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Proposition (Stochastic Dominated Convergence Theorem)

Let X be a continuous semimartingale and K" a sequence in L(X)
with K — 0 as n — oo a.s. for all t. Further suppose that

|K{| < K¢ for all n where K € L(X). Then K" e X converges to
zero in probability and, more precisely,

/ K"dX,
0

Vt>0 sup
s<t

— 0 in probability as n — oo.
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We can treat the finite variation part, Xy + A, and the local
martingale part, M, separately. For the first, note that

t t -t
' / KdA, :’ / KA — / KdA;
0 0 0

t t t
< [C1mziaag+ [ 1kziaa, = [ 1KzlaAl,

The a.s. pointwise convergence of K" to 0, together with the
bound |K"| < K, allow us to apply the (usual) Dominated
Convergence Theorem to conclude that, for any t >0, [q |K||dA,|
converges to 0 a.s. (in fact, as [y |K||dA,| is non-decreasing in t,
the convergence is uniform on any compact interval).
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For the continuous local martingale part M, let (7,,) be a reducing
sequence such that M™ ¢ ,%‘62’6 and K € L2(M™). Then, by the
Itd isometry,

Tm 2
K" e M™|2,,. =E [(/ Kt”th> ]
H 0
— | [ (0100 (DM | = 1K By
The right hand side tends to zero by the usual Dominated

Convergence Theorem. For a fixed t > 0, and any given € > 0, we
may take m large enough that P[z,, < t] <&/2.
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We then have
P sup|(K"-M)sr>e] SP[ sup (K" e M)y| > €| +¢/2
s<t S<tATm

1
< ?||K"°MT"’H}2.C+8/2 <e,

for n large enough. 0
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From this we can also confirm that even in their most general form
our stochastic integrals can be thought of as limits of integrals of
simple functions.

Proposition

Let X be a continuous semimartingale and K a left-continuous
process in L(X). If t" is a sequence of partitions of [0, t] with
mesh converging to zero then

t
Z K (Xt — Xt,) — / KsdXs in probability as n — oo,
0

tien”
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