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As advertised, our aim in this section is to prove that, provided the
filtration satisfies ‘the usual conditions’, any martingale has a
version with right continuous paths.

First we recall the notion of upcrossing numbers.
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Definition
Let f : I → R be a function defined on a subset I of [0,∞).

If a< b, the upcrossing number of f along [a,b], which we shall
denote U([a,b],(ft)t∈I ) is the maximal integer k ≥ 1 such that
there exists a sequence s1 < t1 < · · ·< sk < tk of elements of I
such that f (si ) < a and f (ti ) > b for every i = 1, . . . ,k .

If even for k = 1 there is no such sequence, we take
U([a,b],(ft)t∈I ) = 0. If such a sequence exists for every k ≥ 1, we
set U([a,b],(ft)t∈I ) = ∞.

Upcrossing numbers are a convenient tool for studying the
regularity of functions. We omit the proof of the following analytic
lemma.
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Lemma
Let D be a countable dense set in [0,∞) and let f be a real
function defined on D. Assume that for every T ∈ D

1. f is bounded on D ∩ [0,T ];

2. for all rationals a and b such that a< b

U([a,b],(ft)t∈D∩[0,T ]) < ∞.

Then the right limit f (t+) = lims↓t,s∈D f (s) exists for every real
t ≥ 0, and similarly the left limit f (t−) = lims↑t,s∈D f (s) exists for
any real t > 0.

Furthermore, the function g : R+→ R defined by g(t) = f (t+) is
càdlàg (‘continue à droite avec des limites à gauche’; i.e. right
continuous with left limits) at every t > 0.
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Lemma (Doob’s upcrossing lemma in discrete time)

Let (Xt)t≥0 be a supermartingale and F a finite subset of [0,T ]. If
a< b then

E
[
U
(
[a,b],(Xn : n ∈ F )

)]
≤ sup

n∈F

E
[
(Xn−a)−

]
b−a

≤
E
[
(XT −a)−

]
b−a

.

The last inequality follows since (Xt −a)− is a submartingale. By
monotone convergence

lim
k→∞

E
[
U
(
[a,b−1/k],(Xn : n ∈ F )

)]
= E

[
U
(
[a,b),(Xn : n ∈ F )

)]
satisfies the same bound (and similarly for other intervals)
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Taking an increasing sequence Fn and setting ∪nFn = F , this
immediately extends to a countable F ⊂ [0,T ]. From this we
deduce:

Theorem
If (Xt) is a right-continuous super-martingale and supt E[X−t ] < ∞

then X∞ = limt→∞Xt exists (convergence a.s.) and X∞ is in L1. In
particular, a non-negative right-continuous supermartingale
converges a.s. as t→ ∞.

Remark
Note the convergence here is almost sure, not in L1 (that is, we
usually don’t have E[|Xt −X∞|]→ 0 or E[Xt ]→ E[X∞])!
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Proof

By right continuity, for any ε > 0 and any rational T ,

U([a,b],(Xt)t∈[0,T ])≤ U([a,b− ε],(Xt)t∈[0,T ]∩Q).

By the analytic lemma, a bounded sequence (xn)n≥1 converges if
and only if the number of upcrossings is finite, that is
U([a,b],(xn)n≥1) < ∞ for all a< b with a,b ∈Q.

By the above calculations and Doob’s discrete upcrossing lemma,
these statements can be taken to hold almost surely for the paths
of our supermartingale X .

Hence {Xtn} converges a.s. for any sequence tn ↑ ∞, but this
implies Xt converges a.s. as t→ ∞.
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As X is a supermartingale

E[|Xt |] = E[Xt ] + 2E[X−t ]≤ E[X0] + 2E [X−t ]

so by Fatou’s inequality

E[|X∞|] = E[lim
t
|Xt |]≤ liminf

t
E[|Xt |] < ∞,

that is, X∞ ∈ L1.
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Example

By direct calculation, we know Xt = exp(θBt −θ2t/2) defines a
martingale, and clearly X ≥ 0, so Xt converges almost surely as
t→ ∞. Restricting to t ∈ N, from the strong law of large numbers,
we know that

Bt

t
=

1

t

t

∑
s=1

(Bs −Bs−1)→ 0

and hence as t→ ∞

θBt −
θ2t

2
= t
(

θ
Bt

t
− θ2

2

)
→−∞.

It follows that Xt → X∞ = 0 a.s., but

E[|Xt −X∞|] = E[Xt ] = 1 6→ 0 and Xt 6= E[X∞|Ft ].
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