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I We can see that the quadratic variation of a martingale is
telling us something about how its variance increases with
time.

I We also need an analogous quantity for the ‘covariance’
between two martingales.

I This is most easily defined through polarisation.
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Definition
The quadratic co-variation between two continuous local
martingales M,N is defined by

〈M,N〉 :=
1

2
(〈M +N,M +N〉−〈M,M〉−〈N,N〉) . (1)

It is often called the (angle) bracket process of M and N.
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Proposition

For two continuous local martingales M,N

1. the process 〈M,N〉 is the unique finite variation process, zero
at zero, such that (MtNt −〈M,N〉t : t ≥ 0) is a continuous
local martingale;

2. the mapping M,N 7→ 〈M,N〉 is bilinear and symmetric;

3. for any stopping time τ,

〈Mτ ,Nτ〉t = 〈Mτ ,N〉t = 〈M,Nτ〉t = 〈M,N〉τ∧t , t ≥ 0, a.s.;
(2)

4. for any t > 0 and a sequence of partitions πn of [0, t] with
mesh converging to zero

∑
ti∈πn

(Mti+1−Mti )(Nti+1−Nti )→ 〈M,N〉t , (3)

the convergence being in probability.
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Proof

(i) (M +N)2t −〈M +N,M +N〉t is a continuous local martingale
and by adding and subtracting terms it is equal to

M2
t −〈M,M〉t︸ ︷︷ ︸

l.mat

+N2
t −〈N,N〉t︸ ︷︷ ︸

l.mat

+ 2
(
MtNt −

1

2
(〈M +N,M +N〉t −〈M,M〉t −〈N,N〉t)

)
︸ ︷︷ ︸

hence also a l.mat

Uniqueness follows from triviality of continuous finite variation
martingales.
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(iv) Note that

(Mt +Nt−Ms−Ns)2−(Mt−Ms)2−(Nt−Ns)2 = 2(Mt−Ms)(Nt−Ns).

The asserted convergence then follows from the definition of the
quadratic variation.

(ii) Both properties follow from (iv). Symmetry is obvious from the
definition in (1).

(iii) Follows from (iv).
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Definition
Two continuous local martingales M, N, are said to be (very
strongly) orthogonal if 〈M,N〉= 0.

For example, if B and B ′ are independent Brownian motions, then
〈B,B ′〉= 0.

B8.2: Continuous semimartingales 7



Remark
It follows that if M and N are two martingales bounded in L2 and
with M0N0 = 0 a.s., then (MtNt −〈M,N〉t , t ≥ 0) is a uniformly
integrable martingale. In particular, for every stopping time τ,

E[MτNτ ] = E[〈M,N〉τ ]. (4)

Remark
Note that 〈M,N〉= 0 is a stronger statement than
E[M∞N∞] = E[〈M,N〉∞] = 0. For example, consider W a Brownian
motion and N = ξW, for ξ independent of W with mean zero
(F0-measurable). Then 〈W ,N〉= ξ t 6= 0, but E[〈W ,N〉∞] = 0.
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Take M,N ∈H 2,c
0 , which we recall had the norm

‖M‖2H 2,c = E[〈M,M〉∞] = E[M2
∞].

This norm is consistent with the inner product on H 2,c ×H 2,c

given by E[M∞N∞] and, by the usual Cauchy–Schwarz inequality,

E[〈M,N〉∞] = E[M∞N∞]≤ E[|M∞N∞|]

≤
√
E[M2

∞]E[N2
∞] =

√
E[〈M〉∞]E[〈N〉∞].
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It is easy to obtain an almost sure result also, using that∣∣∑(
Mti+1−Mti

)(
Nti+1−Nti

)∣∣≤√∑
(
Mti+1−Mti

)2√
∑
(
Nti+1−Nti

)2
and taking limits to deduce that

|〈M,N〉t | ≤
√
〈M〉t

√
〈N〉t .

It’s often convenient to have a more general version of this
inequality.
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Theorem (Kunita–Watanabe inequality)

Let M,N be continuous local martingales and K ,H two
measurable processes. Then for all 0≤ t ≤ ∞,

∫ t

0
|Hs ||Ks ||d〈M,N〉s | ≤

(∫ t

0
H2
s d〈M〉s

)1/2(∫ t

0
K 2
s d〈N〉s

)1/2

a.s..

(5)

We omit the proof which approximates H, K by simple functions
and then essentially uses the Cauchy–Schwarz inequality for sums
noted above.
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