>0$;
(2) $\left(X_{2 n}\right)_{n \geq 1}$;
(3) $\left(Y_{n}\right)_{n \geq 1}$ with $Y_{n}:=\left(X_{n}, X_{n+1}\right)$.

