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We now want to extend our integration theory to processes which
are not of finite variation. The processes that make our theory
work are slight generalisations of martingales.

Definition
An adapted process (Mt : t ≥ 0) is called a continuous local
martingale if M0 = 0, it has continuous trajectories a.s. and if there
exists a non-decreasing sequence of stopping times (τn)n≥1 such
that τn ↑ ∞ a.s. and for each n, Mτn = (Mt∧τn : t ≥ 0) is a (wlog
uniformly integrable) martingale. We say (τn) reduces or localizes
M.
More generally, when we do not assume that M0 = 0, we say that
M is a continuous local martingale if Nt = Mt−M0 is a continuous
local martingale.
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Any martingale is a local martingale, but the converse is false.

Example

Let ξ be a random variable not in L1, and Z be an independent
Bernoulli random variable with p = 1/2. Define a filtration

Ft =


{ /0,Ω} t < 1

σ(ξ ) t ∈ [1,2)

σ(ξ ,Z ) t ≥ 2

and a process

Xt =

{
0 t < 2

ξZ t ≥ 2

By taking the stopping times τn = n1{|ξ |<n}, we see that X is a
local martingale, but cannot be a martingale as E [|X2|] 6< ∞.
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Example

Let B be a Brownian motion, and ξ an independent nonnegative
random variable not in L1. Then define Xt = Bξ 2t , in the filtration

{FX
t+}t≥0. Then

E[|Xt |] = E[|Bξ 2t |] = E
[
E
[
|Bξ 2t |

∣∣∣ξ]]=
√

2t/πE[ξ ] = ∞

so X is not a martingale. However, ξ is FX
0 -measurable (we will

see this from the fact 〈X 〉t = ξ 2t and right-continuity), so we can
use the stopping times τn = n1{ξ<n} to localize and hence verify
X τn is a martingale. As X is continuous, we can also localize with
τn = inf{t : |Xt | ≥ n}.
More clever examples (including where {Xt}t∈R is uniformly
integrable) are possible.
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Proposition

1. A non-negative continuous local martingale such that M0 ∈ L1

is a supermartingale.

2. A continuous local martingale M such that there exists a
random variable Z ∈ L1 with |Mt | ≤ Z for every t ≥ 0 is a
uniformly integrable martingale.

3. If M is a continuous local martingale and M0 = 0 (or more
generally M0 ∈ L1), the sequence of stopping times

Tn = inf{t ≥ 0 : |Mt | ≥ n}

reduces M.

4. If M is a continuous local martingale, then for any stopping
time ρ, the stopped process Mρ is also a continuous local
martingale.
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Proof

(i) Write Mt = M0 +Nt . By definition, there exists a sequence Tn

of stopping times that reduces N. Thus, if s ≤ t, for every n,

Ns∧Tn = E[Nt∧Tn |Fs ].

We can add M0 to both sides (M0 is Fs -measurable and in L1)
and we find

Ms∧Tn = E[Mt∧Tn |Fs ].

Since M takes non-negative values, let n→ ∞ and apply Fatou’s
lemma for conditional expectations to find

Ms ≥ E[Mt |Fs ]. (1)

Taking s = 0, E[Mt ]≤ E[M0] < ∞. So Mt ∈ L1 for every t ≥ 0,
and (1) says that M is a supermartingale.
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(ii) By the same argument,

Ms∧Tn = E[Mt∧Tn |Fs ].

Since |Mt∧Tn | ≤ Z , this time apply the Dominated Convergence
Theorem to see that Mt∧Tn converges in L1 (to Mt) and
Ms = E[Mt |Fs ].
The other two statements are immediate.
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Theorem
A continuous local martingale M with M0 = 0 a.s., is a process of
finite variation if and only if M is indistinguishable from zero.

Remark
Continuity is critical here.
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Proof

Assume M is a continuous local martingale and of finite variation.
Let

τn = inf{t ≥ 0 :
∫ t

0
|dMs | ≥ n}= inf{t ≥ 0 : V (M)t ≥ n},

which are stopping times since V (M)t =
∫ t
0 |dMs | is continuous

and adapted.
Let N = Mτn , which is bounded since

|Nt |= |Mt∧τn | ≤ |
∫ t∧τn

0
dMu| ≤

∫ t∧τn

0
|dMu| ≤ n,

and hence (Nt) is a martingale.
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Let t > 0 and π = {0 = t0 < t1 < t2 < .. . < tm(π) = t} be a
partition of [0, t]. Then

E[N2
t ] =

m(π)

∑
i=1

E[N2
ti
−N2

ti−1 ] =
m(π)

∑
i=1

E
[
(Nti −Nti−1)2

]
≤ E

[
( sup
1≤i≤m(π)

|Nti −Nti−1 |) · ∑ |Nti −Nti−1 |︸ ︷︷ ︸
≤V (N)t=V (M)t∧τn≤n

]
≤ nE

[
sup

1≤i≤m(π)
|Nti −Nti−1 |

]
→ 0 as ‖π‖→ 0

(where ‖π‖ is the mesh of π), by the Dominated Convergence
Theorem (since |Nti −Nti−1 | ≤ V (N)t ≤ n and so n is a dominating
function).
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It then follows by Fatou’s Lemma that

E[M2
t ] = E[ lim

n→∞
M2

t∧τn
]≤ lim

n→∞
E[M2

t∧τn
] = 0

which implies that Mt = 0 a.s., and so by continuity of paths,
P[Mt = 0 ∀ t ≥ 0] = 1.
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