Problem sheet 3, Information Theory, HT 2021 Designed for the third tutorial class

Question 1 For a random variable X with state space $X=\left\{x_{1}, \cdots, x_{7}\right\}$ and distribution $p_{i}=\mathbb{P}\left(X=x_{i}\right)$ given by

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}
0.49	0.26	0.12	0.04	0.04	0.03	0.02

(a) Find a binary Huffman code for X and its expected length.
(b) Find a ternary Huffman code for X and its expected length.

Question 2 (a) Prove that the Shannon code is a prefix code and calculate bounds on its expected length. Give an example to demonstrate that it is not an optimal code.
(b) Prove that the Elias code is a prefix code and calculate bounds on its expected length. Is it an optimal code?
Hint: Suppose $\mathcal{Y}=\{0,1, \cdots, d\}$. For any $i=1, \cdots,|\mathcal{X}|$, suppose $c\left(x_{i}\right)=a_{1} \cdots a_{k}$ with $k=|c(x)|$. Denote $v_{i}=\sum_{j=1}^{\left|c\left(x_{i}\right)\right|} k a_{j} d^{-j}, r(i)=\sum_{j=1}^{i-1}+p_{i} / 2$ and $\hat{r}(i)=r(i)+$ $p_{i} / 2$. Try to show that the interval $\left[v_{i}, v_{i}+d^{-\left|c\left(x_{i}\right)\right|}\right)$ is contained in the interval $\left[\hat{r}_{i-1}, \hat{r}_{i}\right)$. Hence the intervals $\left[v_{i}, v_{i}+d^{-\left|c\left(x_{i}\right)\right|}\right)$ are disjoint to each other.

Question 3 Prove the following weaker version of the KraftMcMillan theorem (called Krafts theorem) using rooted trees
(a) Let $c: \mathcal{X} \mapsto\{0, \cdots, d-1\}^{*}$ be a prefix code. Consider its code-tree and argue that $\sum_{x \in \mathcal{X}} d^{-|c(x)|} \leq 1$. [Note that the assumption that c is a prefix code is crucial here, otherwise the code-tree cannot be defined to begin with. In the KraftMcMillan theorem from the lecture we only require c to be uniquely decodable].
(b) Assume that $\sum_{x \in \mathcal{X}} d^{-l_{x}} \leq 1$ with $l_{x} \in \mathbb{N}$. Show that there exists a prefix code c with codeword lengths $|c(x)|=l_{x}$ for $x \in \mathcal{X}$ by constructing a rooted tree.

Question 4 Give yet another proof for $\sum_{x \in \mathcal{X}} d^{-|c(x)|} \leq 1$ if c is a prefix code by using the "probabilistic method": randomly generate elements of $\{0, \cdots, d-1\}^{*}$ by sampling i.i.d. from $\{0, \cdots, d-1\}$ and consider the probability of writing a codeword of c.

Question 5 Let X be uniformly distributed over a finite set \mathcal{X} with $|\mathcal{X}|=2^{n}$ for some $n \in \mathbb{N}$. Given a sequence A_{1}, A_{2}, \cdots of subsets of \mathcal{X} we ask a sequence of questions of the form $X \in$ $A_{1}, X \in A_{2}$, etc.
(a) We can choose the sequence of subsets. How many such questions do we need to determine the value of X ? What is the most efficient way to do so?
[Note: If we regard all questions as a mapping from \mathcal{X} to $\{Y e s, N o\}^{*}$, we can even think about how to design the sequence of subsets to minimise the expected number of questions to ask to get the value of a random variable X with any given distribution.]
(b) We now randomly (i.i.d. and uniform) draw a sequence of sets A_{1}, A_{2}, \cdots from the set of all subset of \mathcal{X}. Fix $x, y \in \mathcal{X}$. Conditional on $\{X=x\}$:
i. What is the probability that x and y are indistinguishable after the first k random questions?
ii. What is the expected number of elements in $\mathcal{X} \backslash\{x\}$ that are indistinguishable from x after the first k questions?

Question 6 Let $|\mathcal{X}|=100$ and p the uniform distribution on \mathcal{X}. How many codewords are there of length $l=1,2, \cdots$ in an Huffman binary code?

Question 7 (Optional) Let X be a Bernoulli random variable with $\mathbb{P}(X=0)=0.995, \mathbb{P}(X=$ $1)=0.005$ and consider a sequence X_{1}, \cdots, X_{100} consisting of i.i.d. copies of X. We study a block code of the form $c:\{0,1\}^{100} \mapsto\{0,1\}^{m}$ for a fixed $m \in \mathbb{N}$.
(a) What is the minimal m such that there exists c such that its restriction to sequences $\{0,1\}^{100}$ that contain three or fewer 1 s is injective?
(b) What is the probability of observing a sequence that contains four or more 1s? Compare the bound given by the Chebyshev inequality with the actual probabiltiy of this event.

$\mathrm{x}=$	1	2	3	4
$\mathrm{p}=$	0.5	0.25	0.125	0.125
$\mathrm{c}=$	0	10	110	111

Table 1: Data for Question 8

Question 8 (Optional) Let X be a $\mathcal{X}=\{1,2,3,4\}$-valued random variable with pmf p and binary code c as in the Table 1.

For $n \in \mathbb{N}$, we generate a sequence in \mathcal{X}^{n} by sampling i.i.d. from the distribution p. We then pick one bit uniformly at random from the binary encoded sequence. What is the asymptotic (as $n \rightarrow+\infty$) probability that this bit equals 1 ?

