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» We can also characterise the It6 integral in a more abstract
way.
» This is less intuitive than the last method (as it's not

constructive), but gives a particularly useful way to analyse
the properties of the integral.
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Theorem

Let M € 7%, For any K € L?(M) there exists a unique element
in %2’C, denoted K e M, such that

(KeM,N)=K-(M,N), VN e x> (1)

Furthermore,

Ko M| 2 = ||K||L2(M) and the map

K—KeM
L2(M) — A5

is a linear isometry.
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We first check uniqueness. Suppose that there are two such
elements, X and X’. Then

(X, NY— (X' N) = (X=X N)=0, VN e #>c.

Taking N = X — X’, as the only martingale with zero quadratic
variation is identically zero, we conclude that X = X.
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Now let us verify (KoM, N) = K- (M, N) for the It6 integral.

Fix N € #2¢. First note that for K € L?(M) the
Kunita—Watanabe inequality shows that

B | K00l | < K [W]e <=
and thus the variable
/ Ksd (M, N)s = (K- (M)
0 (e}

is well defined and in L1.
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If K is an elementary process, writing K = ZK(i)l(t,-,t,-H]: and
M. = K(i)(/\/]s/\ti+1 — Mspt,) we have

(KeM,N)=Y (M',N)
i=0
and ' _
(M)t = KO (M, V) 06 = (M, N ).
SO

(KoM, Ny, =Y KO <<M, N, one— (M, /v>t,m) = /Ot Ked (M, N)s.
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Now observe that the mapping X — (X, N). is continuous frofiz
%< into L!. Indeed, by Kunita—Watanabe

1/2 1/2
E[IXN) ] SE[(X X)a| B[N, M| = [N ]z | X e
So if K™ is a sequence in & such that K" — K in L2(M),

(KoM, N = lim (K" o M, N)o = lim (K"-<M, /\/))m - (K- (M, /\/>)m,

n—oo n—oo

where the convergence is in L! and the last equality is again a
consequence of Kunita—Watanabe by writing

| [ (ke ) am | | < = m] g K
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We have thus obtained

(KoM N)= (K- (M.N))

but replacing N by the stopped martingale N* in this identity also
gives
(Ko M, N) = (K- (M,N>) .
t
We have therefore shown that this property uniquely identifies the
integral.

That it is linear (in the integrand) and an isometry (from L?(M) to
H?) comes from the earlier construction that we gave. O]
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