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Why do we want to study financial modelling? Hasn’t an
over-reliance on mathematics in finance led to significant social
costs?

I Simply ignoring finance isn’t going to work.

I Understanding the system, and why it operates the way it
does, is the first step to effectively improving it

I Utimately, if we want to act in the real world, economics and
finance are going to be part of what we need to do.
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What are we trying to do in this course?

I Build financial models and understand how they can be used

I Understand where the models will fail, and where we need to
take particular care

I Develop technical proficiency which will allow us to work with
better models
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There are a huge number of books on financial derivatives. Here is
a selection, worth consulting for background reading.

I Steven E. Shreve, Stochastic calculus for finance I: The
binomial asset pricing model, Springer 2004
(A superb probabilistic account of the binomial model.)

I Steven E. Shreve, Stochastic calculus for finance II:
Continuous-time models, Springer 2004
(A superb first text on stochastic calculus for finance with
many examples.)

I Alison Etheridge, A course in financial calculus, CUP 2002
(An excellent primer on stochastic calculus for finance.)
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I Paul Wilmott, Sam Howison and Jeff Dewynne, The
mathematics of financial derivatives: A student introduction,
CUP 1995
(A decent first text on the PDE aspects of the subject.)

I Tomas Björk, Arbitrage theory in continuous time, 3rd Ed.,
OUP 2009
(A good all-round text which covers many topics outside the
scope of the course.)

I John C. Hull, Options, futures and other derivatives, 8th Ed.,
Pearson 2011
(A bestseller that has a more financial as opposed to
mathematical bias, and was one of the first textbooks on the
subject, becoming a mainstay of many trading rooms.)
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I Jean Jacod and Philip Protter, Probability essentials, Springer
2003
(An excellent text on measure-theoretic probability, good for
background.)

I Geoffrey R. Grimmett and David R. Stirzaker, Probability and
random processes, 3rd Ed., OUP 2001
(An excellent and encyclopedic background probability text.)
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What are the key concerns of financial modelling?

1. Avoid being exploited.

2. Control, manage and understand your risk.

3. Make a profit (usually by managing risk).

As we will see, the first concern is critical in practice.
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We will need some economic assumptions when building financial
models. The basic assumptions which underlie the models in the
course are:

1. There is a riskless investment (a bank account or bonds)
which grows at a constant, continuously compounded rate r .
If Mt is invested at time t then it grows to MT = Mt e

r(T−t)

at time T > t. A guaranteed amount of BT paid at time T is
worth Bt = BT e−r(T−t) at time t < T . Borrowing and
lending rates are both assumed equal to r .

2. There are no trading costs; if an asset can be bought for St at
time t it can be sold for St at time t, and any amount can be
bought or sold at the same price.
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3. Assets are infinitely divisible, so it possible to own 0.432
shares for instance. This is not a major issue as forwards, calls
and puts are usually written on 1, 000s or 10, 000s of shares,
rather than one share.

4. Short-selling (i.e. holding negative quantities of an asset) is
allowed. This is often true.
In many markets, one can borrow assets (for a fixed time, for
a fee, which we ignore) and sell them, which allows you to
own a negative quantity of the asset. This is known as a
covered short, and is usually seen as a normal part of a
well-functioning market.
In other markets, you can sell something without owning it,
provided you deliver within a specified period (usually 2 days).
This is known as a naked short, and is quite controversial, as
it has been linked to negative effects on asset prices.
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The key concept which will alow us to build arguments is arbitrage:

An arbitrage is an investment which costs nothing (or
less) to set up at time t, Xt ≤ 0, but at a later time T > t
has:

1. zero probability of having a negative value,
P(XT < 0) = 0;

2. strictly non-zero probability of having a strictly
positive value, P(XT > 0) > 0.

We assume that no arbitrage opportunities exist. (In practice they
do, but when institutions exploit them supply and demand causes
prices to realign in order to eliminate them.)
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I No-arbitrage also is often seen in terms of the ‘law of one
price’

I If I have two ways of constructing the same payoff within the
market, and one of them is cheaper than the other, then I can
construct a portfolio which
I Buys the cheaper version of the claim, sells the more expensive
I At expiry has no risk, but has made an initial profit.

I We will often use no-arbitrage in this format.
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I Imagine you have a contract in which you will receive USD in
one year, but have to pay costs in GBP at that time.

I At current exchange rates this deal is profitable, but you are
concerned about it becoming unprofitable if there is a fall in
USD relative to GBP.

I How can you manage your risk?
For simplicity, let’s assume (for now) that no interest is paid
on USD.
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Definition
A forward is an agreement entered into

I by two parties at time t

I in which the holder (who has the long position) promises to
pay the agreed forward price Ft > 0 for an asset at some given
maturity date T > t, and

I the writer (who has the short position) promises to deliver the
asset at time T for the forward price Ft .

I Both parties are obliged to go through with the transaction
regardless of the asset price, ST > 0, at maturity.

I Under normal circumstances, neither party has to pay to enter
the agreement at time t.
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Consider first an agreement to sell the asset at time T (so selling
our USD); this is known as the short position. In this case, the
forward may be hedged by

I borrowing cash equal to St , the price of the asset at time t,

I buying the asset, holding it to maturity then delivering it in
return for Ft .

The payoff for doing this is Ft − er(T−t)St , and has no risk or
initial cost. As there must be no arbitrage, we know that

Ft − er(T−t)St ≤ 0.
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For the long position, consider

I short-selling the asset at t,

I putting the money in a risk-free account and then

I using the forward to buy back the asset for Ft and close out
the short sale.

The payoff for doing this is er(T−t)St − Ft , and by no arbitrage

er(T−t)St − Ft ≤ 0
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As we have assumed no transaction costs, the forward prices on
each side of the deal are the same. Therefore, if there is no
arbitrage, then

Ft = St e
r(T−t).

The payoff diagram for the forward for the long position is a plot
of the value of the forward to the holder at maturity against the
value of the asset at maturity which is ST − Ft .
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Short position
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FtSt
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Key points:

I The forward value is based on the current asset price and the
observed interest rate. It does not depend on whether the
asset is being fairly priced.

I We did not need to model the evolution of asset prices in the
future.

I If interest rates are positive, and there is no cost/benefit to
carrying for the asset (e.g. warehousing costs, foreign interest
payments, etc), then the forward price is above the current
(‘spot’) price of the asset. (Question: What happens in our
argument above if USD pays interest at rate r̂?)
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I As we approach the expiry date, the forward and spot prices
converge.

I Forwards cost nothing to enter, so provide easy exposure to
risk.

I Unlike other many assets we will see, you can’t purchase the
same forward tomorrow that you purchase today (as the
forward price changes).
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Criticism

So, what are the possible flaws in this analysis (in addition to our
earlier assumptions)?

I We have ignored any cost/benefit of holding the asset. This is
fair enough for stocks or foreign currency (after accounting for
dividends and interest), but is difficult for a lot of
commoditites, where warehousing is expensive.

I A related issue is that our no-transaction-cost assumption is
generally good if the contract is cash-settled. If settlement is
in real assets, then you may face large transaction costs on
the asset side. In practice there may also be a (small)
transaction cost in the forward market, so the forward prices
available on each side of the deal can be a little different.

I We have assumed that there is no default risk.
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The default risk issue is very significant, and has lead to the
development of ‘Futures’ markets. These are very similar to
forwards but:

I They have standardized terms (expiry dates, strikes)

I They are traded on an exchange, rather than over the counter

I They are cleared (so your contract is with a clearing house,
rather than the person who bought the other side)

I This allows them to be bought and sold freely, as you don’t
need to keep track of who holds the other side.

I A margin account is needed – this is an account of cash (or
other liquid assets), held at the clearing house, which is used
to offset changes in the value of your position.
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I Forward contracts have existed in some form since antiquity –
suggestions in the Code of Hammurabi (18th century BC) and
in Aristotle’s Politics (4th century BC).

I Formal markets for forwards developed during Tulipmania in
Holland in the 1630s.

I Futures are more recent – the earliest example is the Dojima
rice exchange in Osaka, Japan (1697).

I These became common for agricultural products in the late
19th century (e.g. Chicago Board of Trade 1864 – now part
of CME Group), but financial futures (on currencies, interest
rates, stock market indices, etc...) were only developed in the
1970s. In many of these markets, futures contracts are the
main form of trading in the asset.
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I Suppose we are interested in the fixed-price aspect of a
forward, but do not like the risk that we will be out-of-pocket
if the asset falls.

I This leads us into the world of options. Options are common
on equity (i.e. shares of companies).

I Let’s assume again that a contract is written on a share which
pays no dividends and doesn’t cost anything to hold.
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Definition
A call option is a contract with an expiry date T > t and a strike
K > 0 in which:

I the holder (who has the long position) has the right to buy
the underlying share for the strike at the expiry date;

I the writer (who has the short position) is obliged to deliver
the share for the strike if the holder exercises their right.

The value (of the long position) of the call at expiry is

max(ST − K , 0) = (ST − K )+.

Unlike forwards, the holder has to pay a positive amount for the
call option (this is a consequence of no arbitrage).
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Some terminology

I The Strike or expiry price is K , which is agreed when writing
the contract

I Spot is the the same as the price of the underlying asset St
I Premium is the price of the option. It consists of:

I The Intrinsic value, the value of the option (long position) if it
were to be exercised now

I The Time value, the value of the option above intrinsic value.

I An option is at the money if the strike and the spot are the
same (so no intrinsic value).
I It is in the money if it has positive intrinsic value, out of the

money if it has zero (or negative) intrinsic value.
I The moneyness of the option is St/K .

I Maturity is the length of time until the expiry date

I For some options you have the right to exercise the option at
various times.
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Definition
A put option is a contract with an expiry date T > t and a strike
K > 0 in which

I the holder (who has the long position) has the right to sell the
underlying share for the strike at the expiry date;

I the writer (who has the short position) is obliged to buy the
share for the strike if the holder exercises their right.

The value (of the long position) of the call at expiry is

max(K − ST , 0) = (K − ST )+

The holder has to pay a positive amount for a put option (by no
arbitrage).
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European vs American options

I An option which may be exercised only at its expiry date is
called a European option.

I One which may be exercised at any time up to and including
its expiry date is called an American option.

I Other styles exist – we will see some of these later in the
course.

I In this course, options will be assumed European unless stated
otherwise.
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Unlike for forwards, we cannot give a price to an option without
building a model for the evolution of stock prices. However, there
is a relationship betwen put and call options which must hold.

Theorem (Put–Call parity)

Consider a European call and a European put option, written on
the same underlying asset with (spot) price St . Suppose the
risk-free discount factor is from t to T is e−r(T−t) and there is no
default risk. Then their respective time-t prices Ct and Pt must
satisfy

Ct − Pt = St − Ke−r(T−t)

or their exists an arbitrage opportunity.
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Proof

Consider purchasing a single call and selling a single put, for initial
cost Ct − Pt . This portfolio has no cashflows before expiry time T
and, at expiry, has (unknown) payoff

CT − PT = (ST − K )+ − (K − ST )+ = ST − K .

While its value is unknown, this payoff is identical, in every state of
the world, to a portfolio consisting of one stock and a debt of K at
time T . At time t, the latter portfolio has value

St − Ke−r(T−t).

If these two portfolios have different initial prices, then by
purchasing the cheaper one and shortselling the other, an arbitrage
profit can be made.
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The simplest model for a random share price is the one-step
binomial model.

I The asset price is St at time t.

I At time T it can be either{
ST = Su with probability p > 0,

ST = Sd < Su with probability 1− p > 0.

I No arbitrage implies that

Sd < St e
r(T−t) < Su.

I We assume a risk-free investment is available, which grows
from 1 at time t to R = er(T−t) at time T .
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An option with payoff function f (ST ) at time T is written on this
asset.

I For a call, we have f (s) = (s − K )+.

I For a put, we have f (s) = (K − s)+.

I For a forward, we have f (s) = s − K .

At expiry our option’s value is

VT =

{
V u = f (Su) with probability p

V d = f (Sd) with probability 1− p

The problem is to find the current value of the option Vt . There
are at least three (related) ways to do this.
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Stock (risky asset): St

Su

Sd

RSt

Bond (risk-free asset): 1
R = er(T−t)

Time: t T

Figure: Underlying asset prices in a one-step binomial model
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Approach 1: Delta hedging argument

Key idea:

I We set up a trading strategy in the underlying stock and the
option which guarantees a fixed payoff (at time T ).

I This strategy doesn’t require any cash inputs between times t
and T .

I The initial cost of setting up this portfolio must be the same
as the value of the payoff (as there’s no risk)

I We use this to solve for the initial option price.
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I At time t, set up a portfolio long an option and short ∆t

shares. The initial value is

Πt = Vt −∆t St ,

and hold this portfolio fixed until time T .

I Choose ∆t so that the portfolio has the same value regardless
of whether the up-state or the down-state occurs,

V d −∆t S
d = V u −∆t S

u.

I This gives

∆t =

(
V u − V d

Su − Sd

)
.
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I This portfolio is risk-free and so must grow at the risk-free
rate, or there would be an arbitrage opportunity.

I This implies that

(Vt −∆t St) e
r(T−t) = V u −∆t S

u = V d −∆t S
d

I When we solve for Vt we find that

Vt = e−r(T−t)V u −
(V u − V d

Su − Sd

)(
e−r(T−t)Su − St

)
giving a closed-form value Vt .
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Approach 2: Self-financing replication argument

Key idea:

I We set up a trading strategy in the underlying stock and
bonds, which gives the same payoffs as the option.

I The strategy doesn’t require any cash inputs between times t
and T .

I The initial cost of setting up the strategy must be the same as
the option price.

In this version of the pricing argument we see that the price of the
option is simply the cost of setting up a self-financing portfolio
that perfectly covers the option writer’s liability at expiry T .
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I At time t set up a portfolio with φt shares and ψt bonds
(bonds grow at the risk-free rate).

Φt = φt St + ψt .

I Hold this portfolio fixed and choose φt and ψt so that the
portfolio has value V u in the up-state and V d in the
down-state

Φu = φt S
u + ψt e

r(T−t) = V u,

Φd = φt S
d + ψt e

r(T−t) = V d .
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Solving for φt and ψt gives

φt =

(
V u − V d

Su − Sd

)
, ψt =

(Su V d − Sd V u

Su − Sd

)
e−r(T−t).

I As this portfolio perfectly replicates the option payoff (and
has no other cash flows), its value at t must equal

Vt = Φt = φtSt + ψt ,

which simplifies to the same formula for Vt as earlier.

I Note that Φ ≡ V , ψ ≡ Π and φ ≡ ∆; either argument
amounts to a simple rearrangement of the symbols in the
other.
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From these two approaches, we can draw the following conclusions:

I our model for the share price is complete in the sense that we
can replicate any payoff (i.e., solve one equation for ∆t in the
delta-hedging argument or two equations in two unknowns in
the replication argument).

I The number of stocks we hold is ‘almost’ the derivative of the
payoff V with respect to the underlying S (except for
discretization).

I We have not assumed that the stock is being ‘fairly’ priced,
but have found the only price for the option which is
consistent with the stock price and does not lead to arbitrage.
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Approach 3: Arrow-Debreu securities

We’ll now consider a rather different way to obtain the price of an
option in a binomial model.

I This involves creating a fictional probability measure (the
‘risk-neutral measure’) such that the price of all traded assets
(in particular the option) is the discounted expected value.

I It’s easiest to motivate this by introducing some ‘basis
securities’ (in the same way as we have basis vectors in linear
algebra).
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Definition
An Arrow–Debreu security is a contract which, at an expiry time T ,
pays $1 in one particular state of the world, and nothing otherwise.

I Usefully, this means that, in our Binomial model, we can
define two Arrow–Debreu securities (Au and Ad), and the
price of the option at expiry is VT = V uAu

T + V dAd
T .

I By no arbitrage, as V u and V d are fixed constants, and there
are no intermediate cashflows, the price of V at time t must
be

Vt = V uAu
t + V dAd

t .

I We then need only to find the price of Au and Ad .
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I Using our earlier formula (with V u = 1,V d = 0),

Au
t = e−r(T−t) − e−r(T−t)Su − St

Su − Sd
= e−r(T−t)q

where q = er(T−t)St−Sd

Su−Sd ∈ (0, 1).

I Similarly Ad
t = e−r(T−t)(1− q). This can also be seen directly

by no-arbitrage, as Au
T + Ad

T = 1.

I Our earlier formula for a general option then simplifies to

Vt = V uAu
t + V dAd

t = e−r(T−t)
(
qV u + (1− q)V d

)
.
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I In the last lecture, we introduced the Arrow–Debreu securities,
and saw how to expand the price of a general option in terms
of the Arrow–Debreu prices

I By no arbitrage, we see that Au
t = e−r(T−t)q where

q = er(T−t)St−Sd

Su−Sd ∈ (0, 1).

I By interpreting q as a ‘probability’, we get an interesting
mathematical fiction.
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We give the time-dependent version...

Definition
In the binomial model, the measure Q constructed by

Q
(
St ↑ Su|Ft

)
=

er(T−t)St − Sd

Su − Sd
,

where Ft is the information observed by time t, is called the
risk-neutral measure. It has the property that any traded asset has
price

Vt = e−r(T−t)EQ[VT |Ft ].

We have seen that this is a well defined probability, assuming
no-arbitrage.
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I There is a close connection between this result and martingale
theory.

I If we consider the discounted price e−rtVt , we see that

e−rtVt = EQ[e−rTVT |Ft ],

that is, discounted prices are martingales under the risk
neutral measure.

I This is despite the fact that these assets are not risk-free!

I We do not expect Q = P generally, as this would imply that
prices don’t reflect risk-aversion.
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I The existence of this measure Q is, in fact, equivalent to
no-arbitrage.

I It’s uniqueness is equivalent to prices being determined
uniquely.

I These two statements are known as the ‘Fundamental
Theorem of Asset Pricing’, and hold in much more general
models than the binomial model (but the proof becomes
delicate in continuous time...)
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Theorem (Fundamental Theorem of Asset Pricing)

1. Assuming no arbitrage or transaction costs, and deterministic
interest rates, there exists a probability measure Q such that
the price of a payoff XT at time t is given by
e−r(t−T )EQ[XT |Ft ]. (Also, Q is equivalent to the real-world
probability measure in the sense of measures.)

2. The probability measure Q is unique if and only if all payoffs
are traded (or can be replicated from traded claims).
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Proof

See Etheridge (2002), S1.5 and S1.6 for a proof in a general
discrete time and price model. Here we give a sketch of the proof
over a single step.

I Assume no arbitrage or transaction costs.

I As there are no transaction costs, the prices of all avalable
assets must be linear, that is, Π(aX + Y ) = aΠ(X ) + Π(Y )
for any payoffs X ,Y and any constant a ∈ R.

I If we assume there are finitely many possible outcomes, then a
payoff X can be represented by a vector (x1, ..., xN) in RN for
some N (the number of outcomes). This is the Arrow–Debreu
representation.
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Proof

I Consequently, we can think of Π as a linear operator mapping
RN → R. From algebra, we know that such an operator can
always be written as a matrix, in particular,

Π(X ) =
∑
i

πixi .

I Considering the case when xi ≡ 1, so the payoff is constant,
by no arbitrage we have Π(1) = e−rt , which implies∑

i πi = e−rt .

I Considering an Arrow–Debreu security, we see πi = e−rtqi ,
and no arbitrage guarantees qi ≥ 0 and qi > 0 if this outcome
happens with nonzero probability.

I This guarantees (q1, ..., qN) is a probability vector, as desired.
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Proof

I Uniqueness of Q is clearly the same as uniqueness of the
prices of Arrow–Debreu securities.

I If we can replicate the Arrow–Debreu securities using traded
assets, then we can replicate all possible claims, and their
prices are unique.

I Otherwise, there are Arrow–Debreu securities where the price
is only determined up to some bounds (by no-arbitrage), and
the resulting Q is not unique.

I Hence Q is unique iff all claims can be replicated.
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I We split the interval [t,T ] into n steps of length
δt = (T − t)/n, say

t0 = t, tm+1 = tm + δt, tn = T , for m = 1, 2, . . . n,

and build a binomial, or sometimes a binary, tree starting from
St .

I It common practice to set

Sωutm+1
= u Sωtm , Sωdtm+1

= d Sωtm ,

where u > 1 and 0 < d < 1 are constants and, frequently,
u × d = 1.

I Here ω denotes the path to the current node on the tree, for
example after two steps ω ∈ {uu, ud , du, dd}.
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Stock (risky asset): S0

Su
1

Suu
2

Sud
2

Sd
1

Sdd
2

Sdu
2

Time: 0 1 2

Figure: Underlying asset prices in a two-step binomial model
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Stock (risky asset): S0

uS0

u2S0

udS0

dS0
d2S0

Time: 0 1 2

Figure: Underlying asset prices in a recombining two-step binomial model
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No-arbitrage in the share price tree requires

0 <

(
Sωtm erδt − Sωdtm+1

Sωutm+1
− Sωdtm+1

)
=

(
erδt − d

u − d

)
< 1.

Over each step the risk-neutral pricing formula gives

V ω
tm = e−rδt

(
q V ωu

tm+1
+ (1− q)V ωd

tm+1

)
, q =

(
erδt − d

u − d

)
, (1)

which requires us to work backwards from tn = T , where we know
the option prices from its payoff. This is sometimes called dynamic
programming.
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The ∆-hedging parameter at each step becomes

∆ω
tm =

(
V ωu
tm+1
− V ωd

tm+1

Sωutm+1
− Sωdtm+1

)

and the replicating portfolio (at each step) is

φωtm =

(
V ωu
tm+1
− V ωd

tm+1

Sωutm+1
− Sωdtm+1

)
, ψωtm =

(
Sωutm+1

V ωd
tm+1
− Sωdtm+1

V ωu
tm+1

Sωutm+1
− Sωdtm+1

)
e−rδt .

Recall that at time tm and in state ω, φωtm is the number of shares
we hold and ψωtm is the amount of cash hold in order that we
perfectly replicate the option’s value in the two possible future
states.
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Self-financing replication

Let St be the value of a share and Bt be the value of a bond (i.e.,
cash ) at time t. If at time t a portfolio has φt shares and ψt in
cash then the value of the portfolio is

Φt = φt St + ψt Bt .

Let

δSt = St+δt − St , δBt = Bt+δt − Bt , δΦt = Φt+δt − Φt

so, in general,

δΦt = φt δSt + ψt δBt

+ (St + δSt) δφt + (Bt + δBt) δψt
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If it turns out that

(St + δSt) δφt + (Bt + δBt) δψt = 0,

then any money to buy δφt new shares at t + δ comes from selling
δψt bonds (i.e., borrowing the same amount of cash) and vice
versa. If this is the case, we call the portfolio self-financing over
[t, t + δt) and we find that

δΦt = φtδSt + ψtδBt , (2)

which is usually known as the self-financing equation.

B8.3: The binomial model 8



I The ‘self-financing’ condition on strategies is implicit in the
definition of an arbitrage

I This requirement is enough to ensure we have sensible pricing
through time

I We can weaken it to the requirement that no assets are added
to the portfolio (removing assets doesn’t change the definition
substantially)
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I The replication strategy given above is self-financing;
over any interval [tm, tm+1) both φωtm and ψωtm are fixed, so
both δφωtm = 0 and δψωtm = 0.

I By construction, the replicating portfolio set up at tm in state
ω is guaranteed at time tm+1 to have the value of V ωu

tm+1
in the

up-state (ωu) and V ωd
tm+1

in the down-state (ωd).

I So, although the number of shares and the amount of cash

changes from (φωtm , ψ
ω
tm) to (φ

ω u/d
tm , ψ

ω u/d
tm ) as we go from

t−m+1 to t+m+1, the value of the replicating portfolio does not;
as we re-adjust the portfolio at tm+1, we sell however many
shares are necessary to buy the required number of bonds and
vice versa.

I This establishes that under all possible circumstances in the
binomial model, the (φ, ψ) strategy both replicates the
option’s payoff and is self-financing.
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Given we’ve got a way of pricing options, we can now think about
how to implement it to value options over multiple steps.
Two main methods are possible:

I Using the tree structure for recursive computation

I Using the risk-neutral measure for computation

We’ll cover the second approach first.
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Risk-neutral measure computation

I In our basic binomial model, suppose that the risk neutral
probability q = erδt−d

u−d is constant.

I We then know that the Q-probability of S0 moving to
umdn−mS0 by time T (with δt = (T − t)/n) is given by the
binomial probability (

n

m

)
qm(1− q)n−m

I We can therefore calculate the price of a European option
with payoff f (ST ) as the discounted expected value

V0 = e−r(T−t)EQ[f (ST )]

= e−r(T−t)
∑
m

(
n

m

)
qm(1− q)n−mf (umdn−mS0).

B8.3: The binomial model 3



I For f (S) = (S − K )+, i.e. a call option, we can simplify
further.

I Let M =
⌈
−n log(d)+log(K/S0)

log(u)−log(d)

⌉
(where dxe is the smallest

integer ≥ x).

I Then,

V0 = e−r(T−t)
∑
m

(
n

m

)
qm(1− q)n−m(umdn−mS0 − K )+

= e−r(T−t)
n∑

m=M

(
n

m

)
qm(1− q)n−m(umdn−mS0 − K )

=
( n∑

m=M

(
n

m

)
(uqe−rδt)m(d(1− q)e−rδt)n−m

)
S0

−
( n∑

m=M

(
n

m

)
qm(1− q)n−m

)
e−r(T−t)K
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I Now notice that q̃ := uqe−rδt = 1− d(1− q)e−rδt .

I This means that, if we have Ψ(x ; n, q) as the upper tail of the
Binomial(n, q) distribution (i.e. Ψ(x ; n, q) = P[X ≥ x ] for
X ∼ B(n, q)), we can simplify

V0 =
( n∑

m=M

(
n

m

)
q̃m(1− q̃)n−m

)
S0

−
( n∑

m=M

(
n

m

)
qm(1− q)n−m

)
e−r(T−t)K

= Ψ(M; n, q̃)S0 −Ψ(M; n, q)e−r(T−t)K .

I This is the discrete version of the Black–Scholes formula.

I The price of a put option follows by Put–Call parity.
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Tree-based computation

I The earlier computation works for all European options.

I When we have American options, or other path-dependent
problems (which we will see later in the course), we need
alternative tools.

I The most basic tool is to work with the tree-structure given
by our binomial model.

I To move one-step down the tree, we use the formula we’ve
already derived:

V ω
t = e−rδt(qV ωu

t+1 + (1− q)V ωd
t+1)

I To demonstrate, let’s start with a simple European Put
option, and assume T = n = 2, e−rδt = 0.95, u = 1/d = 1.2,
S0 = 1, K = 1.2. Hence q = 0.5981 (all results to 4dp)
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1

1.2

1.44

1

0.8333
0.6944

Time: 0 1 2

Figure: The underlying stock price
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?

?

0

0.2

?
0.5056

Time: 0 1 2

Figure: The Option value (terminal value (1.2− ST )+)
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?

0.0764

0

0.2

?
0.5056

Time: 0 1 2

Figure: The Option value (terminal value (1.2− ST )+)

e−rδt(qV ωu
t+1 + (1− q)V ωd

t+1) = 0.0764.
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?

0.0764

0

0.3067
0.5056

0.2

Time: 0 1 2

Figure: The Option value (terminal value (1.2− ST )+)

e−rδt(qV ωu
t+1 + (1− q)V ωd

t+1) = 0.3067.
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0.1605

0.0764

0

0.3067
0.5056

0.2

Time: 0 1 2

Figure: The Option value (terminal value (1.2− ST )+)

e−rδt(qV ωu
t+1 + (1− q)V ωd

t+1) = 0.1605
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American Options

I American options can be exercised at any time before expiry.

I Consequently, we need to include this decision in the
calculation of the price.

I It is the holder of the option who has the right to choose
whether to exercise, and we assume will do so to maximize
the value.
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At each node on the tree the option holder has two choices:

I hold the option until the next step, in which case its values is
given by the recursion we’ve already seen; or

I exercise the option at this step and receive the payoff.

A rational investor will choose the one which makes the option
most valuable to them and so if Pωtm represents the payoff at the
current node then

V ω
tm = max

(
e−rδt

(
q V ωu

tm+1
+ (1− q)V ωd

tm+1

)
, Pωtm

)
Let’s consider this for the same values as the option considered
above.
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1

1.2

1.44

1

0.8333
0.6944

Time: 0 1 2

Figure: The underlying stock price
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?

?

0

0.2

?
0.5056

Time: 0 1 2

Figure: The American Option value (terminal value (1.2− ST )+)
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?

0.0764

0

0.2

?
0.5056

Figure: The American Option value (terminal value (1.2− ST )+)

e−rδt(qV ωu
t+1 + (1− q)V ωd

t+1) = 0.0764 (no exercise)

(K − Sωt )+ = (1.2− 1.2)+ = 0
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?

0.0764

0

0.3667
0.5056

0.2

Figure: The American Option value (terminal value (1.2− ST )+)

e−rδt(qV ωu
t+1 + (1− q)V ωd

t+1) = 0.3067

(K − Sωt )+ = (1.2− 0.8333)+ = 0.3667 (exercise!)
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0.2

0.0764

0

0.3667
0.5056

0.2

Figure: The American Option value (terminal value (1.2− ST )+)

e−rδt(qV ωu
t+1 + (1− q)V ωd

t+1) = 0.1834

(K − Sωt )+ = (1.2− 1)+ = 0.2000 (exercise!)
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I While the binomial model is easy to work with in some ways,
we will gain a lot from moving to a continuous time and space
setup, where we can use calculus.

I To do this, we need to build the basic tools for modelling, in
particular we need some familiarity with the theory of
stochastic processes.

I Arguably the most fundamental stochastic process is Brownian
motion, so we spend a bit of time getting familiar with it.

I Our aim is to build a working theory, rather than to be
completely rigorous with all our calculations (see B8.2 for
this!)
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Definition
A stochastic process is a sequence of random variables indexed by
a parameter, for example, (Wt)t≥0. For each fixed t ≥ 0, Wt is a
random variable.

Unless specified otherwise, in this course we assume that

I time ranges through [0,T ], where T > 0 is some expiry time
(after which we don’t need a mathematical model).

I (in-)equalities between random variables and stochastic
processes are taken to hold with probability 1 (also known as
almost surely).

B8.3: Brownian Motion and Martingales 3



It will be useful to have some of the basic terminology of more
general stochastic processes

I We assume that there is a space of possible outcomes Ω (for
example, the space of all possible paths of the stock price).

I To avoid axiom-of-choice nonsense, with this we have a
collection F of subsets of Ω, which we call events.
I Formally, F is closed under taking complements, countable

unions, and contains Ω, so is a σ-algebra.
I Intuitively, F is all the events where we will eventually know

whether they happen or not.

I A probability measure P gives probabilities P(A) for each
A ∈ F .
I Formally P should be countably additive over disjoint sets and

P(Ω) = 1.
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I To model the flow of information, we say that we have a
collection {Ft}t≥0 of subsets of F (in particular,
sub-σ-algebras), which describe what we know at time t.

I Intuitively, the events A ∈ Ft are those for which, at time t,
we know whether A will happen or not.

I As we can’t forget information, we have the property that
Fs ⊆ Ft for s ≤ t.

I With this setup, we can define the conditional expectation
given Ft , written E[·|Ft ].
I E[X |Ft ] is the random variable Y which minimizes

E[(X − Y )2] among random variables known at time t
(formally, among Ft-measurable random variables).

I To avoid having to assume E[X 2] <∞, there is an alternative
construction, see B8.1/2.
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The conditional expectation has various useful properties:
I It is linear and monotone

I E[aX + Y |Ft ] = aE[X |Ft ] + E[Y |Ft ] for all X ,Y and all
a ∈ R.

I If X ≥ Y in every state of the world then E[X |Ft ] ≥ E[Y |Ft ].

I It satisfies the Tower law: For s ≤ t

E
[
E[X |Ft ]

∣∣∣Fs

]
= E[X |Fs ].
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Given the tower law, there is a particularly important class of
stochastic processes: the martingales.

Definition
A stochastic process X is a martingale if

I E[|Xt |] ≤ ∞ for all t ≥ 0

I For any s ≤ t, we have Xs = E[Xt |Fs ].

Knowing a process is a martingale seems not to tell us much (for
example, we don’t know how its variance changes through time),
but it does give us enough to prove many surprising properties.
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Suppose X is a martingale

I Then E[Xt ] = X0 for all t > 0

I X admits limits from the right and left at every time

I If supt E[X 2
t ] <∞ then X converges as t →∞

I If X is continuous, then its paths have infinite length (more
on this later)

I If X is continuous, it will have no nontrivial intervals on which
it is increasing or decreasing

I ...
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I We will also sometime need random variables taking values in
[0,T ], this will be called random times

I If a random time τ has the property that {τ ≤ t} ∈ Ft for all
t, then τ is called a stopping time.

I Stopping times have the property that “when you reach time
τ , you will know you’ve reached time τ”.

I An extraordinary property of martingales is that, for any two
stopping times ρ ≤ τ ,

Mρ = E[Mτ |Fτ ].
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Definition
A process (Wt)t≥0 is a Brownian motion if

I ∀ s ≥ 0, t ≥ 0,
(
Wt+s −Wt

)
is normally distributed with zero

mean and variance s,

E[Wt+s −Wt ] = 0, E
[

(Wt+s −Wt)
2
]

= s,

I if 0 ≤ p ≤ q ≤ s ≤ t then (Wq −Wp) and (Wt −Ws) are
independent,

I the map t 7→Wt is continuous, and

I W0 = 0 (this is really a convention, it saves some writing).

It is not obvious that such a thing exists, but there are a number
of ways of constructing it (see Etheridge S3.1 and S3.2, for
example, or B8.2 lectures!).
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Note that if (Wt)t≥0 is a Brownian motion then so too are:

I Ŵt = W(t+t0) −Wt0 for any constant t0 ≥ 0 (or even any
stopping time t0)!;

I W̃t = c W(t/c2) for any constant c > 0.

It’s easy to check that W is a martingale, as are:

W 2
t − t and exp(θWt − θ2t/2)
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I We need to define an integral against a Brownian
motion or related process

I Given a process X , and an integrand H, the discrete ‘integral’
could be defined by ∑

t

Ht(Xt+δt − Xt)

If we know that X is differentiable with respect to t, then we
can write Xt+δt − Xt ≈ X ′tδt, and our limiting integral would
then be ∫

HtX
′
tdt.

I Sadly, this doesn’t work for most interesting stochastic
processes...
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Theorem
A Brownian motion is not differentiable at any point, with
probability one.

Proof (sketch):

I At a point t0 ≥ 0, we know that Ŵt = Wt+t0 −Wt0 is also a
Brownian motion.

I If Brownian motion were differentiable at some time, then
there’s a stopping time t0 at which it’s differentiable.

I In this case, the limit

lim
t→0

W(t+t0) −Wt0

t
= lim

t→0

Ŵt

t

would exist.
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It is enough to show that the limit limt→0
Ŵt
t does not exist. Let

An and Bn be defined by

An =

{
|Ŵt |
t

> n : for some t ∈
(

0,
1

n4

]}
,

Bn =

{
|Ŵt |
t

> n : at t =
1

n4

}
.

Clearly we have Bn ⊆ An and so

P(An) ≥ P(Bn) = P
( |Ŵ1/n4 |

1/n4
> n

)
= P

(
|n2 Ŵ1/n4 | >

1

n

)
= P

(
|W̃1| >

1

n

)
.
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I As n→∞ we have P(|W̃1| > 1/n)→ 1.

I Therefore limn→∞ P(An) = 1 which means that in this limit
there is (with probability one) always some 0 < t ≤ 1/n4 with
|Ŵt |/t > n.

I This shows that (with probability one) the limit which defines
the derivative of a Brownian motion can not exist.

The fundamental issue is that Brownian motion (and, in fact, every
nontrivial continuous martingale) is too rough to be differentiable.
We will next see how we can measure the ‘roughness’ of a
martingale in a useful way.
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For a partition of [0, t], t0 = 0 < t1 < t2 < · · · < tn = t, let
|π| = max0≤k<n(tk+1 − tk).

Definition
The ‘quadratic variation’ of a random process Xt is defined (if it
exists) by

[X ]t = P- lim
|π|→0

n−1∑
k=0

(Xtk+1
− Xtk )2.

Importantly, the limit here should be taken in probability, in the
sense that

P
[∣∣∣[X ]t −

n−1∑
k=0

(Xtk+1
− Xtk )2

∣∣∣ > ε

]
→ 0 as ε→ 0.

Other common notation for quadratic variation include [X ]t , 〈X 〉t ,
[X ,X ]t and 〈X ,X 〉t . These are identical for continuous processes.
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Lemma
If X is continuously differentiable on [0, t] then [X ]t = 0.

Proof: As Xtk+1
− Xtk = X ′(ξk)(tk+1 − tk) for some ξk ∈ [tk , tk+1]

we have

n−1∑
k=0

(Xtk+1
− Xtk )2 =

n−1∑
k=0

X ′(ξk)2(tk+1 − ttk )2

≤ |π|
n−1∑
k=0

X ′(ξk)2(tk+1 − tk)

and as |π| → 0, by convergence of Riemann integrals,

n−1∑
k=0

X ′(ξk)2(tk+1 − tk)→
∫ t

0
X ′(u)2 du <∞.
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Lemma
If X is an increasing continuous function, then [X ]t = 0.

Proof:

I Consider a partition so that |Xtk+1
− Xtk | < ε for all k .

I As X is continuous and increasing, such a partition exists and

can be taken to have at most
⌈
XT−X0

ε

⌉
intervals.

I However, this means that

n−1∑
k=0

|Xtk+1
− Xtk |

2 ≤
⌈XT − X0

ε

⌉
ε2 → 0.
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Theorem
The quadratic variation of a Brownian motion is given by [W ]t = t.

In fact, basically the same proof works for a general martingale
(but we won’t prove this), and can even be used to give a (in some
ways better) definition of the quadratic variation...

Theorem
If X is a martingale and you know that {X 2

t − Yt}t≥0 is a
martingale, for Y a continuous increasing process, then Y = [X ].

Conversely, if X is a martingale and E
[
[X ]t

]
<∞, then X 2

t − [X ]t
is a martingale and E

[
X 2
t

]
= E

[
[X ]t

]
.
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Proof of Theorem

We expand the expression for the quadratic variation and make use
of our knowledge of the normal distribution.

Let {tj}nj=0 denote the endpoints of the intervals that make up the

partition π of [0, t]. Write S =
∑

j(Wtj −Wtj−1)2

First observe that

|S − t|2 =
∣∣∣ n∑
j=1

{|Wtj −Wtj−1 |
2 − (tj − tj−1)}

∣∣∣2.
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Write δj =
∣∣Wtj −Wtj−1

∣∣2 − (tj − tj−1). Then

|S − t|2 =
n∑

j=1

(
δ2j + 2

∑
k>j

δjδk

)
.

Note that since Brownian motion has independent increments,

E [δjδk ] = E [δj ]E [δk ] = 0 if j 6= k .

Also

E[δ2j ] = E
[∣∣Wtj −Wtj−1

∣∣4 − 2
∣∣Wtj −Wtj−1

∣∣2(tj − tj−1
)

+
(
tj − tj−1

)2]
.
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For a normally distributed random variable, X , with mean
zero and variance λ, E[|X |4] = 3λ2. Therefore, we have

E
[
δ2j
]

= 3 (tj − tj−1)2 − 2 (tj − tj−1)2 + (tj − tj−1)2

= 2 (tj − tj−1)2

≤ 2|π| (tj − tj−1) .

Summing over j ,

E
[∣∣S − t

∣∣2] ≤ 2
n∑

j=1

|π| (tj − tj−1)

= 2|πn|T
→ 0 as |π| → 0.
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I As we’ve seen, we need to do something careful to define an
integral ‘against a Brownian motion’.

I The key idea that allows us to do this is due to Kiyosi Itô, and
exploits the quadratic variation as a measure of the
‘roughness’ of a process.
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Definition
The Itô integral of a stochastic process H against a martingale M is∫ t

0
H(u) dMu = lim

|π|→0

n−1∑
k=0

H(tk)(Mtk+1
−Mtk ).

For fixed t this integral is a random variable and as t varies it is a
stochastic process.

The limit here is taken in an L2 sense (or in probability, see, e.g.,
Etheridge pp 78–85).
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To show that this limit exists, we will assume (for simplicity) that
H and [M] are bounded. Using the tower law, writing
δMk = Mtk+1

−Mtk and Et for E[·|Ft ], we find that

E
[ n−1∑
k=0

H(tk)δMk

]
= E

[ n−1∑
k=0

Etk

[
H(tk)δMk

] ]
= E

[ n−1∑
k=0

H(tk)Etk [δMk ]
]

= 0.
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Similarly, we have

E
[ (n−1∑

k=0

H(tk) δWk

)2 ]
= E

[ n−1∑
j ,k=0

H(tj)H(tk) δMk δMj

]

= E
[ n−1∑
k=0

Ek

[
H(tk)2

(
δMk

)2 ] ]
+ 2E

[ n−1∑
j<k

Ek

[
H(tj)H(tk)δMjδMk

] ]

= E
[ n−1∑
k=0

H(tk)2 Ek

[ (
δMk

)2 ] ]
+ 2E

[ n−1∑
j<k

H(tj)H(tk)δWjEk

[
δMk

] ]

= E
[ n−1∑
k=0

H(tk)2Etk [(δMk)2]
]

= E
[ n−1∑
k=0

H(tk)2
(
[M]tk+1

− [M]tk
)]
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As the quadratic variation is a continuous increasing process, we
can define the integral∫ t

0
H(t)2d [M]t = lim

|π|→0

n−1∑
k=0

H(tk)2
(
[M]tk+1

− [M]tk
)

using Riemann sums.

Therefore, to define
∫
f (t)dMt , we take a sequence of good

approximations fN to f , and writing H = fN − fN−1 we see that by
dominated convergence

E
[ (n−1∑

k=0

fN(tk)δMk −
n−1∑
k=0

fN′(tk) δMk

)2 ]
= E

[ ∫ t

0

(
fN(t)− fN′(t)

)2
d [M]t

]
→ 0
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I We conclude that the random variables

n−1∑
k=0

fN(tk)δMk

are a Cauchy sequence in the space of square-integrable
random variables, hence converge.

I We call the limit the integral
∫ t
0 f (t)dMt .

I In fact, we can show a stronger convergence (it converges for
every t simultaneously, see B8.2...)

I The integral we construct has various nice properties...
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I Assuming H is sufficiently ‘nice’, we have

E
[ ∫ t

0
H(u) dMu

]
= 0.

I Furthermore, for 0 ≤ s < t

Es

[ ∫ t

0
H(u) dMu

]
=

∫ s

0
H(u) dMu.

In particular the process Ys =
∫ s
0 H(u)dMu is a martingale.
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I Our construction also tells us that the quadratic variation
and the stochastic integral interact together nicely:

If Yt =

∫ t

0
H(u)dMu then [Y ]t =

∫ t

0
H(u)2d [M]u.

In particular

E
[( ∫ t

0
H(u)dMu

)2]
= E

[ ∫ t

0
H(u)2d [M]u

]
I If [Y ]t has finite expectation, this is enough to guarantee that

Y is a martingale (you don’t need H bounded).

I If M = W is a Brownian motion, then [W ]t = t, so

E
[( ∫ t

0
H(u)dWu

)2]
=

∫ t

0
E[H(u)2]du
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I In the very special case where H is deterministic (so it
depends on time, but not on W ), we see that

∫
HdW is the

limit of sums of Gaussian random variables. As sums of
Gaussians are Gaussian (and L2 limits of Gaussians are
Gaussian), we know that∫ t

0
H(u)dWu ∼ N

(
0,

∫ t

0
H(u)2du

)
.

I In general, however, the integral itself is not normally

distributed. For example, 2

∫ t

0
Wu dWu = W 2

t − t, which has

a χ2 distribution (shifted by t)
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Theorem
If f (x , τ) is C 2,1 then

f (Wt , t) = f (0, 0) +

∫ t

0

∂f

∂τ
(Wu, u) du +

∫ t

0

∂f

∂x
(wu, u) dWu

+
1

2

∫ t

0

∂2f

∂x2
(Wu, u)d [W ]u.

Since [W ]u = u we can replace d [W ]u by du, and in practice we
always do.
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Proof (sketch)

Consider the simpler case where f is independent of time and write

f (Wt)− f (0) =
n−1∑
k=0

(
f (Wk+1)− f (Wk)

)
over some partition, π, of [0, t]. Taylor’s theorem (with
remainders) shows that for each k

f (Wk+1)− f (Wk) = f ′(Wk)δWk +
1

2
f ′′(Vk)(δWk)2

for some Vk between Wk and Wk+1, where δWk = Wk+1 −Wk .
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Thus

f (Wt)− f (0) =
n−1∑
k=0

f ′(Wk)δWk +
1

2

n−1∑
k=0

f ′′(Vk)(δWk)2.

As we refine the partition

lim
|π|→0

n−1∑
k=0

f ′(Wk)δWk →
∫ t

0
f ′(Wu) dWu.
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For the second sum, it can be shown that

lim
|π|→0

n−1∑
k=0

f ′′(Vk)(δWk)2 →
∫ t

0
f ′′(Wu) d [W ]u,

establishing that

f (Wt)− f (0) =

∫ t

0
f ′(Wu) dWu +

1

2

∫ t

0
f ′′(Wu) d [W ]u.
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I In practice, we usually write Itô’s lemma in differential form
rather than an integral form.

I If f (W , t) is C 2,1 and we define ft = f (Wt , t) the differential
form of Itô’s lemma is

dft =

(
∂f

∂t
(Wt , t) +

1

2

∂2f

∂W 2
(Wt , t)

)
dt +

∂f

∂W
(Wt , t) dWt .

I This amounts to doing a regular Taylor series expansion of
f (W , t) then pretending that dW 2

t = dt (and ignoring terms
of higher order than dt).
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To solve the stochastic differential equation

dSt
St

= µ dt + σ dWt

we can proceed as follows.

I If f (W , t) = eaW+bt then all its partial derivatives are
multiples of the function, so it makes sense to try
St = S0 e

aWt+bt .

I This gives

dSt = (b St + 1
2 a

2 St) dt + a St dWt

or
dSt
St

= (b + 1
2 a

2) dt + a dWt .
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I If we set a = σ and b = µ− 1
2 σ

2 we recover our dynamics,
i.e. the solution is

St = S0 exp
(

(µ− 1
2 σ

2) t + σWt

)
.

I The process St is often called geometric Brownian motion.

I Note that the sign of St is determined by the sign of S0.

I Taking µ = 0 we see that S is a martingale, as
dSt = σStdWt , so S is an integral against W .

This can also be checked using the moment generating
function of a Gaussian distribution (which guarantees
integrability).
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Itô’s lemma for solutions of SDEs

Suppose that Xt is a solution of

Xt − X0 =

∫ t

0
µ(Xu, u) du +

∫ t

0
σ(Xu, u) dWu,

and f (x , t) is a C 2,1 function. Then

f (Xt , t) = f (X0, 0) +

∫ t

0

(
∂f

∂t
(Xu, u) + 1

2σ(Xu, u)2
∂2f

∂x2
(Xu, u)

)
du

+

∫ t

0

∂f

∂x
(Xu, u) dXu.

The proof amounts to showing the quadratic variation is given by
[X ]t =

∫ t
0 σ(Xu, u)2 du.
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In differential notation, which is how this result is normally used, if

dXt = µ(Xt , t) dt + σ(Xt , t) dWt

and ft = f (Xt , t) then

dft =

(
∂f

∂t
(Xt , t) + 1

2σ(Xt , t)2
∂2f

∂x2
(Xt , t)

)
dt +

∂f

∂x
(Xt , t) dXt .

This can be obtained from a Taylor series expansion of f (x , t) and
formally calculating with dX 2

t = σ(Xt , t)2 dt (one approach to the
proof does exactly this, but you have to check the limits work).
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Theorem (Feynman–Kac Theorem)

Suppose that f (x , t) satisfies the terminal value problem

0 =
∂f

∂t
+ µ(x , t)

∂f

∂x
+

1

2
σ(x , t)2

∂2f

∂x2
− rf , t < T , x ∈ R,

f (x ,T ) = F (x), x ∈ R.

Let Xt satisfy the stochastic differential equation

dXt = µ(Xt , t) dt + σ(Xt , t) dWt

Then
f (x , t) = e−r(T−t)Et

[
F (XT ) |Xt = x

]
(1)
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I This connects our SDEs to PDEs – solving a PDE gives us a
solution to an SDE, and the expected values of solutions of
SDEs give us solutions of PDEs

I This opens the doors to using Monte–Carlo (simulation)
numerical methods to solve PDEs and pulling analytical tools
from one area to the other.

I For our purposes, it means we will be able to use either PDE
or stochastic tools to price derivatives, depending on what is
easiest at each moment.
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Proof (sketch)

Take h = er(T−t)f . Then

∂h

∂t
= −rh + er(T−t)∂f

∂t
,

∂h

∂x
= er(T−t) ∂f

∂x
,

∂2h

∂x2
= er(T−t) ∂

2f

∂x2

so h satisfies the PDE

0 =
∂h

∂t
+ µ(x , t)

∂h

∂x
+

1

2
σ(x , t)2

∂2h

∂x2
, t < T , x ∈ R,

h(x ,T ) = F (x), x ∈ R.
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Note that Itô’s lemma implies that

F (XT ) = h(XT ,T )

= h(Xt , t) +

∫ T

t
σ(Xs , s)

∂h

∂x
(Xs , s) dWs

+

∫ T

t

(∂h
∂t

(Xs , s) + µ(Xs , s)
∂h

∂x
(Xs , s) +

1

2
σ(Xs , s)2

∂2h

∂x2
(Xs , s)

)
ds

By assumption, the integral on the second line vanishes. When we
take expectations the integral on the first line also vanishes (as it is
a martingale). Thus

E[F (XT )|Ft ] = h(Xt , t) = er(T−t)f (Xt , t)
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The process X is a Markov process (for any reasonable µ, σ), so
for s < t the behaviour of Xs is independent of Ft given Xt = x .

Conditioning on Xt = x (which is more restrictive than Ft , as X is
a Markov process) gives

f (x , t) = e−r(T−t)Et [F (XT )|Xt = x ].
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A simple (useful) example:

Take
dXt = adt + bdWt

with Xt = x . Then we can see

XT ∼ N
(
x + a(T − t), b2(T − t)

)
.
From a stochastic perspective, we can compute

f (x , t) = E[f (XT ,T )|Xt = x ]

=

∫
R

f (y ,T )√
2πb2(T − t)

exp
(
− (y − x − a(T − t))2

2b2(T − t)

)
dy .
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As dXt = adt + bdWt , the Feynman–Kac theorem connects
f with the solution of the diffusion PDE

0 =
∂f

∂t
+

b2

2

∂2f

∂x2
+ a

∂f

∂x
.

I This PDE admits a unique solution for any smooth terminal
value f (x ,T ) with reasonable growth.

I Using integration by parts, you can verify that the formula on
the previous page gives a solution .

I The Feynman–Kac theorem shows this solution must be the
expected value of f (XT ,T ) (which we knew directly in this
case!)

I This shows that the Gaussian density is the Green’s
function/fundamental solution for the PDE.
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I Now that we have the tools of continuous time, we can build
a model for derivative pricing.

I We will consider a slightly generalized version of the classic
Black–Scholes model.
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I We have an underlying stock S , and a bond B
(representing a bank-account/interest).

I The Bond price satisfies dBt = rBtdt.

I We assume that St evolves as

dSt
St

= (µ− q) dt + σ dWt ,

where µ is known as the drift, q is the continuous dividend
yield and σ > 0 is the volatility.

I W is a Brownian motion under the real probability measure P.

I For fixed T ≥ 0 the distribution of ST is given by

ST = S0 exp
(

(µ− q − 1
2σ

2)T +
√
σ2 T Z

)
, Z ∼ N(0, 1).
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I Over each infinitesimal period [t, t + dt) the share pays
q St dt in dividends, where for our purposes q is a constant
known as the continuous dividend yield.

I This is a poor but widely used model for dividend paying
shares.

I With reinvestment of dividends, one share at time zero grows
to eqt shares at time t and the total value at time t is
pt = eqt St .

I Itô’s lemma shows that

dpt
pt

= µ dt + σ dWt .
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I Our trading strategies will be given by random processes.

I If at the start of a period [t, t + δt) we hold Ht stocks, at the
end our increase in wealth will be Ht(St+δt − St).

I Adding these increases together and taking a limit, we obtain
a stochastic integral

∫ t
0 HudSu for the gains from trading in

the stock

I By connecting our choice of H to the solution of a PDE (or
using a powerful theorem from stochastic calculus), we can
find trading strategies H which will eliminate the risk of
holding an option, which will allow us to use no-arbitrage to
identify prices.
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I We first consider obtaining the price through a hedging
argument.

I Assume an option’s payoff is give by VT = Po(ST ) and its
price Vt = V (St , t).

I Set up a portfolio of one option and −∆t shares, so at t its
market price at time t is

Mt = Vt − ∆t St .

I Let Πt be the cumulative cost of executing this strategy, so

dΠt = dVt − ∆t dSt − q ∆t St dt,

the final term represents payment of the dividend yield to the
owner of the shares.
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Itô’s lemma applied to Vt = V (St , t) gives

dΠt =

(
∂V

∂t
(St , t) + 1

2σ
2 S2

t

∂2V

∂S2
(St , t) − q ∆t St

)
dt

+

(
∂V

∂S
(St , t) − ∆t

)
dSt ,

which we make (instantaneously) risk-free by setting

∆t =
∂V

∂S
(St , t).
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A risk-free portfolio must grow at the risk-free rate, or there would
be an arbitrage opportunity, so dΠt = r Mt dt, i.e.,(

∂V

∂t
(St , t) + 1

2σ
2 S2

t

∂2V

∂S2
(St , t) − y St

∂V

∂S
(St , t)

)
= r

(
Vt − St

∂V

∂S
(St , t)

)
,
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This gives the Black–Scholes equation

0 =

(
∂V

∂t
(St , t) + 1

2σ
2 S2

t

∂2V

∂S2
(St , t) − y St

∂V

∂S
(St , t)

)
−
(
r V (St , t) − r St

∂V

∂S
(St , t)

)

=

(
rate of return on risk-free

∆-hedged portfolio

)
−

 rate of return on
portfolio’s value

in bank


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This holds for all attainable St which, if S0 > 0, is any St > 0.

Thus we obtain the Black–Scholes equation,

∂V

∂t
(S , t) + 1

2σ
2 S2 ∂

2V

∂S2
(S , t) + (r −q) S

∂V

∂S
(S , t)− r V (S , t) = 0,

for S > 0 and t < T .

At expiry VT = V (ST ,T ) = Po(ST ) implies that

V (S ,T ) = Po(S), S > 0.
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Self-financing replication analysis

I Here we try to replicate the option’s payoff using a portfolio
of shares and bonds.

I The bond price, Bt , evolves as

dBt

Bt
= r dt.

I Let φt be the number of shares at t and ψt be the number of
bonds.

I The market value of the portfolio at t is Φt = φt St + ψt Bt

and the change in the portfolio value is

dΦt = φt dSt+ψt dBt+(St+dSt) dφt+(Bt+dBt) dψt+q φt St dt,

the final term coming from dividends.

B8.3: The Black–Scholes model 7



I If (St + dSt) dφt + (Bt + dBt) dψt = 0 we say the portfolio is
self-financing; to buy more shares we have to sell bonds and
vice-versa.

I The self-financing condition is usually written as

dΦt = φt dSt + ψt dBt + q φt St dt.

I In our case it reduces to

dΦt = φt dSt + ψt r Bt dt + q φt St dt.
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If we write Φt = Φ(St , t) and apply Itô’s lemma we find

dΦt =

(
∂Φ

∂t
(St , t) + 1

2σ
2 S2

t

∂2Φ

∂S2
(St , t)

)
dt +

∂Φ

∂S
(St , t) dSt

and matching the deterministic and stochastic terms with the
self-financing condition gives

∂Φ

∂t
(St , t) + 1

2σ
2 S2

t

∂2Φ

∂S2
(St , t) = r ψt Bt + q φt St ,

∂Φ

∂S
(St , t) = φt .

B8.3: The Black–Scholes model 9



Eliminating ψt Bt using the market value of the portfolio gives

∂Φ

∂t
(St , t) + 1

2σ
2 S2

t

∂2Φ

∂S2
(St , t)

= r

(
Φ(St , t) − St

∂Φ

∂S
(St , t)

)
+ q St

∂Φ

∂S
(St , t)

for any attainable St , i.e., any St > 0. Rearranging shows that any
self-financing portfolio’s price function must satisfy, for S > 0,

∂Φ

∂t
(S , t) + 1

2σ
2 S2 ∂

2Φ

∂S2
(S , t) + (r − q) S

∂Φ

∂S
(S , t)− r Φ(S , t) = 0,
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Finally, we apply the replication condition that the value of the
portfolio at T always equals the payoff of the option, i.e.,

Φ(S ,T ) = Po(S), S > 0.

Then we argue that as the option and the portfolio have exactly
the same cash-flows prior to expiry (in both cases here, no
cash-flows) and exactly the same values at expiry they must have
the same values now, i.e.,

V (S , t) = Φ(S , t).
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I Just as in discrete time, in the Black–Scholes model we also
can use the fundamental theorem of asset pricing.

I This is the easiest way to calculate prices in some settings,
while solving PDEs is easier in others.

I For simplicity, we will ignore dividends in this lecture.

I The result depends on an abstract result in stochastic calculus.
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Theorem (Girsanov’s Theorem)

Let X ,Y be continuous martingales under a measure P. Define M
to be the solution to the SDE

Mt = 1 +

∫ t

0
MsdXs = exp(Xt − [X ]t/2)

Then, provided M is sufficiently integrable, we can define a new
measure Q by Q(A) = EP[1AMT ]. Under this new measure,

Yt − [X ,Y ]t

is a continuous (local) martingale.

The integrability assumptions to make everything work are a little
technical, but a sufficient condition (Novikov’s condition) is that
EP[exp([X ]t/2)] <∞ for all t.
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In practice, this theorem is typically used to show:

I If dXt = HsdWt and Yt = Wt , for W a Brownian motion
under probabilites P,

I then there is a measure Q such that Wt −
∫ t
0 Hsds is a

martingale.

In a Black–Scholes world, we have

dSt = µStdt + σStdWt

= rStdt + σStdW
Q
t

where W is a BM under P, WQ is a BM under Q. It follows that
e−rtSt is a Q-martingale.
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We can join this with another theorem from stochastic calculus:

Theorem (Martingale representation theorem)

Let W be a Brownian motion, X be a local martingale in the
filtration generated by W . Then there exists a process H such that

Xt = X0 +

∫ t

0
HsdWs

I Extensions of this theorem, to non-Brownian settings, are
possible.

I The Black–Scholes model is essentially Brownian (after
rearrangement, you can see that S and W generate the same
filtration)
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By combining these results, we can establish a fundamental
theorem of asset pricing (at least in a Brownian setting)

Theorem
Suppose we have a Black–Scholes model. Then there exists a
(unique) measure Q such that every traded European claim (with
no intermediate payments) has no-arbitrage time-t price

Xt = e−r(T−t)EQ[XT |Ft ],

that is, the discounted price e−rtXt is a martingale under Q.
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Proof

I Find the measure Q as above.

I Use the martingale representation theorem to show that the
martingale e−rtXt := EQ[e−rTXT |Ft ] can be written

e−rtXt = X0 +

∫ t

0
HsdW

Q
s = X0 +

∫ t

0

Hs

σSs
(dSs − rSsds).

I Writing ∆t = Ht/(σSt), and applying Itô’s lemma, we see
that Xt satisfies the self-financing condition

dXt = r(Xt −∆tSt)dt + ∆tdSt .

I Therefore, Xt is the value of a self financing portfolio with
terminal value XT , so by no-arbitrage is the price of the asset.
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I Given we have described the price of a claim (both in terms of
PDEs and in terms of the risk-neutral measure), we can now
give an explicit description of the price of a European claim
with payoff Po(ST ), for Po some function

I The price we derive can be seen both from a PDE and a
probabilistic perspective.
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The Black–Scholes problem for the price function of a European
option with payoff given by VT = Po(ST ) is

0 =
∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − q) S

∂V

∂S
− r V , S > 0, t < T ,

V (S ,T ) = Po(S), S > 0.

If we set V (S , t) = e−r(T−t) U(S , t) then

0 =
∂U

∂t
+ 1

2σ
2 S2 ∂

2U

∂S2
+ (r − q) S

∂U

∂S
, S > 0, t < T ,

U(S ,T ) = Po(S), S > 0.
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If we start with the PDE, the Feynman–Kac formula shows that

U(S , t) = EQ
[
Po(ST ) | St = S

]
,

where St evolves according to

dSt
St

= (r − q) dt + σ dWQ
t .

This means that the option’s price can be written as

V (S , t) = e−r(T−t) EQ
[
Po(ST ) |St = S

]
.
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I We know that if St = S then

ST = S exp
(

(r − q − 1
2σ

2)τ + σWQ
τ

)
, τ = T − t

I As WQ
τ ∼ N(0, τ) we can write σWQ

τ =
√
σ2 τ Z where

Z ∼ N(0, 1).

I We now have a choice: either we calculate the density of ST ,
or we use the density of Z directly.
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Option 1: Calculate density of S

We compute the cumulative distribution function for ST , for
x > 0, as follows

FT (x) = prob(ST < x)

= prob
(
log(ST ) < log(x)

)
= prob

(
σWQ

τ < log(x/S)− (r − q − 1

2
σ2)τ

)
= prob

(
Z < d∗

)
= N(d∗),

where

d∗ =
log(x/S)− (r − q − 1

2σ
2)(T − t)√

σ2 (T − t)
,

N(d∗) =
1√
2π

∫ d∗

−∞
e−p

2/2 dp.
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Differentiating FT (x) with respect to x gives the probability
density function for ST , conditional on St = S ,

fT (x) =
exp
(
−1

2d
2
∗
)

x
√

2π σ2 (T − t)
, x > 0,

and so we arrive at an explicit formula for the option price,

V (S , t) = e−r(T−t)
1√

2π σ2 (T − t)

∫ ∞
0

Po(x) exp
(
−1

2d
2
∗
) dx
x
,

where d∗ depends on x (as well as S , r − q, σ and (T − t)).
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This approach also shows us that the Black–Scholes equation
admits a fundamental solution/Green’s function

G (x) =
1

x
√

2π σ2 (T − t)
exp

(
− r(T − t)− 1

2d
2
∗
)

where

d∗ =
log(x/S)− (r − q − 1

2σ
2)(T − t)√

σ2 (T − t)

It is possible (but tedious) to derive this from the fact that
1√
2πt

e−
x2

2t is a fundamental solution to the Heat equation

∂tu = (1/2)∂xxu, using repeated changes of variables, thereby
avoiding all probability.
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Option 2: Use explicit formula for S

We know that

ST = S exp
(

(r − q − 1
2σ

2)τ + σ
√
τZ
)

Hence, as Z ∼ N(0, 1), the price is given by

e−rτEQ[Po(ST )|St = S ]

= e−rτ
∫ ∞
−∞

Po

(
Se(r−q−

1
2σ

2)τ+σ
√
τz
) 1√

2π
e−z

2/2dz

This can be reduced (by changes of variables) to the formula
obtained above, and may be simpler to use in some problems.
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I We now seek to give an explicit formula for Call and Put
option prices, in a Black–Scholes model.

I By Put–Call parity, it’s enough to consider Call options

I Various approaches are possible, but the simplest is arguably
to notice that

(S − K )+ = max{S − K , 0} = (S − K )1{S>K}

= S1{S>K} − K1{S>K}.

We will find the value of each of the terms on the right-hand
side.

B8.3: The Black–Scholes model 2



In order to use our second option from the previous lecture,
without overwhelming notation, it’s convenient to first show that if

X = exp(a + bZ ) for Z ∼ N (0, 1), b > 0,

we can compute

E[1{X>K}] =

∫
1{exp(a+bZ)>K}

1√
2π

e−z
2/2dz

=

∫
1{

z> log(K)−a
b

} 1√
2π

e−z
2/2dz

= 1− N
( log(K )− a

b

)
= N

(a− log(K )

b

)
.
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A similar calculation, made easier by noticing that

a + bz − z2

2
= a +

b2

2
− (z − b)2

2
,

gives that for X = exp(a + bZ ),

E[X1{X>K}] =

∫
ea+bz1{exp(a+bz)>K}

e−z
2/2

√
2π

dz

= ea+
b2

2

∫
1{

z−b> log(K)−a
b
−b
} e−(z−b)2/2√

2π
dz

= ea+
b2

2 N
(a− log(K )

b
+ b
)
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Hence, as we know that for some Z ∼ N (0, 1),

ST = St exp

((
r +

σ2

2

)
(T − t) + σ(WT −Wt)

)
= exp

(
log(St) +

(
r +

σ2

2

)
τ + σ

√
τZ

)
The prices of our two components simplify down to

e−rτEQ[K1{ST>K}|St = S ] = e−rτKN(d−)

e−rτEQ[ST1{ST>K}|St = S ] = Se−qτN(d+)

with d± =
log(S/K)+(r−q±1

2σ
2)τ

σ
√
τ

.
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Combining these calculations, we obtain the celebrated
Black–Scholes formula for the price of a European call option:

C (S , t) = S e−q(T−t) N(d+)− K e−r(T−t) N(d−),

where

d± =
log(S/K ) + (r − q ± 1

2σ
2)(T − t)√

σ2(T − t)
,

N(x) =
1√
2π

∫ x

−∞
e−

1
2
p2 dp.
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By differentiating with respect to S , we see that the ∆ for a call
option is

∆c(S , t) = (∂C/∂S) = e−q(T−t) N(d+).

(Note, this is not trivial, as d± depend on S).
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Using Put–Call parity, we see that

C (S , t)− P(S , t) = e−q(T−t)S − e−r(T−t)K

so

P(S , t) = C (S , t)− e−q(T−t)S + e−r(T−t)K

= S e−q(T−t)(N(d+)− 1)− K e−r(T−t)(N(d−)− 1)

= K e−r(T−t)N(−d−)− S e−q(T−t)N(−d+)

The ∆ for a put option is

∆p(S , t) = −e−q(T−t) N(−d+) = ∆c(S , t)− e−q(T−t)
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I For a call option, as S →∞, we have

d+ →∞ and d− →∞,

so CBS ≈ Ste
q(T−t) − Ker(T−t). This is natural, as the call

we can be sure that the call will be exercised, so its value is
similar to the value of a forward with the corresponding strike.

I Conversely, the put option’s price converges to zero, for the
same reason.

I As S → 0 we have d± → −∞, so the call price converges to
zero, and the put price converges to Ke−r(T−t) − Ste

−q(T−t),
which is the price of the short forward with strike K .
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As t → T , we have

d± →

{
∞ if S > K

−∞ if S < K

so CBS → (S − K )+, that is, the price of the option converges to
its payoff.
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I As we will use it regularly, it’s worth thinking a little about
the Black–Scholes PDE and its solutions

I The Black-Scholes equation is

LBSV :=
∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− r V = 0,

I This equation should hold for all S > 0 and t < T .
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The Black–Scholes equation has the following properties:

1. it is linear;

2. it is solved backwards in time, for t < T ;

3. if V (S , t) is a solution so too is V (λ S , t) for any λ > 0;

4. V (S , t) depends on t and T only through the combination
T − t;

5. if V (S , t) is a solution so too is S
(
∂V /∂S) (and, by

induction, so too are Sn
(
∂nV /∂Sn

)
for n = 2, 3, . . .);

6. if V (S , t) is a solution so too is

V̂ (S , t) = (S/A)2α V
(
B2/S , t

)
, 2α = 1− 2(r − q)/σ2,

for any constants A > 0, B2 > 0.
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The Black–Scholes formula gives us the value of an option as a
function of the following inputs:

I The current price of the underlying St
I The time to maturity τ = T − t

I The risk-free interest rate r

I The volatility σ

How do we choose the value of r and σ?
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How to choose r?

I The central bank sets a ‘risk free’ interest rate, which might
suggest a good value of r .

I However, this rate is not representative of the cost of
borrowing (as we cannot borrow at the rate r in reality).

I Practically, to get a good value of r from market data, we can
look at the forward price for S .

I Remember that the forward price (assuming constant interest)
is given by Ft = er(T−t)St . Hence log(St/Ft) = r(T − t),
which gives us a representative interest rate for participants in
the forward market.
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How to choose σ?

I One idea: estimate from historical data. Split the interval
[t − Nδ, t] with a partition {t − Nδ = t0, ..., tN = t} with
|tn − tn+1| = δ. Then an unbiased and efficient estimator of
σ2 is

σ2 =
1

(N − 1)δt

N∑
i=1

(Sti+1 − Sti
Sti

)2
.

I This is natural. However this method has certain drawbacks
due to the fact that, in reality, σ varies significantly over time,
and it is rather hard to capture its ”most recent” value: the
estimator becomes less reliable as we decrease t, while, if we
increase it, we obtain an ”averaged” value of σ over time.

I It also has the problem that it only looks at the past, while
the price should reflect what the market expects to happen
through the future.
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Another way is to deduce σ from the prices currently observed in
the market. This gives rise to Implied Volatility:

Definition
Given a market price of an option Vmktt , the implied volatility σimp
is the value such that

Vmkt
t = V BS(St , t;σimp).

Implied volatility is very common for call and put option (in many
cases, markets quote prices in terms of implied volatility, rather
than the price of the option).
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Implied Volatility is well defined, provided

I V call,mkt
t is not impossible, that is,

V call,mkt
t ∈

[(
S − Ke−r(T−t)

)+
,S

]
.

I And ∂
∂σV

call,BS does not change its sign, as a function of σ.

The first condition is satisfied in practice (up to model error), since
otherwise there is a model-independent arbitrage.

The second condition is satisfied, since, as we’ll see, the BS Vega
is always nonnegative. This also makes a simple numerical search
algorithm work well.
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I If the BS model was true, there would exist one value of
implied volatility σimp for call options of all strikes and
maturities.

I However, this is not true in practice. Typically, for each pair
(T ,K ), we have a different value of implied vol σimp(T ,K ).

I Plotted as a function of negative log-moneyness
x = log(K/S), this function is typically convex around x = 0,
and, hence, is often referred to as the implied smile.

(Recall that log-moneyness of a call or put option is defined as
log(S/K ).)
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I In equities (where S is the price of a stock or stock index),
the implied smile typically has a negative skew, assigning
higher values to negative x = log(K/S) (i.e. K < S).

I The implied volatility is often higher for long and short
maturity options, and lower for intermediate maturities

I By plotting the implied volatility for all traded values of
(T ,K ), we obtain the implied volatility surface.

I This is commonly used to give an understanding of market
perspectives on the riskiness of options trades, and as an
input to risk management and hedging decisions.
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I Assume the market is described by a BS model, and denote
the price function of an option by V (S , t).

I Sensitivities of the option price V with respect to the input
variables (S and t) and parameters (σ and r) are called the
Greeks.

I These sensitivities are very important for hedging and risk
management, as they show how the value of the option
changes with small changes in the uncertain input!
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We have already encountered the first (and most important) of the
‘Greeks’

Definition
Delta is defined as

∆ =
∂

∂S
V ,

and it is the primary sensitivity, as, even if the model is true, the
value of underlying will change, and its change is likely to be of a
higher magnitude than the time increment.

Notice that

St+δt ≈ Stµδt + Stσξ
√
δt,

where ξ is a standard normal.

B8.3: Greeks 3



I For a call option, ∆call = e−q(T−t)N(d+)

I By put-call parity, ∆put = ∆call − 1 = −e−q(T−t)N(−d+).

I The ∆-hedging portfolio, consisting of ∆call units of S and
Vt −∆callS units in bonds is an “instantaneous perfect hedge’
of a short position in the option, assuming the Black–Scholes
Model,

I In more complicated models, and in practice, it is a reasonably
good hedge.
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I For example, suppose we are short a call option with
r = 0.05, σ = 0.2,T = 1,K = S0 = 100.

I Then V call = 10.4506, ∆call = 0.63683
I We buy a portfolio consisting of

I ∆S = $63.683 invested in stocks (buy ∆ = 0.63683 stocks)
I −Vt = $10.4506 in the option (our short position)
I Vt −∆S = −$53.2325 in bonds (i.e. borrow $53.2325 risk

free)

I Our total position is zero.
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I Suppose the next day S = 101. Now T ≈ 249/250, and the
option price is $11.0708.

I Our borrowing is now $53.2431 due to interest, so our total
portfolio is worth

0.63683× 101− 11.0708− 53.2431 = 0.006

I By using this ‘∆-neutral porfolio, we have eliminated the loss
due to the increase in the option price.
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I Suppose instead the next day S = 110. Now T ≈ 249/250,
and the option price is $17.6365.

I Our borrowing is still now $53.2431 due to interest, so our
total portfolio is worth

0.63683× 101− 17.6365− 53.2431 = −0.8283

I We have partly minimized the loss due to the increase in the
option price, but not as effectively as for a smaller change.
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I We have so far assumed we can trade continuously, but in
practice, we can only trade finitely often.

I As a result, we encounter the discretization error – the price
of the hedging (replicating) portfolio no longer coincides with
the option price at all times.

I In particular, we cannot keep both positions – in the stock
and in bonds – as prescribed by the Black–Scholes model.

I Therefore, at each moment of rebalancing, we have to choose
whether
I we keep ∆ (the amount of shares of stock) as prescribed by

the model, and invest the rest of the available capital in bonds
(or borrow the required amount by shorting),

I or keep the amount of money in bonds as prescribed by the
model, and invest the rest in the stock.
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I Typically traders choose to keep the value of ∆ as prescribed
by the model, because changes in the stock price are more
significant than changes in the value of bonds.

I This strategy is called ∆-hedging.
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Definition
Gamma is the sensitivity of ∆ with respect to changes in S :

Γ =
∂

∂S
∆ =

∂2

∂S2
V .

I Γ measures how fast the hedging weight ∆ changes with the
changes in the underlying.

I This is important since, as mentioned before, in practice we
only trade at discrete times.

I The smaller the curvature of the price of an option, as a
function of S , the smaller the error of the discretization hedge
– the difference between the price function and its tangent
line around the point of tangency.

I Thus, Gamma measures the discretization error.
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Let’s make this statement more precise. Assume we have
short-sold an option and set up the hedging portfolio at time t:

γt = Vt −∆tSt , ∆t =
∂

∂S
V (St , t)

Then the hedging error at time t + δt is given by

γtBt+δt + ∆tSt+δt − V (St+δt , t + δt)

= (V (St , t)−∆tSt)(1 + rδt) + ∆tSt+δt − V (St+δt , t + δt)

Recall that St+δt ≈ St + rδtSt + σSt(Wt+δt −Wt) and that
(Wt+δt −Wt)

2 ≈ δt.
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Expanding using Taylor series, our error becomes

Vt − St
∂

∂S
Vt + rδt(Vt − St

∂

∂S
Vt)

− Vt − δt
∂

∂t
Vt − (St+δt − St)

∂

∂S
Vt

− 1

2
σ2S2

t (Wt+δt −Wt)
2 ∂

2

∂S2
Vt + St+δt

∂

∂S
Vt + o(δt)

= −1

2
σ2S2

t

∂2

∂S2
Vt((Wt+δt −Wt)

2 − δt) + o(δt)

= −1

2
σ2S2

t Γt((Wt+δt −Wt)
2 − δt) + o(δt),

where o(δt) is a function satisfying

o(δt)

δt
→ 0, as δt → 0.
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I Notice that (δWt)
2 − δt is a random variable with zero mean

and variance 2(δt)2.

I We conclude Γt scales the main term in the discretization
error of the hedge.

I If Γt < 0 (short Gamma), the hedged portfolio benefits from
large market moves, and loses on small ones.

I If Γt > 0 (long Gamma) – vice versa.

I If we hedge a long position in the option, the opposite
conclusions hold.
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The Γ of a call is

Γcall =
e−

1
2
d2
+

Sσ
√

2π(T − t)

As t → T , Γcall → ∂2

∂S2 (S − K )+ = δ(S − K )

Due to put–call parity, the put Γ is the same.
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I We can reduce the discretization error of the hedge over the
first time step by Gamma-hedging.

I We cancel the current (instantaneous) Gamma of our option
V by opening a position in another option V 1. Typically, we
hedge an exotic option with underlying and a vanilla call or
put. The current value of the resulting portfolio is given by

−Vt + ∆1V 1
t + ∆St + γBt = 0,

due to self-financing. We would like it to stay close to zero at
time t + δt.
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I The above portfolio is Gamma-neutral if

∂2

∂S2
Vt −∆1 ∂

2

∂S2
V 1
t = 0.

So

∆1 =
∂2

∂S2Vt

∂2

∂S2V
1
t

=
Γt

Γ1
t

.

I Thus, we obtain a new option which is a linear combination of
V and V 1. We then Delta-hedge this new option:

∆ =
∂

∂S
Vt −∆1 ∂

∂S
V 1
t

I As before, this is only an instantaneous hedge, as ∆ and Γ will
change through time.
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Example:

I Suppose S = 100, σ = 0.3,T = 1, r = q = 0.

I We wish to hedge a short position in a put option with
K = 100, using the stock and a call option with K = 80.

I We have the initial prices, ∆s and Γs,

Price ∆ Γ

Stock 100 1 0
Put 11.9235 -0.4404 0.01315
Call 23.5344 0.8143 0.0089
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I To get a Γ-neutral portfolio, as we are short one put option,
we need to purchase

∆1 =
0.01315

0.0089
= 1.4743

call options.

I To get a ∆-neutral portfolio, we then need to purchase

∆ = −0.4404− 1.4743× 0.8143 = −1.6409

stocks (i.e. a short position).

I These trades give us 141.3170 in cash, which we invest.
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I Volatility σ is the only parameter in the Black-Scholes model
that is not directly observed in the market.

I It is, therefore, important to be able to evaluate the
dependence of option price on volatility.

Definition
Vega (commonly written ν), is the sensitivity of the option price to
changes in the volatility σ.

ν =
∂

∂σ
V
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I In the BS model, σ is constant, so hedging with respect to
changes in σ doesn’t make sense.

I However, one can ask: what if my estimate of σ is wrong?

I To estimate how far off, in this case, the computed option
price is from the ”true” price, we need to find Vega.

I For a call option, we have

νcall =

√
T − t

2π
Se−

d2+
2 .

And it tends to zero as t → T , since the payoff is independent
of σ.

I It is the same for a put, due to put-call parity.
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I Vega-hedging can be defined in the same way as
Gamma-hedging, however, its purpose is different:
I rather than reducing the discretization error, it is meant to

reduce the model error – a misspecification of σ.

I Given an additional derivative with price V 1, the Vega-hedge
of a short position in the original option prescribes to hold ∆1

units of V 1 and ∆ units of S .
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I In order to make the portfolio instantaneously Vega-neutral,
we need

− ∂

∂σ
Vt + ∆1 ∂

∂σ
V 1
t = 0 ⇒ ∆1 =

∂
∂σVt

∂
∂σV

1
t

=
νt
ν1t

I As before, ∆ is determined as the corresponding S-derivative
of the portfolio of options V −∆1V 1, assuming ∆1 is fixed:

∆ =
∂

∂S
Vt −∆1 ∂

∂S
V 1
t

I Of course, in order to keep the portfolio Vega-neutral at the
next moment in time t + δt, the value of ∆1 (as well as ∆)
will need to be changed at that time.
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I Vega hedging makes sense if one believes that the ”true”
volatility is constant, but we may be mistaken about its true
value.

I However, sometimes, you may see a description of
Vega-hedging as ”hedging the non-constant volatility”.

I If the volatility is believed to be changing dynamically,
thenmore complicated stochastic volatility models have to
be used

I Using a constant volatility model, to design a hedge
against stochastic volatility is, clearly, self-contradictory.
It may sometimes be used in practice, if other options are too
hard to implement, however, then, one has to be very careful
and make sure that the side effects of such hedging do not
overweigh the positive impact.
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I There is a universal relation between Vega and Gamma
which holds for all European options, because their prices
are functions of time and the value of the underlying and
these functions satisfy the BSPDE.

I Consider the BSPDE

LBSV =
∂

∂t
V +

1

2
σ2S2 ∂

2

∂S2
V + rS

∂

∂S
V − rV = 0

and differentiate it with respect to σ.

∂

∂σ
V = ν,

∂2

∂σ∂t
V =

∂

∂t
ν, · · ·
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I As a result, we obtain

LBSν =
∂

∂t
ν +

1

2
σ2S2 ∂

2

∂S2
ν + rS

∂

∂S
ν − rν = −σS2 ∂

2

∂S2
V

= −σS2Γ,

with ν(S ,T ) = 0.

I In PDE language, the above equation means that ”−σS2Γ” is
a source for ν.

I Notice also that σS2Γ = σS2 ∂2

∂S2V satisfies the BSPDE
(recall homework exercise).
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I Therefore, it is easy to check that

ν(S , t) = (T − t)σS2Γ(S , t)

satisfies the desired PDE:

LBS
[
(T − t)σS2Γ(S , t)

]
= −σS2Γ + (T − t)LBS

[
σS2Γ(S , t)

]
= −σS2Γ

I This is a useful trick, and a good example of how the PDE
techniques may help in establishing certain non-trivial
relations between various quantities in mathematical finance.
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I From the fact that

ν(S , t) = (T − t)σS2Γ(S , t),

we see that for European options, Γ-hedging and
Vega-hedging amount to the same thing.

I The motivations however, are quite different!

I This relationship does not necessarily hold for other types of
options.
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There are also sensitivities to other parameters

I Theta Θ = ∂V /∂t is sensitivity with respect to t, and
measures the maturity sensitivity of our portfolio.

I Rho ρ = ∂V /∂r is sensitivity with respect to the interest rate
r , and measures the potential impact of interest rate changes
on the value of the portfolio (more important over the
long-term).

I Epsilon ε = ∂V /∂q is the sensitivity with respect to the
dividend yield
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You can have higher order sensitivities:

I Vanna ∂∆/∂σ = ∂2V /∂σ∂S is the sensitivity of ∆ with
respect to changes in volatility σ. This is a measure of model
dependence of the Delta-hedging strategy itself.

I Charm ∂∆/∂t = ∂Θ/∂S = ∂2V /∂t∂S is the sensitivity of ∆
to time

I Vomma ∂ν/∂σ = ∂2V /∂σ∂σ is the second order sensitivity
to the volatility.

I Veta −∂ν/∂t
I Vera ∂ρ/∂σ = ∂2V /∂σ∂r

I Speed ∂Γ/∂S = ∂3V /∂S3

I Zomma ∂Γ/∂σ

I Color −∂Γ/∂t
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I Given enough trading instruments (assets, options), we can
cancel the higher order sensitivities as well.

I However, decreasing the risk associated with a wrong choice
of parameters can increase model risk: our family of models
(the Black–Scholes models, parameterized by r and σ) is not
the true model!

I We also may have worse performance for larger moves (as we
are using local sensitivities)

I Therefore, one should find an optimal trade-off, and shouldn’t
go too far with ”matching the Greeks”.

Timeo Danaos et dona ferentes (I fear the Greeks, even
those bearing gifts) —Virgil, Aeneid
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I So far we have only considered the case where the stock pays
a continuous dividend of qStdt

I This is not a particularly convincing model for dividends over
short–medium horizons

I Over long horizons (ie. decades) it is often a reasonable
model, but most equity options have much shorter horizons.

I We need to handle the discrete nature of dividends in practice.
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I Suppose that a share pays a deterministic dividend D at time
tD .

I If both D and tD are known in advance we must have

St−D
= St+D

+ D ⇐⇒ St+D
= St−D

− D

otherwise there is an arbitrage opportunity.

I Dividends are generally announced well in advance (say 1
month), so this can be a useful model.
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tD
tnow

S

D

S (t−
D)

S (t+
D)

A jump in share price across a discrete dividend date.
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I If we have an option on this share then we don’t get the
dividend and so we must have the jump condition

V
(
St−D

, t−D
)

= V
(
St+D

, t+D
)

= V
(
St−D
− D, t+D

)
.

I As this is true for any St−d
and we solve the Black-Scholes

equation backwards in time, we generally write this jump
condition as

V (S , t−D ) = V (S − D, tD+).
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The strategy is to

I solve the Black-Scholes equation back from expiry, T , until
the dividend date t+D , then

I apply the jump condition to find V (S , t−D ) and then

I solve the Black-Scholes equation backwards from t−D to the
present time, using V (S , t−D ) as a “payoff” at t−D .

Note that D can be a function of S and t. Indeed, if we want the
share price to remain positive, it must be.

Modelling discrete dividend payments for a share price that follows
geometric Brownian motion is problematic to this day.
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t

S

T

terminal

payoff

tevent

apply

jump

condition

Solve
Black–Scholes

Solve
Black–Scholes
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If we assume a discrete dividend of the form

D = dy St−d
,

where the discrete dividend yield dy < 1, i.e., the dividend is
proportional to the share price immediately before the dividend is
paid then we find that

St−d
= St+d

+ dy St−d
⇐⇒ St+d

= (1− dy ) St−d

and the jump condition for the option becomes

V (S , t−d ) = V
(
(1− dy )S , t+d

)
.

B8.3: Dividends 8



I We can then use the fact that if V (S , t) is a solution of the
Black-Scholes equation then so too is V (λS , t).

I With λ = (1− dy ) in this case, we see that the solution for
t < td is simply

V
(
(1− dy )S , t

)
,

as it is a solution of the Black-Scholes equation and obviously
satisfies the “payoff” condition at t−d .

I Let’s make this explicit for a European Call.
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I Let Cv(S , t) be the Black–Scholes price function for a
vanilla call, i.e.

Cv(S , t) = S N(d+)− K e−r(T−t) N(d−),

d± =
log(S/K ) + (r ± 1

2σ
2)(T − t)√

σ2(T − t).

I Suppose the stock pays a discrete dividend yield of dy at time
0 < td < T .

I Let C (S , t) be the price of the option on this stock. Then for
td < t < T we have

C (S , t) = Cv(S , t).
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I Across the dividend date td , we apply the jump condition to
get

C (S , t−d ) = Cv
(
(1− dy )S , td

)
.

I As 1− dy > 0 is a constant, the function Cv
(
(1− dy )S , td

)
is

itself a solution of the Black-Scholes equation.

I So for all t < td we have

C (S , t) = Cv
(
(1− dy )S , t

)
.
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Jump condition across a discrete dividend yield date

 

 

S

C

(1 − dy)Sd Sd

C (Sd, t+
d )

C (Sd, t−
d )

C (S, t+
D) = Cv(S, tD)

C (S, t−
D) = Cv

(
(1 − dy)S, tD

)
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I The same reasoning shows that if there are n discrete
dividend yields at times

t < t1 < t2 < · · · < tn < T

between now and expiry with dividend yields

d1, d2, . . . , dn,

where each dk < 1, then

C (S , t) = C
(
αnS , t

)
, where αn =

n∏

k=1

(1− dk).

I Clearly this result generalises to any European option,
regardless of the its payoff.
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I An American option is an option which can be exercised at
any time between being initiated and expiring (inclusive).

I The key observation is that it is the holder (rather than the
writer) of the option who decides whether the option should
be exercised.

I Most traded options are of this type in practice.
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Suppose the option has a payoff Po(S , t), which may depend on t.
By no-arbitrage, it is clear that

I The American option cannot be worth less than Po(St , t),
because the option can be exercised at any time 0 ≤ t ≤ T .

I The American option can’t be worth less than an otherwise
equivalent European option (with payoff Po(ST ,T )).

I If the European option is always worth at least Po(St , t), then
it is no worse to hold the option to expiry than to exercise it,
so the price of the European and American options will agree.

Check you can construct an arbitrage if any of these are violated!
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I For a call option, if q = 0 we know that the equivalent
European call has value

C (St , t) = e−r(T−t)EQ[(ST − K )+|Ft ]

I As x 7→ (x − K )+ is convex, by Jensen’s inequality we know

C (St , t) ≥ e−r(T−t)
(
EQ[ST |Ft ]−K

)+
=

(
St−e−r(T−t)K

)+
.

I Therefore, if r ≥ 0, we have

C (St , t) ≥ (St − K )+

so the European option is always worth more than its exercise
value.

I Hence European and American Call options agree (for
non-dividend paying assets).
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I Conversely, if r > 0 then for a European put we have

lim
S→0

P(S , t) = K e−r(T−t) < K .

I Since the European put price is differentiable, it is also
continuous. Therefore, prior to expiry, a European put is less
valuable than its payoff, for small enough S .

I As an American put can’t be less valuable than the payoff, the
values of American and European puts must be different.

I As they both have the same payoff, (K − S)+, the American
put can’t satisfy the Black–Scholes equation for all S > 0.
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I There are a number of ways of formulating the American
option problem. One is the linear complementarity
formulation, which we give here.

I Let V (S , t) be the value (function) of the option and P0(S , t)
be the payoff (function).

I No arbitrage implies that

V (S , t) ≥ Po(S , t), S > 0, t ≤ T .

I Go back to the derivation of the Black-Scholes pricing
equation so at any time we hold one long position in the
American option, V , and ∆t short positions in the underlying
asset.
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I As for the European option, the market value is

Mt = V (St , t)−∆t St

and the change in the value of the portfolio is

dΠt = dVt −∆t dSt .

I Using Itô’s lemma we get

dΠ =

(
∂V

∂t
(St , t) + 1

2σ
2 S2

t

∂2V

∂S2
(St , t)

)
dt

+

(
∂V

∂S
(St , t)−∆t

)
dSt

and so taking ∆t = (∂V /∂S)(St , t) makes the change in
portfolio value (instantaneously) risk-free.
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I For the European option we then argued that dΠt > r Mt dt
and dΠt < r Mt dt both represented arbitrage opportunities
and hence dΠt = r Mt dt, which gives the Black-Scholes
equation.

I For the American option it is still true that dΠt > r Mt dt
gives a clear arbitrage: borrow the price of the portfolio, Mt ,
set up the portfolio with the correct value of ∆t . At time
t + dt the portfolio’s risk-free value is Mt + dΠt which is
greater than (1 + r dt)Mt than you owe.
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I Therefore we must have dΠt ≤ r Mt dt which is equivalent to
the partial differential inequality

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V ≤ 0.

I The problem comes with showing that dΠt < r Mt dt is an
arbitrage if the option is American.

I This is because it involves short-selling or writing the option
and, unlike a European option, an American option can be
exercised at any time, not just at expiry.

I Indeed, the only reason for exercising an American option
before expiry is that the return on the delta-hedged portfolio
is less than the return on the bank account.
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I Now suppose that V (St , t) > Po(St , t).

I Then it would be absurd to exercise the American option early
as you could sell it for more.

I You could also short-sell it knowing that it wouldn’t be
exercised immediately.

I Therefore you can make an arbitrage if dΠt < r Mt dt and
V (St , t) > Po(St , t) and so

V (S , t) > Po(S , t) =⇒ Lbs(V ) = 0,

where Lbs(V ) is the Black-Scholes operator

Lbs(V ) =
∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V .

B8.3: American Options 6



I Now if Lbs(V ) < 0 we can’t have V > Po for the reason
immediately above.

I We can’t have V < Po as this represents an arbitrage and so
the only possibility is V (S , t) = Po(S , t).

I Thus
Lbs(V ) < 0 =⇒ V (S , t) = Po(S , t).

In total we can write this as the linear complementarity
problem

Lbs(V ) ≤ 0, V (S , t) ≥ Po(S , t),(
V (S , t)− Po(S , t)

)
Lbs(V ) = 0.

I At expiry we have V (S ,T ) = Po(S ,T ). No arbitrage implies
that V (S , t) is continuous in S for t < T .
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I We need another condition to uniquely determine V (S , t)
and it is that the holder chooses the early exercise strategy in
order to maximize the option’s value.

I The fact that the holder chooses the early exercise strategy to
maximize the option’s value is often equivalent to the smooth
pasting conditions, there is some Ŝ(t) such that

V
(
Ŝ(t), t

)
= Po

(
Ŝ(t), t

)
,

∂V

∂S

(
Ŝ(t), t

)
=
∂Po

∂S

(
Ŝ(t), t

)
and on one side of Ŝ(t) we have Lbs(V ) = 0 and on the other
we have V (S , t) = Po(S , t).

I The function Ŝ(t) is called the optimal exercise boundary. It
is part of the problem to find Ŝ(t), hence the two conditions
applied there.
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I The first smooth pasting condition (continuity) can be seen
by no arbitrage. The second is more difficult.

I Smooth pasting is not universally true.

I There are American options for which it is always true, there
are some American options for which it is always false and
there are other American options where it is sometimes true
and sometimes false.

I For American puts and calls (calls with positive dividends
q > 0) it is always true.
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dS t  < 0

dS t  > 0

P = (K - S) +

Lbs[P] < 0

P > (K - S) +

Lbs[P] = 0

Lbs[P]  0

P(S,t)-(K - S) +   0

(P(S,t)-(K - S) + ) L bs[P] = 0

KS*
t

exercise hold S

P
ric

e
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I Consider an American put option (for simplicity, with no
dividends) where the share price at time t is equal to the
optimal exercise price, S∗

t .

I If dSt < 0, so the share price goes down, then the put’s value
equals the payoff (and the option is exercised).

I If dSt > 0, so the share price goes up, then the put’s value is
above the payoff (and the option is held). Thus we have

P(S∗
t + dSt , t + dt) =

{
K − S∗ − dSt if dSt < 0,

P(S∗ + dSt , t + dt) if dSt > 0.
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I Now assuming that St follows a geometric Brownian motion,

dSt
St

= µ dt + σ dWt ,

where dWt ∼ N(0, dt), it follows that dWt =
√
dt Z where

Z ∼ N(0, 1).

I Thus dWt = O(
√
dt) and since dt is infinitesimally small we

have dWt � dt.

I This in turn implies that

dSt = σ S∗
t dWt +O(dt)

(recall that St = S∗
t )
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I Substituting, we have the expansion

P(S∗
t +dSt , t +dt) = P(S∗, t) +σ S∗

t

∂P

∂S
(S∗

t , t) dWt +O(dt).

I Thus, with Pt = P(S∗
t , t), we have

dP∗
t =

 −σ S∗
t dWt if dWt < 0,

σ S∗
t

∂P

∂S
(S∗, t) dWt if dWt > 0.
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I Consider a portfolio with a long put and a long share,
Πt = P(S∗

t , t) + S∗
t , (recall again that St = S∗

t ).

I From the above we see that

dΠt =


0 if dWt < 0,

σ S∗
t

(
∂P

∂S
(S∗, t) + 1

)
if dWt > 0.

I Now suppose that

∂P

∂S
(S∗

t , t) + 1 > 0 or
∂P

∂S
(S∗

t , t) + 1 < 0.

Both of these cases lead to an arbitrage in which dΠt is either
non-negative with a non-zero probability of being strictly
positive (the first case) or non-positive with a non-zero
probability of being strictly negative (the second case).
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Therefore, to avoid an arbitrage we must have

∂P

∂S
(S∗

t , t) = −1,

which is the (second) smooth pasting condition.
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I We consider the case where the option never expires, T →∞.

I In this case there is no difference in the option pricing problem
between the spot/time points (S , t1) and (S , t2) when
t1 6= t2, so, we can assume that V = V (S).

I In this case, provided the option hasn’t already been
exercised, it satisfies the ordinary differential equation

1
2σ

2 S2 V ′′(S) + (r − q) S V ′(S)− r V (S) = 0.

This equation is sometimes called an Euler equation.
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I One way to solve this equation is to look for solutions in
terms of the eigenfunctions of S ∂/∂S ,

V (S) = Sm, S V ′(S) = mSm, S2 V ′′(S) = m(m − 1)Sm.

I With this choice, we see that m must satisfy the quadratic
equation

1
2σ

2m(m − 1) + (r − q)m − r = 0.

I If we assume σ > 0, r > 0 and q ≥ 0 and set

p(m) = 1
2σ

2m(m − 1) + (r − q)m − r

then p(m) has apositive coefficient for the quadratic term m2

and at the points m = 0 and m = 1 we have p(0) = −r < 0
and p(1) = −q ≤ 0.
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I From these facts it follows that if m± are the roots of the
quadratic then

m− < 0, m+ ≥ 1.

I Thus the general solution is

V (S) = ASm−
+ B Sm+

, m− < 0, m+ ≥ 1.

I In particular, if we know V (∞) = 0, then B = 0, and
V (S) = ASm−

for some A.
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I With y ≥ 0 and r > 0 we find that the problem for the
American put is

0 = 1
2σ

2 S2 P ′′(S) + (r − q)S P ′(S)− r P(S), S > Ŝ ,

P(Ŝ) = K − Ŝ , P ′(Ŝ) = −1, P(∞) = 0.

I The two conditions P(Ŝ) = K − Ŝ and P(∞) = 0 give

P(S) = (K − Ŝ)

(
S

Ŝ

)m−

.

I The remaining boundary condition, P ′(Ŝ) = −1, then gives

0 < Ŝ =
m− K

m− − 1
< K

since m− < 0 (which implies m− − 1 < m− < 0).
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I For the perpetual Amerian put, we can also find the
value directly by maximizing over exercise values.

I Again assume that q ≥ 0 and r > 0.

I Choose an arbitrary 0 < S̄ < K and exercise as soon as S falls
to S̄ .

I Then

1
2σ

2 S2 P ′′(S) + (r − q) S P ′(S)− r P(S) = 0, S > S̄ ,

P(S̄) = K − S̄ , P(∞) = 0.

I As above, the solution is

P(S ; S̄) = (K − S̄)

(
S

S̄

)m−

,

where m− < 0.

B8.3: American Options 6



I Now (formally) set

∂P

∂S̄
(S ; S̄) =

(
S

S̄

)m− (
−1−m−

K − S̄

S̄

)
= 0.

I This gives

−1−m−
(
K − S̄

S̄

)
= 0.

I In turn, this implies the optimal value of S̄ , Ŝ , is

0 < Ŝ =
m− K

m− − 1
< K .

I This is the same as the smooth pasting version.
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I For an example without smooth pasting, consider the
perpetual American digital put option.

I Assume r > 0 and q ≥ 0.

I Given r > 0 and the payoff is constant for S < K , it is clear
that the optimal strategy is to exercise the first time
S = Ŝ = K .

I For S > K , the problem for the perpetual American digital
put option is

0 = 1
2σ

2 S2 P ′′d (S) + (r − q) S P ′d(S)− r Pd(S), 0 < K < S ,

Pd(K ) = 1, Pd(∞) = 0.

I The solution is

Pd(S) =

(
S

K

)m−

.
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I It is not possible to make P ′d(K ) continuous at S = K .

I Thus, the second smooth pasting condition (involving P ′d(Ŝ))
does not apply in this case!

Note that you cannot adapt the smooth pasting argument used for
the American put option above, so that it works for an American
digital put (perpetual or with finite expiry date T ).
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I Exotic option is a catch-all term that includes options which
are not generally traded on markets, or not widely traded.

I They often occur embedded in other more complex financial
products, as structured products or as over-the-counter
options created for clients with special financial needs.

I For some asset classes (e.g. electricity, interest rates), these
may be the main way the commodity is traded.
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I We begin with a simple case – a forward start option

I These involve a payoff with a strike, e.g., a call, where the
strike is determined by the share price at some time T1, where
0 < T1 < T2.

I For example, we could have K = ST1 .

I The trick to pricing them is to note that for T1 < t ≤ T2 the
strike K is known.
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I For a call, this means that for T1 < t ≤ T2 we can write

Cfs(S , t) = S e−q(T2−t) N(d+)−K e−r(T2−t) N(d−), K = ST1 .

I At time T1, K = S by definition and so

Cfs(S ,T1) = A(r , q, σ,T1,T2)S

where A(r , q, σ,T1,T2) is independent of S and t and is given
by

A(r , q, σ,T1,T2) = e−q(T2−T1) N(d∗
+) − e−r(T2−T1) N(d∗

−),

d∗
± =

(r − q ± 1
2σ

2)(T2 − T1)√
σ2(T2 − T1)

.

B8.3: Exotic Options 4



I As the price at time T1 is simply a (known) multiple of S , a
no arbitrage argument (or the Black–Scholes equation) shows
that for t ≤ T1 the price must be given by

Cfs(S , t) = A(r , q, σ,T1,T2)S e−q(T1−t).

I More complicated forward start values will involve solving the
Black–Scholes equation for t ≤ T1.
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I A down and out barrier call option becomes worthless
(colloquially refered to as “knocking out”) if the share price
falls to or below a barrier level, B > 0, at any time during the
option’s life.

I For simplicity, we take B to be a constant.

I If St > B for all t ∈ [0,T ] then it has payoff (ST − K )+.

I The pricing problem, assuming that the option has not already
knocked out, is

LBSCdo =
∂Cdo

∂t
+ 1

2σ
2 S2 ∂

2Cdo

∂S2
+ (r − q)S

∂Cdo

∂S
− r Cdo

= 0, S > B, t < T ,

Cdo(S ,T ) = (S − K )+, S > B,

Cdo(B, t) = 0, t ≤ T .
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We begin with the case 0 < B ≤ K .

I The trick here is to recall that if V (S , t) is a solution of the
Black-Scholes equation then so too is

V̂ (S , t) = (S/B)2α V
(
B2/S , t

)
,

where 2α = 1− 2(r − q)/σ2, and that

V̂ (B, t) = (B/B)2α V
(
B2/B, t

)
= V

(
B, t

)
.

I So if Cbs(S , t) is the price of a vanilla call option we see that

Cdo(S , t;B) = Cbs(S , t)− (S/B)2αCbs
(
B2/S , t

)
is a solution of the Black-Scholes equation which satisfies
Cdo(B, t;B) = 0.
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I Then we notice that as B < S and B ≤ K we have
B2/S < B ≤ K so that

Cbs
(
B2/S ,T

)
=
(
B2/S − K

)+
= 0

which shows that for S > B

Cdo(S ,T ;B) = Cbs(S ,T ) = (S − K )+.

I Thus Cdo(S , t;B) satisfies the pricing problem and is the
Black–Scholes value of the barrier option (before the Barrier is
hit)
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I We can now consider the more difficult case B > K > 0.

I In this case the trick above fails because we find that
C (B2/S ,T ) 6= 0 for all S > B.

I The way to deal with it is to truncate the payoff of the call so
that it becomes equal to zero if S ≤ B but remains
unchanged if S > B, i.e., replacing the vanilla call above with
an option whose payoff is

V (S ,T ) =

{
0 if 0 < S ≤ B,

S − K if S > B > K .

I This payoff can be achieved by using a vanilla call with strike
B plus (B − K ) digital calls, also with strike B.
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I So instead of using the vanilla call price as above, we work
with

V (S , t;B) = Cbs(S , t;K = B) + (B − K )Cd(S , t;K = B).

I The Black-Scholes price function is given by

Cdo(S , t;B) = V (S , t;B)− (S/B)2αV
(
B2/S , t

)
since this satisfies the Black-Scholes equation and boundary
condition at S = B and if S > B then B2/S < B.

I So V
(
B2/S ,T

)
= 0, giving us the correct payoff at T .
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I Using our Down-and-Out formula, its easy to obtain the price
of the ’down-and-in’ option as well.

I This option remains worthless if the share price does not fall
below the barrier B > 0 during the life of the option.

I If at some point during the life of the option we have St < B
then the option turns into a vanilla call with payoff
(ST − K )+; this is often referred to as “knocking in”.
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I If we hold both a down-and-out and a down-and-in call
option then we are guaranteed the payoff (ST − K )+ and so
there is a down-and-in / down-and-out parity relation,

Cdo(S , t;B) + Cdi(S , t;B) = Cbs(S , t)

and hence

Cdi(S , t;B) = Cbs(S , t)− Cdo(S , t;B).

I In the case that B < K this simplifies to

Cdi(S , t;B) = (S/B)2α Cbs
(
B2/S , t

)
.

I Note that these formula for Cdi are only valid if S ≥ B for all
time up to the present. As soon as S < B the option turns
into a vanilla call and remains so until expiry.
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I Asian options are options which depend on the average share
price over the life of the option.

I In practice, it is usually the arithmetic average which we can
define using the running sum of the share price

Rt =

∫ t

0
Su du, AT = RT/T =

1

T

∫ T

0
Su du,

where AT is the average price at T .

I The option’s price is a function of St , Rt and t,
Vt = V (St ,Rt , t) for some function V (S ,R, t).
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If we note that
dRt = St dt

and assume that dW 2
t = dt (which really means d [W ]t = dt) and

perform a formal Taylor series expansion then we find

dVt =
(∂V
∂t

+ 1
2σ

2 S2
t

∂2V

∂S2

)
dt +

∂V

∂R
dRt +

∂V

∂S
dSt

=
(∂V
∂t

+ 1
2σ

2 S2
t

∂2V

∂S2
+ St

∂V

∂R

)
dt +

∂V

∂S
dSt ,

where all partial derivatives are evaluated at (St ,Rt , t).
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Applying the usual hedging (or self-financing replication)
argument(s) shows that to eliminate risk we must hold

∆t = ∆(St ,Rt , t) =
∂V

∂S
(St ,Rt , t)

shares at time t and that the pricing equation is

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − q) S

∂V

∂S
+ S

∂V

∂R
− r V = 0.

I This holds for all S > 0, t < T and R > 0.

I As Su > 0, Rt =
∫ t
0 Su du can take only positive values.
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If the option is what is known as a floating-strike asian call, where
the average plays the role of the strike, so the payoff is

V (S ,R,T ) =
(
S − R/T

)+
,

then we can simplify the problem by working with the variables

x = R/S , V (S ,R, t) = S u(x , t),

i.e., by pricing relative to the share price rather than a unit of
currency (in finance this is usually called a change of numeraire).
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We find that

∂V

∂t
= S

∂u

∂t
, S

∂V

∂R
= S

∂u

∂x
,

S
∂V

∂S
= S

(
u − x

∂u

∂x

)
, S2 ∂

2V

∂S2
= S x2

∂2u

∂x2
.

Substituting these into the pricing PDE gives

∂u

∂t
+ 1

2σ
2 x2

∂2u

∂x2
+
(
1 + (q − r)x

) ∂u
∂x
− q u = 0.
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At expiry, t = T , we have V (S ,R,T ) = (S − R/T )+ = S u(x ,T )
and so

u(x ,T ) = (1− x/T )+.

The Feynman–Kac formula shows that the solution can be
expressed as

u(x , t) = e−q(T−t)E
[(

1− xT/T
)+ | xt = x

]
,

where xτ evolves as

dxτ =
(
1 + (q − r) xτ

)
dτ + σ xτ dWτ ,

for τ > t, with xt = x . Sadly this doesn’t have a nice closed-form
solution.
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I An alternative type of Asian option is where the Geometric
average is used, instead of the arithmetic average.

I This leads to a much simpler analysis, given we have a
Geometric Brownian Motion as our fundamental model.

I A PDE approach is possible, but we will consider a
probabilistic argument for the sake of variety.
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I We will consider the simplest case, of option with payoff

G (S) =
(

exp
1

T

∫ T

0
log(Su)du − K

)+

I We ignore dividends (q = 0), and recall that the usual
argument shows that the price must be given by

e−r(T−t)EQ[G (S)|Ft ]

where, under Q, the stock follows the GBM

dSt = rStdt + σStdWt .

or equivalently for t < u

Su = St exp

((
r − σ2

2

)
(u − t) + σ(Wu −Wt)

)
.
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We now observe that

log(Su) = log(St) +
(
r − σ2

2

)
(u − t) + σ(Wu −Wt)

and hence∫ T

t
log(Su)du − (T − t) log(St)

=
(
r − σ2

2

)∫ T

t
(u − t)du + σ

∫ T

t
(Wu −Wt)du

=
(
r − σ2

2

)(T − t)2

2
+ σ

∫ T

t
(Wu −Wt)du
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We know that {Wu −Wt}u≥t are mean-zero jointly Gaussian
random variables, so

E
∫ T

t
(Wu −Wt)du = 0

and, as cov(Wt ,Ws) = min(t, s), (as in PS2 Q3)

E
[(∫ T

t
(Wu −Wt)du

)2
]

=

∫ T

t

∫ T

t
E[(Wu −Wt)(Ws −Wt)]dsdu

=

∫ T

t

∫ T

t
min(u − t, s − t)dsdu

=

∫ T

t

∫ u

t
s − t dsdu +

∫ T

t

∫ T

u
u − t dsdu

= (T − t)3/3
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From this, we conclude that, under the risk-neutral measure Q,∫ T

t
(Wu −Wt)du ∼ N (0, (T − t)3/3)

and in particular, given Ft ,

1

T

∫ T

0
log(Su)du ∼ N (µ̄, σ̄2)

where

µ̄ =
1

T

∫ t

0
log(Su)du +

T − t

T
log(St) +

(
r − σ2

2

)(T − t)2

2T

σ̄2 =
(T − t)3

3T 2
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We know from the derivation of the Black–Scholes formula
that if X = exp(a + bZ ) for Z ∼ N (0, 1), then

E[X1X>K ] = exp(a− b2/2)N
(a− log(K )

b
+ b
)

E[1X>K ] = N
(a− log(K )

b

)
and so we can price our geometric Asian option,

e−r(T−t)E
[(

exp
1

T

∫ T

0
log(Su)du − K

)+∣∣∣Ft

]
= e−r(T−t)+µ̄−σ̄2/2N

( µ̄− log(K )

σ̄
+ σ̄

)
− e−r(T−t)KN

( µ̄− log(K )

σ̄

)
.
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