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The following lemma establishes some classical and useful
properties of normal distributions. Its proof is left as an exercise.
Lemma

(i) Let Z,Z' be independent random variables with Z ~ N(u,X),
Z'~N,X). Then Z+Z' ~N(u+u' ,r+3').
Equivalently, their densities satisfy the convolution property

/Rd Oux) (V)0 s (x = y)dy = Oy s +51)(x)-
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Lemma (Ctd...)

(it) If Zi ~ N(ui,X;) is a sequence of independent normal random
variables such that u* =Y ;e Ui and ¥ =Y ;cn X exist (i.e.
the sums converge), then the sequence of partial sums Y. | Z;
converges in (L2, and hence in) probability to a random
variable with distribution

ieN

(iii) If the pair (Z,Z') is a multivariate normal random variable,
then Z and Z' are normal, and are independent if and only if
their covariance is zero, that is, E[(Z —u)(Z'—u')"] =0.
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We proceed as follows:
» First, we determine the value of the nth approximation X" on
the points D,,.
» Second, we use linear interpolation to define X/ for all values

of t.
» This gives us a sequence of paths which we shall show
converge.
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Figure: Three steps in Lévy's construction
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> We begin with a countable family {Z,,} of identically ~ pueric
distributed random variables with Z,, ~ N(0, I4) for all m. Let
D,={k2™":k,n€Z"}, so that D, C Dpy1, Do =Z" and
UnDp is the set of Dyadic rationals.

» For simplicity of notation, let {Z,,} be indexed by m € U,D,,
and Zp:=0.

» To fix the values of X/ for t € D,, we define

XX= Y Zz
{keDy:k<t}

Next, for every n > 0, define X/ = Xt”_1 for all t € D,_1. For
t € Dp\ Dp_1, let

X=Xt 427 (/2 7, (1)
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We now linearly interpolate between these points { X/ }+cp,.

Formally, we can write the interpolation step as

t—|t
XP=Xiafo b 1 — : H"Jn(xmn = Xe],);
where | t], =max{s€ D, :s<t}, [t],=min{s € D,:s>t}.
The use of linear interpolation is not vital to the construction,
as we shall see (taking right-continuous step functions
X{ = XLr:‘Jn would work just as well for proving the existence
of a limit, but would not immediately give continuity).

We next show that these paths converge, in a sufficiently
strong sense, to a Brownian motion.
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Lemma (Lemma 3.6)

Let {X"}pen be a sequence of a.s. continuous functions which
converge uniformly on compacts in probability to a process X, that
is, for any € >0,

lim P( sup || X7 — X <e) ~1

n s€[0,t]
for all t. Then X is also continuous.

Remark

The uncountable supremum is measurable, as our functions are
continuous (so the supremum could equally be taken over the
rationals, and suprema over countable sets are always measurable).
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For fixed t, by Lemma A.7, taking a subsequence in n, we can
assume that the convergence is almost sure, that is,

P(Iirr,n( sup [|X— X)) =0> =1

s€[0,t]

Fixing o, this is a statement of uniform convergence of X" — X,
and the continuity of the limit is classical, as for any € > 0, we can
find 6, m > 0 such that

1Xs = Xos | < 11X = Xl + 16275 = Xops [+ 12X = X2l
<2 sup {[IX7 = X[} + X8 = X5

s€[0,t]

< 3e.
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Theorem

The processes X" defined in (1) converge a.s. uniformly on
compacts to a process X. In its natural filtration, the limit is a
Brownian motion starting at zero.
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Convergence. We first show that the processes converge. We
consider the case where X is a Brownian motion in two
dimensions, as this implies all other cases by the triangle inequality,
and is notationally simpler. From our construction, we can see that
Hzf(n/2+1)ZSH.

sup [|XI— XL = max
se[o,t]” y g H {s€Dp1\Dp:s<t}
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The set {s € Dp+1\ Dy s < t} contains at most t2" elements, and
the Zs are independent N(0,/4) random variables. It is standard
that || Zs||? has a x?-distribution with d = 2 degrees of freedom, so
if F(x):= P(||Zs]|?> < x) is the distribution function of || Zs||> we
have

P( sup IIX"=X"| > ¢ :P( max 7. >2n/2+18)
(sup X7 =X > ) =P max 12l
< Y P(IZ]>2"%e) = r2"(1- F(2"*%€?)).
{seDn-f-l\Dn‘
s<t}
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By changing into polar coordinates, it is easy to show that
F(x) = 1— e */2 (this simple form is the reason we chose d = 2).
Therefore,

P( sup [|X7— X > €) < t2"exp(—2"?T1e?)
s€[0,t]

Taking N large enough that Nlog(2) —2N/?+1e2 < —N, for all
n> N we have

P( sup [XI =X >¢€) <te "
se€[0,t]
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By the Borel-Cantelli Lemma, as this sequence is summable we
have

P( sup || X —XI| > e for infinitely many n) = 0.

s€[0,t]

Therefore, with probability one, the processes X" are converging
uniformly on the interval [0,t]. By Lemma 3.6, X is a continuous
process.
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X is a Brownian Motion. We now need to show that X is a
Brownian motion in its natural filtration, that is, that the
increment X; — Xs is normally distributed and independent of

Fs = o(Xy,u <s). First note that for s, t with t € D\ Dpy1 and
[s]n < t, the random variable Z; is not involved in the
construction of Xs. Hence, as X generates the filtration and the
{Z,}ueu,p, are independent, we see that Z; is independent of Fs.
It is clear that if s, t are integers with s < t, then

Xe—Xs = X2 — X0 = Y Ze~N(O,(t—5)la).
{keDy:s<k<t}

Furthermore, in this case X; — X; is independent of Fq, as
Zy = Zjy), is independent of Fs for all s < k.

0
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Now suppose that the result holds for s,t € D,. Then we see thgtr=
for any u € Dpy1\ Dy,

Xu—Xuj, = e Do 4 o=(/24D 7, o n(0,2- (") 1)

which is independent of IF|,,|,. Similarly,

Xrg1. — X
= Xu - _ [u]n 5 Lu]n +27(n/2+1)zu ~ N(O,27(n+1)/d)7

which is independent of || . Therefore, for any s,t € D41,

X —Xs = (Xe —XLtjn)+ (XLtJn _X(S] )'{'(XM —Xs),

n n

which is the sum of three independent normal random variables, so

Xe — Xs ~ N(0, (t —s)lg).
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The first two terms are independent of 7[5 2 Fs. We know the
last term is independent of ffmn, and we can compute

E[(Xps), = Xs)(Xs — X(s),) '] =0

so (X[s), — Xs) is independent of the increment Xs — X5, as
uncorrelated Gaussians are independent. As we can write

Fs :yLan\/G(Xs_XLSJH)\/G(Zu;U € ] \_SJ,,,SD,

we see that X[g, — X; is independent of #;. Therefore X; — X; is
normally distributed and independent of .%;, as desired.
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Finally, for any s < t we can find sequences s, | s, t, Tt with
Snytn € Dy and sp < tg. Then X, — Xs, ~ N(0,(t, —sn)ly), and by
continuity of X we see

Xe—Xs = Xty = Xsp + Z (th — Xt —Xs, +X5n—1) ~ N(0,(t—s)la).
n=1

All the terms in this sum are independent of %, as required. As

Xo = 0 by construction, we see that X is a Brownian motion

starting at zero, in its natural filtration.
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