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I We mentioned before the idea that a random process can be
thought of as a random variable in the space of functions

I We will now quickly see how this can be made more precise.
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I Let C (R+,R) be the space of continuous functions from
[0,∞) to R.

I Given a Brownian motion (Bt : t ≥ 0) on (Ω,F ,P), consider
the map

Ω→ C (R+,R), given by ω 7→ (Bt(ω) : t ≥ 0) (1)

I This is measurable w.r.t. B(C (R+,R)) – the smallest
σ -algebra such that the coordinate mappings
(i.e. (ωt : t ≥ 0) 7→ ω(t0) for a fixed t0) are measurable.

I (In fact B(C (R+,R)) is also the Borel σ -algebra generated
by the topology of uniform convergence on compacts.)
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Definition
The Wiener measure W is the image of P under the mapping
in (1); it is the probability measure on the space of continuous
functions such that the canonical process,
i.e. (Bt(ω) = ω(t), t ≥ 0), is a Brownian motion.
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In other words, W is the unique probability measure on
(C (R+,R),B(C (R+,R))) such that

1. W({ω ∈ C (R+,R),ω(0) = 0}) = 1;

2. for any n ≥ 1, ∀0 = t0 < t1 < .. . < tn, A ∈B(Rn)

W({ω ∈ C (R+,R) : (ω(t1), . . . ,ω(tn)) ∈ A})

=
∫
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where y0 := 0.

(Uniqueness follows from the Monotone Class Lemma, since
B(C (R+,R))) is generated by finite dimensional projections.)
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