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We earlier showed that:

Theorem
Let X be a supermartingale with right continuous sample paths.
Assume that (Xt)t≥0 is bounded in L1, i.e. supt E[|Xt |] < ∞ (or
more generally supt E[X−t ] < ∞). Then there exists X∞ ∈ L1 such
that limt→∞Xt = X∞ almost surely.

I Under the assumptions of this theorem, Xt may not converge
to X∞ in L1.

I The next result gives, for martingales, necessary and sufficient
conditions for L1-convergence.
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Definition
A martingale is said to be closed if there exists a random variable
Z ∈ L1 such that for every t ≥ 0, Xt = E[Z |Ft ].

Theorem (Martingale Convergence Theorem)

Let (Xt : t ≥ 0) be a martingale with right continuous sample
paths. Then TFAE:

1. X is closed;

2. the collection (Xt)t≥0 is uniformly integrable;

3. Xt converges almost surely and in L1 as t→ ∞.

Moreover, if these properties hold, Xt = E[X∞|Ft ] for every t ≥ 0,
where X∞ ∈ L1 is the almost sure limit of Xt as t→ ∞.
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Proof.
That the first condition implies the second is easy. If Z ∈ L1, then
E[Z |G ], where G varies over sub σ -fields of F is uniformly
integrable.

As ii implies Theorem the limit exists a.s. and is in L1, under both
ii and iii we have almost sure convergence. Vitali’s theorem then
states that ii and iii are equivalent.

Finally, if the third condition holds, for every s ≥ 0, pass to the
limit as t→ ∞ in the equality Xs = E[Xt |Fs ] (using the fact that
conditional expectation is continuous for the L1-norm, see
appendix) and obtain Xs = E[X∞|Fs ].
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I We would now like to establish conditions under which we
have an optional stopping theorem for continuous martingales.

I As usual, our starting point will be the corresponding discrete
time result and we shall pass to a suitable limit.
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Theorem (Optional stopping for uniformly integrable discrete
time martingales)

Let (Yn)n∈N be a uniformly integrable martingale with respect to
the filtration (Gn)n∈N, and let Y∞ be the a.s. limit of Yn when
n→ ∞. Then, for every choice of the stopping times S and T such
that S ≤ T, we have YT ∈ L1 and

YS = E[YT |GS ],

where

GS = {A ∈ G∞ : A∩{S = n} ∈ Gn for every n ∈ N},

with the convention that YT = Y∞ on the event {T = ∞}, and
similarly for YS .
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Let (Xt)t≥0 be a right continuous martingale or supermartingale
such that Xt converges almost surely as t→ ∞ to a limit X∞. Then
for every stopping time T , we define

XT (ω) = 1{T (ω)<∞}XT (ω)(ω) + 1{T (ω)=∞}X∞(ω).

Theorem
Let (Xt)t≥0 be a uniformly integrable martingale with right
continuous sample paths. Let S and T be two stopping times with
S ≤ T. Then XS and XT are in L1 and XS = E[XT |FS ].
In particular, for every stopping time S we have XS = E[X∞|FS ]
and E[XS ] = E[X∞] = E[X0].
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Proof

For any integer n ≥ 0 set

Tn =
∞

∑
k=0

k + 1

2n
1{k2−n<T≤(k+1)2−n}+ ∞1{T=∞},

Sn =
∞

∑
k=0

k + 1

2n
1{k2−n<S≤(k+1)2−n}+ ∞1{S=∞}.

Then Tn and Sn are sequences of stopping times that decrease
respectively to T and S . Moreover, Sn ≤ Tn for every n ≥ 0.

For each fixed n, 2nSn and 2nTn are stopping times of the discrete

filtration Gn = Fk/2n and Y
(n)
k = Xk/2n is a discrete martingale

with respect to this filtration.
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Discrete optional stopping implies Y
(n)
2nSn

,Y
(n)
2nTn

are in L1 and

XSn = Y
(n)
2nSn

= E[Y
(n)
2nTn
|G2nSn ] = E[XTn |FSn ].

Let A ∈FS . Since FS ⊆FSn we have A ∈FSn and so
E[1AXSn ] = E[1AXTn ].

By right continuity, XS = limn→∞XSn and XT = limn→∞XTn . The
limits also hold in L1 (in fact, by optional stopping,
XSn = E[X∞|FSn ] for every n and so (XSn)n≥1 and (XTn)n≥1 are
uniformly integrable).

L1 convergence implies that the limits XS and XT are in L1 and
allows us to pass to a limit, E[1AXS ] = E[1AXT ]. This holds for all
A ∈FS and so since XS is FS -measurable we conclude that
XS = E[XT |FS ], as required.
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Corollary

In particular, for any martingale with right continuous paths and
two bounded stopping times, S ≤ T, we have XS , XT ∈ L1 and
XS = E[XT |FS ].

Proof.
Let a be such that S ≤ T ≤ a. The martingale (Xt∧a)t≥0 is closed
by Xa and so we may apply our previous results.

B8.2: (Sub/super-)Martingales in continuous time 10



Corollary

Suppose that (Xt)t≥0 is a martingale with right continuous paths
and T is a stopping time.

1. XT = (Xt∧T )t≥0 is a martingale;

2. if, in addition, (Xt)t≥0 is uniformly integrable, then
XT = (Xt∧T )t≥0 is uniformly integrable and for every t ≥ 0,
Xt∧T = E[XT |Ft ].
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Proof.
We know XT

t = Xt∧T = X t
T , and that Xt is integrable. Hence, by

the optional stopping theorem applied to the stopped process X t ,
we see that XT

t is integrable for every t. Furthermore, for any
s < t, as T ∧ s and T ∧ t are bounded stopping times, by the
optional stopping theorem and properties of FT∧s (Lemma 4.12),

XT
s = XT∧s = E[XT∧t |FT∧s ]

= 1T<sXT + 1T≥sE[XT∧t |FT∧s ]

= 1T<sXT∧t + 1T≥sE[XT∧t |Fs ] = E[XT
t |Fs ].

Therefore XT is a martingale.
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A converse result is also possible:

Theorem
Suppose M is a right-continuous process defined for t < ∞, and
adapted to a right-continuous filtration {Ft}t<∞. Then M is a
martingale if, and only if, for every bounded stopping time T we
know E

[
|MT |

]
< ∞ and E[MT ] = E[M0].
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Proof.
By considering the process {Mt −M0}t≥0, we can assume without
loss of generality that E [MT ] = E [M0] = 0. If M is a martingale,
then Mt = E [MT |Ft ], and the result follows by optional stopping
and Jensen’s inequality.
Conversely, consider any times s < t ∈ [0,∞) and any A ∈ Fs .
Define a random time T by putting T (ω) = s if ω ∈ A and
T (ω) = t if ω /∈ A. Then T is a stopping time. By hypothesis

E[1AMs ] +E[1AcMt ] = E[MT ] = 0 = E[Mt ] = E[1AMt ] +E[1AcMt ].

Therefore
E[1AMs ] = E[1AMt ]

for all A ∈ Fs , so Ms = E [Mt |Fs ] almost surely.
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Above all, optional stopping is a powerful tool for calculations.

Example

Fix a> 0 and let Ta be the first hitting time of a by standard
Brownian motion. Then for each λ > 0,

E[e−λTa ] = e−a
√
2λ .

Recall that Nλ
t = exp(λBt − λ 2

2 t) is a martingale. So Nλ

t∧Ta
is still

a martingale and it is in the bounded interval [0,eλa] and hence is
uniformly integrable, so E[Nλ

Ta
] = E[Nλ

0 ]. That is,

eaλE[e−λ 2Ta/2] = E[Nλ
0 ] = 1.

Replace λ by
√

2λ and rearrange.
Warning: This argument fails if λ < 0.
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