B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2020

Problem Sheet Two

In the following $(W_t)_{t\geq 0}$ denotes a standard Brownian motion and $t \geq 0$ denotes time. A partition π of the interval [0,t] is a sequence of points $0 = t_0 < t_1 < t_2 < \cdots < t_n = t$ and $|\pi| = \max_k(t_{k+1} - t_k)$. On a given partition $W_k \equiv W_{t_k}, \, \delta W_k \equiv W_{k+1} - W_k, \, \delta t_k \equiv t_{k+1} - t_k$ and if f is a function on $[0,t], f_k \equiv f(t_k)$ and $\delta f_k \equiv f_{k+1} - f_k$.

- 1. Show that if $t, s \ge 0$ then $\mathbb{E}[W_s W_t] = \min(s, t)$.
- 2. Assuming that both the integral and its variance exist, show that

$$\operatorname{var}\left[\int_0^t f(W_s, s) \, dW_s\right] = \int_0^t \mathbb{E}\left[f(W_s, s)^2\right] \, ds.$$

Is it generally the case that $\int_0^t f(W_s, s) dW_s$ has a Gaussian distribution?

[Note: if the integral and its variance exist then it is legitimate to interchange the order of expectation and dt-integration and the stochastic integral is a martingale.]

3. Use the differential version of Itô's lemma to show that

(a)
$$\int_0^t W_s \, ds = t \, W_t - \int_0^t s \, dW_s = \int_0^t (t-s) \, dW_s,$$

(b) $\int_0^t W_s^2 \, dW_s = \frac{1}{3} W_t^3 - \int_0^t W_s \, ds,$

4. Define X_t to be the 'area under a Brownian motion', $X_0 = 0$ and $X_t = \int_0^t W_u \, du$ for t > 0. Show that X_t is normally distributed with

$$\mathbb{E}[X_t] = 0, \quad \mathbb{E}[X_t^2] = \frac{1}{3}t^3.$$

Now define Y_t as the 'average area under a Brownian motion',

$$Y_t = \begin{cases} 0 & \text{if } t = 0, \\ X_t/t & \text{if } t > 0. \end{cases}$$

Show that Y_t has $\mathbb{E}[Y_t] = 0$, $\mathbb{E}[Y_t^2] = t/3$ and that Y_t is continuous for all $t \ge 0$.

Is $\sqrt{3} Y_t$ a Brownian motion? Give reasons for your answer.

5. Find solutions of the Black–Scholes terminal value problem

$$\begin{split} \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 \, S^2 \, \frac{\partial^2 V}{\partial S^2} + (r - y) \, S \, \frac{\partial V}{\partial S} - r \, V = 0, \quad S > 0, \ t < T, \\ V(S,T) = f(S), \quad S > 0, \end{split}$$

when

- (a) f(S) = C, where C is a constant;
- (b) $f(S) = S^{\alpha}$, where α is a constant.

[Hint: you don't need the Feynman–Kac formula to do either of these. Look for simple functional forms of the solution.]

6. Let $f: [0,T] \times \mathbb{R} \to \mathbb{R}$ satisfy the PDE

$$\frac{\partial f}{\partial t} + 2(|x|+t)\frac{\partial f}{\partial x} + \frac{1}{1+\exp(x)}\frac{\partial^2 f}{\partial x^2} = 0$$

- (a) If f has boundary values f(x,T) = g(x) for all x, write down an SDE for X such that $f(x,t) = \mathbb{E}[g(X_T)|X_t = x]$.
- (b) If f has boundary values f(x,T) = g(x) for all x > 0 and f(0,t) = 0 for all t > 0, and g(0) = 0, write down an SDE for Y such that $f(y,t) = \mathbb{E}[g(Y_T)|Y_t = y].$
- 7. An Ornstein–Uhlenbeck process X is the solution to the stochastic differential equation

$$dX_t = \kappa(\theta - X_t)dt + \sigma dW_t$$

where $\kappa > 0$ and $\theta \in \mathbb{R}$.

(a) By using Itô's lemma applied to $e^{\kappa t}X_t$, show that for a given initial value X_0 , the value of X_t is given by

$$X_t = \theta + \left((X_0 - \theta) + \sigma \int_0^t e^{\kappa s} dW_s \right) e^{-\kappa t}$$

- (b) Show that this implies that, for any deterministic initial value X_0, X_t has a Gaussian distribution, with mean and variance you should determine.
- (c) Calculate $f(x,t) = \mathbb{E}[X_T^2|X_t = x]$, and check explicitly that this is a solution to the corresponding PDE:

$$\frac{\partial f}{\partial t} + \kappa (\theta - x) \frac{\partial f}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 f}{\partial x^2} = 0.$$

Optional questions

8. The Black–Scholes equation from a binomial method.

One step of the Cox, Ross & Rubinstein binomial method can be written as

$$V(S,t) = e^{-r\delta t} \left(q V^u + (1-q) V^d \right)$$

where

$$V^{u} = V(S^{u}, t + \delta t), \quad V^{d} = V(S^{d}, t + \delta t),$$

$$S^{u} = S e^{\sigma\sqrt{\delta t}}, \quad S^{d} = S e^{-\sigma\sqrt{\delta t}}, \quad q = \frac{e^{r\delta t} - e^{-\sigma\sqrt{\delta t}}}{e^{\sigma\sqrt{\delta t}} - e^{-\sigma\sqrt{\delta t}}},$$

 $\sigma > 0$ is the volatility, r is the risk-free rate and $\delta t > 0$ is the length of the time-step. Supposing this is true for all S > 0 and that V(S, t) may be expanded in a Taylor series in both S and t, show that as $\delta t \to 0$

$$\begin{split} q &= \frac{1}{2} + \frac{r - \frac{1}{2}\sigma^2}{2\sigma} \sqrt{\delta t} + \mathcal{O}(\delta t), \\ V^u &= V + \sqrt{\delta t} \,\sigma \,S \, \frac{\partial V}{\partial S} + \delta t \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 \left(S \, \frac{\partial V}{\partial S} + S^2 \, \frac{\partial^2 V}{\partial S^2} \right) \right) + \mathcal{O}(\delta t^{3/2}), \\ V^d &= V - \sqrt{\delta t} \,\sigma \,S \, \frac{\partial V}{\partial S} + \delta t \left(\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 \left(S \, \frac{\partial V}{\partial S} + S^2 \, \frac{\partial^2 V}{\partial S^2} \right) \right) + \mathcal{O}(\delta t^{3/2}), \end{split}$$

where V and all its partial derivatives are evaluated at (S, t). Hence show that in the limit $\delta t \rightarrow 0$ the option price satisfies the (zero dividend-yield) Black–Scholes equation

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial S}{\partial S} - r V = 0.$$

9. The total variation of a function, or stochastic process, over [0, t], is

$$\langle f \rangle_t = \lim_{|\pi| \to 0} \sum_{k=0}^{n-1} |f_{k+1} - f_k|.$$

If $\langle f \rangle_t$ is finite on [0, t] we say f has bounded variation on [0, t]. Show that:

- (a) if f is $C^1[0,t]$ then $\langle f \rangle_t = \int_0^t |f'(t)| dt < \infty;$
- (b) if f is a continuous function with $\langle f \rangle_t < \infty$ then its quadratic variation is zero, $[f]_t = 0$;
- (c) Brownian motion does not have bounded variation;

(d) the arc length of the graph of a Brownian motion is infinite for any t > 0.

[Hint: if $y=X_t$ has an arc length s then $ds=\sqrt{dy^2+dx^2}\geq \sqrt{dy^2}=|dy|.]$

10. Let X be the solution to an SDE of the form

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t.$$

If S is a function satisfying the ODE

$$b(x)S'(x) + \frac{1}{2}(\sigma(x))^2 S''(x) = 0$$

find the dynamics of $Y_t = S(X_t)$ and an expression for its quadratic variation $[Y]_t$. What do you conclude about the behaviour of Y?

11. The covariation of two functions or processes, X and Y, on [0, t] is defined to be

$$[X,Y]_t = \lim_{|\pi| \to 0} \sum_{k=0}^{n-1} (X_{k+1} - X_k)(Y_{k+1} - Y_k).$$

Show that if both X and Y have finite quadratic variation on [0, t] then $[X, Y]_t$ is finite and satisfies $2 | [X, Y]_t | \leq [X]_t + [Y]_t$.

Assuming $[X]_t$ and $[Y]_t$ are finite, show that

- (a) $[X + Y]_t = [X]_t + [Y]_t + 2 [X, Y]_t$,
- (b) $[X,Y]_t = \frac{1}{4} ([X+Y]_t [X-Y]_t).$
- (c) if X and Y are C^1 functions on [0, t] then $[X, Y]_t = 0$.
- 12. Let $(W_t)_{t\geq 0}$ and $(Z_t)_{t\geq 0}$ be two Brownian motions. They are correlated with correlation $\rho \in (-1, 1)$ if
 - (a) for all $s, t \ge 0$, $\mathbb{E}[(W_{t+s} W_t)(Z_{t+s} Z_t)] = \rho s$,
 - (b) for all $0 \le p \le q \le s \le t$, the pair $(W_q W_p)$ and $(Z_t Z_s)$ are independent and the pair $(W_t W_s)$ and $(Z_q Z_p)$ are also independent.

Show that in this case $[W, Z]_t = \rho t$, in the sense that

$$\mathbb{E}\big[[W, Z]_t - \rho t\big] = 0 \quad \text{and} \quad \mathbb{E}\Big[\big([W, Z]_t - \rho t\big)^2\Big] = 0.$$

[Hint: first show that if X and Y are random variables with second moments then $|\mathbb{E}[XY]| \leq \frac{1}{2} (\mathbb{E}[X^2] + \mathbb{E}[Y^2])$.]

[Note that if we define a process by $f_t = f(W_t, Z_t, t)$ where f(W, Z, t) is $C^{2,2,1}$, then (the differential version of) Itô's lemma is

$$df_t = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial W} dW_t + \frac{\partial f}{\partial Z} dZ_t + \frac{1}{2} \frac{\partial^2 f}{\partial W^2} d[W]_t + \frac{1}{2} \frac{\partial^2 f}{\partial Z^2} d[Z]_t + \frac{\partial^2 f}{\partial W \partial Z} d[W, Z]_t,$$

where all functions on the right-hand side are evaluated at (W_t, Z_t, t) . The result derived above simplifies this expression.]