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The following lemma establishes some classical and useful
properties of normal distributions. Its proof is left as an exercise.

Lemma

(i) Let Z ,Z ′ be independent random variables with Z ∼ N(µ,Σ),
Z ′ ∼ N(µ ′,Σ′). Then Z +Z ′ ∼ N(µ + µ ′,Σ + Σ′).
Equivalently, their densities satisfy the convolution property∫

Rd
φ(µ,Σ)(y)φ(µ ′,Σ′)(x−y)dy = φ(µ+µ ′,Σ+Σ′)(x).
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Lemma (Ctd...)

(ii) If Zi ∼ N(µi ,Σi ) is a sequence of independent normal random
variables such that µ∗ = ∑i∈N µi and Σ∗ = ∑i∈N Σi exist (i.e.
the sums converge), then the sequence of partial sums ∑

n
i=1Zi

converges in (L2, and hence in) probability to a random
variable with distribution

∑
i∈N

Zi ∼ N(µ
∗,Σ∗).

(iii) If the pair (Z ,Z ′) is a multivariate normal random variable,
then Z and Z ′ are normal, and are independent if and only if
their covariance is zero, that is, E [(Z −µ)(Z ′−µ ′)>] = 0.
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We proceed as follows:

I First, we determine the value of the nth approximation X n on
the points Dn.

I Second, we use linear interpolation to define X n
t for all values

of t.

I This gives us a sequence of paths which we shall show
converge.

B8.2: Brownian Motion 4



X

Time

X 1
1 = X 2

1 = X 3
1X 2

1/2 = X 3
1/2

X 3
3/4

X 3
1/4

Figure: Three steps in Lévy’s construction
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I We begin with a countable family {Zm} of identically
distributed random variables with Zm ∼ N(0, Id) for all m. Let
Dn = {k2−n : k ,n ∈ Z+}, so that Dn ⊂ Dn+1, D0 = Z+ and
∪nDn is the set of Dyadic rationals.

I For simplicity of notation, let {Zm} be indexed by m ∈ ∪nDn

and Z0 := 0.

I To fix the values of X n
t for t ∈ Dn, we define

X 0
t = ∑

{k∈D0:k<t}
Zk .

Next, for every n > 0, define X n
t = X n−1

t for all t ∈ Dn−1. For
t ∈ Dn \Dn−1, let

X n
t = X n−1

t + 2−(n/2+1)Zt . (1)
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I We now linearly interpolate between these points {X n
t }t∈Dn .

I Formally, we can write the interpolation step as

X n
t = Xbtcn +

t−btcn
dten−btcn

(Xdten −Xbtcn),

where btcn = max{s ∈ Dn : s ≤ t}, dten = min{s ∈ Dn : s ≥ t}.
I The use of linear interpolation is not vital to the construction,

as we shall see (taking right-continuous step functions
X n
t := X n

btcn would work just as well for proving the existence

of a limit, but would not immediately give continuity).

I We next show that these paths converge, in a sufficiently
strong sense, to a Brownian motion.
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Lemma (Lemma 3.6)

Let {X n}n∈N be a sequence of a.s. continuous functions which
converge uniformly on compacts in probability to a process X , that
is, for any ε > 0,

lim
n
P
(

sup
s∈[0,t]

‖X n
s −Xs‖< ε

)
= 1

for all t. Then X is also continuous.

Remark
The uncountable supremum is measurable, as our functions are
continuous (so the supremum could equally be taken over the
rationals, and suprema over countable sets are always measurable).
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Proof.
For fixed t, by Lemma A.7, taking a subsequence in n, we can
assume that the convergence is almost sure, that is,

P
(

lim
n

(
sup

s∈[0,t]
‖X n

s −Xs‖
)

= 0
)

= 1

Fixing ω, this is a statement of uniform convergence of X nj → X ,
and the continuity of the limit is classical, as for any ε > 0, we can
find δ ,m > 0 such that

‖Xs −Xs+δ‖ ≤ ‖X nm
s −Xs‖+‖X nm

s+δ
−Xs+δ‖+‖X nm

s −X nm
s+δ
‖

≤ 2 sup
s∈[0,t]

{‖X nj
s −Xs‖}+‖X nm

s −X nm
s+δ
‖

≤ 3ε.
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Theorem
The processes X n defined in (1) converge a.s. uniformly on
compacts to a process X . In its natural filtration, the limit is a
Brownian motion starting at zero.
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Proof...

Convergence. We first show that the processes converge. We
consider the case where X is a Brownian motion in two
dimensions, as this implies all other cases by the triangle inequality,
and is notationally simpler. From our construction, we can see that

sup
s∈[0,t]

‖X n
s −X n+1

s ‖= max
{s∈Dn+1\Dn:s<t}

‖2−(n/2+1)Zs‖.
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Proof...

The set {s ∈ Dn+1 \Dn : s < t} contains at most t2n elements, and
the Zs are independent N(0, Id) random variables. It is standard
that ‖Zs‖2 has a χ2-distribution with d = 2 degrees of freedom, so
if F (x) := P(‖Zs‖2 ≤ x) is the distribution function of ‖Zs‖2 we
have

P
(

sup
s∈[0,t]

‖X n
s −X n+1

s ‖> ε
)

= P
(

max
{s∈Dn+1\Dn:s<t}

‖Zs‖> 2n/2+1
ε

)
≤ ∑
{s∈Dn+1\Dn ,

s<t}

P
(
‖Zs‖> 2n/2+1

ε
)

= t2n(1−F (2n+2
ε

2)).
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Proof...

By changing into polar coordinates, it is easy to show that
F (x) = 1− e−x/2 (this simple form is the reason we chose d = 2).
Therefore,

P
(

sup
s∈[0,t]

‖X n
s −X n+1

s ‖> ε
)
≤ t2n exp(−2n/2+1

ε
2)

Taking N large enough that N log(2)−2N/2+1ε2 <−N, for all
n > N we have

P
(

sup
s∈[0,t]

‖X n
s −X n+1

s ‖> ε
)
≤ te−n.
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Proof...

By the Borel–Cantelli Lemma, as this sequence is summable we
have

P
(

sup
s∈[0,t]

‖X n
s −X n+1

s ‖> ε for infinitely many n
)

= 0.

Therefore, with probability one, the processes X n are converging
uniformly on the interval [0, t]. By Lemma 3.6, X is a continuous
process.
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Proof...

X is a Brownian Motion. We now need to show that X is a
Brownian motion in its natural filtration, that is, that the
increment Xt −Xs is normally distributed and independent of
Fs = σ(Xu,u ≤ s). First note that for s, t with t ∈ Dn \Dn+1 and
dsen < t, the random variable Zt is not involved in the
construction of Xs . Hence, as X generates the filtration and the
{Zu}u∈∪nDn are independent, we see that Zt is independent of Fs .
It is clear that if s, t are integers with s < t, then

Xt −Xs = X 0
t −X 0

s = ∑
{k∈D0:s<k<t}

Zk ∼ N(0,(t− s)Id).

Furthermore, in this case Xt −Xs is independent of Fs , as
Zk = Zdke0 is independent of Fs for all s < k .
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Proof...

Now suppose that the result holds for s, t ∈ Dn.Then we see that
for any u ∈ Dn+1 \Dn,

Xu−Xbucn =
Xduen −Xbucn

2
+ 2−(n/2+1)Zu ∼ N(0,2−(n+1)Id)

which is independent of Fbucn . Similarly,

Xduen −Xu =−
Xduen −Xbucn

2
+ 2−(n/2+1)Zu ∼ N(0,2−(n+1)Id),

which is independent of Fbucn . Therefore, for any s, t ∈ Dn+1,

Xt −Xs = (Xt −Xbtcn) + (Xbtcn −Xdsen) + (Xdsen −Xs),

which is the sum of three independent normal random variables, so

Xt −Xs ∼ N(0,(t− s)Id).
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Proof...

The first two terms are independent of Fdsen ⊇Fs . We know the
last term is independent of Fbscn , and we can compute

E
[
(Xdsen −Xs)(Xs −Xbscn)>

]
= 0

so (Xdsen −Xs) is independent of the increment Xs −Xbscn , as
uncorrelated Gaussians are independent. As we can write

Fs = Fbscn ∨σ(Xs −Xbscn)∨σ
(
Zu;u ∈

]
bscn,s

[)
,

we see that Xdsen −Xs is independent of Fs . Therefore Xt −Xs is
normally distributed and independent of Fs , as desired.
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Proof...

Finally, for any s < t we can find sequences sn ↓ s, tn ↑ t with
sn, tn ∈ Dn and s0 ≤ t0. Then Xtn −Xsn ∼ N(0,(tn− sn)Id), and by
continuity of X we see

Xt−Xs =Xt0−Xs0 +
∞

∑
n=1

(
Xtn−Xtn−1−Xsn +Xsn−1

)
∼N(0,(t−s)Id).

All the terms in this sum are independent of Fs , as required. As
X0 = 0 by construction, we see that X is a Brownian motion
starting at zero, in its natural filtration.
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