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Our fundamental building block will be Brownian motion. It is
often described as an ‘infinitesimal random walk’, so to motivate
the definition, we take a quick look at simple (discrete time)
random walk.

Definition
The discrete time stochastic process {Sn}n≥0 is a symmetric simple
random walk under the measure P if Sn = ∑

n
i=1 ξi , where the ξi

can take only the values ±1, and are i.i.d. under P with
P[ξi =−1] = 1/2 = P[ξi = 1].

Lemma
{Sn}n≥0 is a P-martingale (with respect to the natural filtration)
and

cov(Sn,Sm) = n∧m.
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To obtain a ‘continuous’ version of simple random walk, we appeal
to the Central Limit Theorem. Since E[ξi ] = 0 and var(ξi ) = 1, we
have

P
[
Sn√
n
≤ x

]
→
∫ x

−∞

1√
2π

e−y
2/2dy as n→ ∞.

More generally,

P
[
S[nt]√

n
≤ x

]
→
∫ x

−∞

1√
2πt

e−y
2/2tdy as n→ ∞,

where [nt] denotes the integer part of nt.
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Heuristically at least, passage to the limit from simple random
walk suggests the following definition of Brownian motion.

Definition (Brownian motion)

A real-valued stochastic process {Bt}t≥0 is a P-Brownian motion
(or a P-Wiener process) if for some real constant σ , under P,

1. for each s ≥ 0 and t > 0 the random variable Bt+s −Bs has
the normal distribution with mean zero and variance σ2t,

2. for each n ≥ 1 and any times 0≤ t0 ≤ t1 ≤ ·· · ≤ tn, the
random variables {Btr −Btr−1} are independent,

3. B0 = 0,

4. Bt is continuous in t ≥ 0.

When σ2 = 1, we say that we have a standard Brownian motion.
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Notice in particular that for s < t,

Γ(s, t) = cov(Bs ,Bt) = E[BsBt ] = E
[
B2
s +Bs(Bt −Bs)

]
= E[B2

s ] = s (= s ∧ t = min(s, t)).

Using this, we can see that

var(Bs) = s

and
corr(Bs ,Bt) =

√
s/t
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We can write down the finite dimensional distributions using the
independence of increments. They admit a density with respect to
Lebesgue measure.

I We write p(t,x ,y) for the transition density

p(t,x ,y) =
1√
2πt

exp

(
−(x−y)2

2t

)
.

I This is the density (with respect to x), of Bt given B0 = y .
For 0 = t0 ≤ t1 ≤ t2 ≤ . . .≤ tn, writing x0 = 0, the joint
probability density function of Bt1 , . . . ,Btn is

f (x1, . . . ,xn) =
n

∏
j=1

p(tj − tj−1,xj−1,xj).
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We could recover the existence of Brownian motion from the
general principles outlined so far (Daniell–Kolmogorov Theorem
and the Kolmogorov continuity criterion), but we are next going to
take a short digression to describe a beautiful (and useful)
construction due to Lévy.

In fact, it’s a little easier if we generalize our definition to more
than one dimension, as follows:
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Definition
Let µ be a probability measure on Rd . A d-dimensional stochastic
process (Bt : t ≥ 0) on (Ω,F ,P) is called a d-dimensional
Brownian motion with initial distribution µ if

1. P[B0 ∈ A] = µ(A), A ∈B(Rd);

2. ∀0≤ s ≤ t the increment (Bt −Bs) is independent of
Fs = σ(Bu : u ≤ s) and is normally distributed with mean 0
and covariance matrix (t− s)× Id ;

3. B has a.s. continuous paths.
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Writing the d-dimensional Brownian motion as

Bt = (B
(1)
t , . . . ,B

(d)
t ), if µ({0}) = 1 then the coordinate processes

(B
(i)
t ), 1≤ i ≤ d , are independent one-dimensional Brownian

motions.

If µ({x}) = 1 for some x ∈ Rd , we say that B starts at x .
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