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I As a first application, suppose that M is a continuous local
martingale and A is a process of finite variation.

I Then 〈M,A〉 ≡ 0 and applying Itô’s formula with X 1 = M and
X 2 = A yields

F (Mt ,At) = F (M0,A0) +
∫ t

0

∂F

∂m
(Ms ,As)dMs

+
∫ t

0

∂F

∂a
(Ms ,As)dAs +

1

2

∫ t

0

∂ 2F

∂m2
(Ms ,As)d〈M〉s .

Note that this gives us the semimartingale decomposition of
F (Mt ,At) and we can, for example, read off the conditions on F
under which we recover a local martingale. (Even the fact that
F (Mt ,At) is a semimartingale isn’t obvious otherwise!)
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In particular, taking F (x ,y) = exp(λx− λ 2

2 y) with X 1 = M and
X 2 = 〈M,M〉, we obtain:

Proposition

Let M be a continuous local martingale and λ ∈ R. Then

E λ (M)t := exp

(
λMt −

λ 2

2
〈M〉t

)
, t ≥ 0, (1)

is a continuous local martingale. In fact the same holds true for any
λ ∈ C with the real and imaginary parts being local martingales.
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Proof.
Let F (x ,y) = exp

(
λx− λ 2

2 y
)

. F ∈ C 2(R2,C) so we may apply

Itô’s formula to E λ (M)t = F (Mt ,〈M〉t). Computing the partial
derivatives and simplifying gives:

E λ (M)t = E λ (M)0 +
∫ t

0

∂

∂x
F λ (Ms ,〈M〉s)dMs .
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Note that we have ∂

∂x F (x ,y) = λF (x ,y) so we could have written
this as

E λ (M)t = E λ (M)0 + λ

∫ t

0
E λ (M)sdMs

or in ‘differential form’ as

dE λ (M)t = λE λ (M)tdMt

which shows E λ (M) solves the stochastic exponential differential
equation driven by M: dYt = λYtdMt .
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Lévy’s characterization
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Here is a beautiful application of exponential martingales:

Theorem (Lévy’s characterisation of Brownian motion)

Let M be a continuous local martingale starting at zero. Then M
is a standard Brownian motion if and only if 〈M〉t = t a.s. for all
t ≥ 0.

B8.2: Itô’s formula and its applications 7



Proof

The ‘only if’ direction is easy; we consider the ‘if’ direction.
Suppose M is a continuous local martingale starting in zero with
〈M〉t = t a.s. for all t ≥ 0. Then, by Proposition 1,

exp

(
iξMt +

ξ 2

2
t

)
, t ≥ 0

is a local martingale for any ξ ∈ R and, since it is bounded, it is a
martingale. Let 0≤ s < t. We have

E
[

exp

(
iξMt +

ξ 2

2
t

)∣∣∣Fs

]
= exp

(
iξMs +

ξ 2

2
s

)
which we can rewrite as

E
[
eiξ (Mt−Ms)

∣∣∣Fs

]
= e−

ξ2

2 (t−s). (2)

B8.2: Itô’s formula and its applications 8



In other words, Mt −Ms is centred Gaussian with (conditional)
variance t− s.

It follows also from (2) that for A ∈Fs ,

E
[
1Ae

iξ (Mt−Ms)
]

= P[A]E
[
e iξ (Mt−Ms)

]
,

so fixing A ∈Fs with P[A] > 0 and writing PA = P[·∩A]/P[A]
(which is a probability measure on Fs) for the conditional
probability given A, we have that Mt −Ms has the same
distribution under P as under PA.

Therefore, Mt −Ms is independent of Fs and we have that M is
an {Ft}t≥0-Brownian motion.
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I So the quadratic variation is capturing all the information
about M.

I This is surprising – recall that it is a special property of
Gaussians that they are characterised by their means and the
variance-covariance matrix, but in general we need to know
much more.

I It also shows we didn’t really need the Gaussian assumption in
our definition of Brownian motion, it’s guaranteed by the
independence and variance assumptions.
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Dambis–Dubins–Schwarz Theorem
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It turns out that what we just saw for Brownian motion has a
powerful consequence for all continuous local martingales

I they are characterised by their quadratic variation and,

I in fact, they are all time changes of Brownian motion.
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Theorem (Dambis–Dubins–Schwarz Theorem)

Let M be an ({Ft}t≥0,P))-continuous local martingale with
M0 = 0 and 〈M〉∞ = ∞ a.s. Let τs := inf{t ≥ 0 : 〈M〉t > s}. Then
the process B defined by Bs := Mτs , is an ({Fτs}s≥0,P)-Brownian
motion and Mt = B〈M〉t , ∀t ≥ 0 a.s.
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Proof

Note that τs is the first hitting time of an open set (s,∞) for an
adapted process 〈M〉 with continuous sample paths, and hence τs

is a stopping time (recall that {Ft}t≥0 is right-continuous).

Further, 〈M〉∞ = ∞ a.s. implies that τs < ∞ a.s. The process
(τs : s ≥ 0) is non-decreasing and right-continuous (in fact s → τs

is the right-continuous inverse of t→ 〈M〉t).
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Let Gs := Fτs . Note that it satisfies the usual conditions.

The process B is right continuous by continuity of M and
right-continuity of τ. We have

lim
u↑s

Bu = lim
u↑s

Mτu = Mτs− .

But[τs−,τs ] is either a point or an interval of constancy of 〈M〉.

The latter are known (exercise) to coincide a.s. with the intervals
of constancy of M and hence Mτs− = Mτs = Bs so that B has a.s.
continuous paths.

To conclude that B is a (Gs)-Brownian motion, by Lévy’s theorem,
it remains to show that (Bs) and (B2

s − s) are (Gs)-local
martingales.
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Note that Mτn and (Mτn)2−〈M〉τn are uniformly integrable
martingales. Taking 0≤ u < s < n and applying the Optional
Stopping Theorem we obtain

E[Bs |Gu] = E[Mτn
τs
|Fτu ] = Mτn

τu
= Mτu = Bu

and

E[B2
s − s|Gu] = E

[
(Mτn

τs
)2−〈M〉τnτs

|Fτu

]
= (Mτn

τu
)2−〈M〉τnτu

= (Mτu)2−〈M〉τu
= B2

u −u,

where we used continuity of 〈M〉 to write 〈M〉τu = u. It follows
that B is indeed a (Gs)-Brownian motion.
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Finally, B〈M〉t = Mτ〈M〉t
= Mt , again since the intervals of constancy

of M and of 〈M〉 coincide a.s. so that s → τs is constant on
[t,τ〈M〉t ].
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