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Our theory of integration is going to be an ‘L2-theory’. We first
need to introduce the martingales with which we are going to
work.

I We are going to think of them as being defined up to
indistinguishability – nothing changes if we change the process
on a null set.

I Think of this as analogous to considering Lebesgue integrable
functions as being defined ‘almost everywhere’.
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Definition
Let H 2 be the space of L2-bounded càdlàg martingales, i.e.

({Ft}t≥0,P)–martingales M s.t. sup
t≥0

E[M2
t ] < ∞,

and H 2,c the subspace consisting of continuous L2-bounded
martingales. Finally, let H 2,c

0 = {M ∈H 2,c : M0 = 0 a.s.}.
We note that the space H 2 is also sometimes denoted M 2.
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It follows from Doob’s L2-inequality that

E
[

sup
t≥0

M2
t

]
≤ 4sup

t≥0
E[M2

t ] < +∞, M ∈H 2.

Consequently, {Mt : t ≥ 0} is bounded by a square integrable
random variable (supt≥0 |Mt |) and in particular is uniformly
integrable. It follows from the martingale convergence theorem
that Mt = E[M∞|Ft ] for some square integrable random variable
M∞.

Conversely, we can start with a random variable Y ∈ L2(Ω,F∞,P)
and define a martingale Mt := E[Y |Ft ] ∈H 2 (and M∞ = Y ).
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Two L2-bounded martingales M,M ′ are indistinguishable if and
only if M∞ = M ′∞ a.s. and so if we endow H 2 with the norm

‖M‖H 2 :=
√

E[M2
∞] = ‖M∞‖L2(Ω,F∞,P), M ∈H 2, (1)

then H 2 can be identified with the familiar L2(Ω,F∞,P) space.

Remark
It’s worth noticing that ‖M‖2

H 2 = E[M2
∞] = var(M∞) (recalling that

E[M∞] = 0).
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Theorem
H 2,c is a closed subspace of H 2.

Proof.
This is almost a matter of writing down definitions. Suppose that
the sequence Mn ∈H 2,c converges in ‖ · ‖H 2 to some M ∈H 2.
By Doob’s L2-inequality

E
[

sup
t≥0
|Mn

t −Mt |2
]
≤ 4‖Mn−M‖2

H 2 −→ 0, as n→ ∞.

Passing to a subsequence, we have supt≥0 |M
nk
t −Mt | → 0 a.s. and

hence M has continuous paths a.s.,which completes the proof.
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For continuous local martingales, our description of H 2, in
particular the norm in (1) can be re-expressed in terms of the
quadratic variation:

Theorem
Let M be a continuous local martingale with M0 ∈ L2.

1. TFAE

1.1 M is a martingale, bounded in L2;
1.2 E[〈M,M〉∞] < ∞.

Furthermore, if these properties hold, M2
t −〈M,M〉t is a

uniformly integrable martingale and, in particular,
E[M2

∞] = E[M2
0 ] +E[〈M,M〉∞].

2. TFAE

2.1 M is a martingale and Mt ∈ L2 for every t ≥ 0;
2.2 E[〈M,M〉t ] < ∞ for every t ≥ 0.

Furthermore, if these properties hold, M2
t −〈M,M〉t is a

martingale.
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Proof

The second statement will follow from the first on applying it to
Mt∧a for every choice of a≥ 0.
To prove the first set of equivalences, without loss of generality,
suppose that M0 = 0 (or replace M by M−M0).

Suppose that M is a martingale, bounded in L2. Doob’s
L2-inequality implies that for every T > 0,

E[ sup
0≤t≤T

M2
t ]≤ 4E[M2

T ],

and so, letting T → ∞,

E[sup
t≥0

M2
t ]≤ 4sup

t≥0
E[M2

t ] = C < ∞.
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Let Sn = inf{t ≥ 0 : 〈M,M〉t ≥ n}. Then the continuous local
martingale M2

t∧Sn −〈M,M〉t∧Sn is dominated by sups≥0M
2
s +n,

which is integrable.

By Proposition 7.17 (lecture before now) this continuous local
martingale is a uniformly integrable martingale, so
E[M2

t∧Sn −〈M〉t∧Sn ] = 0, and hence

E[〈M,M〉t∧Sn ] = E[M2
t∧Sn ]≤ E[sup

s≥0
M2

s ]≤ C < ∞.

Let n and then t tend to infinity and use the Monotone
Convergence Theorem to obtain E[〈M,M〉∞] < ∞.
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Conversely, assume that E[〈M,M〉∞] < ∞.

Set Tn = inf{t ≥ 0 : |Mt | ≥ n}. Then the continuous local
martingale M2

t∧Tn
−〈M,M〉t∧Tn is dominated by n2 + 〈M,M〉∞

which is integrable.

From Proposition 7.17 again, this continuous local martingale is a
uniformly integrable martingale and hence for every t ≥ 0,

E[M2
t∧Tn

] = E[〈M,M〉t∧Tn ]≤ E[〈M,M〉∞] = C ′ < ∞. (2)

Let n→ ∞ and use Fatou’s lemma to see that E[M2
t ]≤ C ′ < ∞, so

(Mt)t≥0 is bounded in L2.
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We still have to check that (Mt)t≥0 is a martingale. However, (2)
shows that (Mt∧Tn)n≥1 is uniformly integrable and so converges
both almost surely and in L1 to Mt for every t ≥ 0. Recalling that
MTn is a martingale, L1 convergence implies, for s > t,

Mt = lim
n
MTn

t = lim
n
E[MTn

s |Ft ] = E[lim
n
MTn

s |Ft ] = E[Ms |Ft ]

so M is a martingale.

Finally, if the two properties hold, then M2−〈M,M〉 is dominated
by supt≥0M

2
t + 〈M,M〉∞, which is integrable, and so Proposition

7.17 again says that M2−〈M,M〉 is a uniformly integrable
martingale.
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Our previous theorem immediately yields that for a local
martingale M with M0 = 0, if E[〈M〉∞] < ∞ then

‖M‖2
H 2 = E[M2

∞] = E[〈M〉∞].

We can also extend our result on finite variation martingales to
consider quadratic variation.

Corollary

Let M be a continuous local martingale with M0 = 0. Then the
following are equivalent:

1. M is indistinguishable from zero,

2. 〈M〉t = 0 for all t ≥ 0 a.s.,

3. M is a process of finite variation.
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Proof.
We already know that the first and third statements are equivalent.

That the first implies the second is trivial, so we must just show
that the second implies the first.

We have 〈M〉∞ = limt→∞〈M〉t = 0. From our characterization of
H 2 in terms of quadratic variation, M ∈H 2 and
E[M2

∞] = E[〈M〉∞] = 0 and so Mt = E[M∞|Ft ] = 0 almost
surely.
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