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We now want to extend our integration theory to processes which
are not of finite variation. The processes that make our theory
work are slight generalisations of martingales.

Definition

An adapted process (M; : t > 0) is called a continuous local
martingale if My =0, it has continuous trajectories a.s. and if there
exists a non-decreasing sequence of stopping times (7,)n>1 such
that 7, T o0 a.s. and for each n, M™ = (Mp., : t > 0) is a (wlog
uniformly integrable) martingale. We say (7,) reduces or localizes
M.

More generally, when we do not assume that My = 0, we say that
M is a continuous local martingale if Ny = My — My is a continuous
local martingale.
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Any martingale is a local martingale, but the converse is false.vanere
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Example

Let & be a random variable not in L1, and Z be an independent
Bernoulli random variable with p =1/2. Define a filtration

{0,Qy t<1
Fr=40(&) te[1,2)
o(&,2) t>2

and a process

2
X, = 0 t<
EZ t>2

By taking the stopping times 7, = nly¢|,), we see that X is a
local martingale, but cannot be a martingale as E[|X3|] £ co.
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EXa m p I e Institute

Let B be a Brownian motion, and & an independent nonnegative
random variable not in L. Then define X; = Bg2,, in the filtration
{ZX }e=0. Then

E[|X:[] = El|Bezcl] = E[E||Beae

¢|| = vat/mEE] =

so X is not a martingale. However, & is .#¢-measurable (we will
see this from the fact (X); = £2t and right-continuity), so we can
use the stopping times 7, = nlis_,, to localize and hence verify
X" is a martingale. As X is continuous, we can also localize with
T, = inf{t: |X¢| > n}.

More clever examples (including where {X;}:cr is uniformly
integrable) are possible.
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A non-negative continuous local martingale such that Mg € L1
is a supermartingale.

A continuous local martingale M such that there exists a
random variable Z € L* with |M;| < Z for every t >0 is a
uniformly integrable martingale.

If M is a continuous local martingale and My =0 (or more
generally Mgy € L), the sequence of stopping times

Tp=inf{t >0:|M| > n}

reduces M.

. If M is a continuous local martingale, then for any stopping

time p, the stopped process MP is also a continuous local
martingale.
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(i) Write My = My + N;. By definition, there exists a sequence T,
of stopping times that reduces N. Thus, if s <'t, for every n,

NsAT,, = IE[Nt‘/\T,,‘QQS]-

We can add My to both sides (Mg is .#s-measurable and in L!)
and we find
MsAT,, = IE[MtAT,,LQS]-

Since M takes non-negative values, let n — o and apply Fatou's
lemma for conditional expectations to find

Ms > E[M;|F]. (1)

Taking s =0, E[M;] <E[Mp] < . So M, € L* for every t >0,
and (1) says that M is a supermartingale.
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(ii) By the same argument,
Msp, = E[MepT, | Fs].

Since |MiaT,| < Z, this time apply the Dominated Convergence
Theorem to see that M., converges in L! (to M) and

Mg = E[M;|.Z].

The other two statements are immediate.

O
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Theorem

A continuous local martingale M with My =0 a.s., is a process of
finite variation if and only if M is indistinguishable from zero.

Remark
Continuity is critical here.
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Assume M is a continuous local martingale and of finite variation.
Let

t
Ty = inf{t >0 ;/ dMs| > n} =inf{t >0 : V(M) > n},
0

which are stopping times since V(M); = [; |dM;]| is continuous
and adapted.
Let N = M®, which is bounded since

tATh tAT,
|Nt|:|Mt/\r,,|§|/o dMu‘S/O ‘d/\/lu|§n7

and hence (N;) is a martingale.
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Let t>0and 1={0=ty<t1 <t <...<tyy) =t} bea
partition of [0,t]. Then

m(r) m(7)
E[N?] = Z E[Ntz, - N?,-,l] = Z E[(Ntf - Nti71)2]
i=1 i=1

SE[(1<§<UP( )’Nti_Nti—lD' Z‘Nti_Nti—l| }
<i<m(m N——
SV(N)t:V(M)t/\‘EnSn

S”E[ sup |Nti_Nti—1’] —0 as|z|—0
1<i<m(m)

(where ||7|| is the mesh of &), by the Dominated Convergence
Theorem (since |Ni, — Ny, | < V(N): < n and so n is a dominating
function).
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It then follows by Fatou's Lemma that
E[M?] = E[lim M?,,] < lim E[MZ, ] =0

which implies that M; =0 a.s., and so by continuity of paths,
PM; =0Vt >0]=1.
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