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» From now on, when we say “Brownian motion”, we mean a
standard real-valued Brownian motion.

» We know that t — Bi(®) is continuous.

> Exercise: Use the Kolmogorov continuity criterion to show
that Brownian motion admits a modification which is locally
Holder continuous of order y for any 0 <y < 1/2.

» On the other hand, as we have already remarked, the path is
actually rather ‘rough’. We'd like to have a way to quantify
this roughness.
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Definition

Let m be a partition of [0, T], N(x) the number of intervals that
make up 7 and ||| be the mesh of & (that is the length of the
longest interval in the partition). Write

0=ty <t1 <...<tye =T for the endpoints of the intervals of
the partition. Then the variation of a function f: [0, T] = R is

N(m)
lim { sup Z ’f(tj)—f(tj_1)|}.

60 | m:|xl|=5 j=1

If the function is ‘nice’, for example differentiable, then it has
bounded variation. Our ‘rough’ paths will have unbounded
variation.
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To quantify roughness we can extend the idea of variation to that™
of p-variation.

Definition
In the notation of Definition 1, the p-variation of a function
f:[0, T] = R is defined as

N(m)
;@0{ sup Y |f(rj)—f(rj1)|P}.

m|z)|=6 j=1

Notice that for p > 1, the p-variation will be finite for functions
that are much rougher than those for which the variation is
bounded. For example, roughly speaking, finite 2-variation will
follow if the fluctuation of the function over an interval of order &

is order V8.
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For a typical Brownian path, the 2-variation will be infinite.
However, a slightly weaker analogue of the 2-variation does exist.

Theorem

Let B; denote Brownian motion under P and for a partition  of
[0, T] define
N(r)

S(m) = Z }Btj - ij—l‘z‘
j=1

Let m, be a sequence of partitions with ||m,|| — 0. Then

E[|5(nn)— Tﬂ 50 asn—so. (1)
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We say that the quadratic variation process of Brownian motid#,*
which we denote by {(B)+}+>0 is (B)r = t. More generally, we can
define the quadratic variation process associated with any bounded
continuous martingale.

Definition

Suppose that {M;}+>0 is a bounded continuous P-martingale. The
quadratic variation process associated with {M;};>¢ is the process
{{M)+}+=0 such that for any sequence of partitions 7, of [0, T]
with ||7,|| — 0,

[‘ fn)‘ij My, | _<M>T‘2] -0 as n—oo.  (2)
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We expand the expression inside the expectation in (1) and make
use of our knowledge of the normal distribution.

Let {tn;}, 2o M) denote the endpoints of the intervals that make up
the partltlon T,

First observe that

N(z,) 2

|5(7Tn) - T|2 = Z {‘Btnj - Bth—l ‘2 - (tn,-j - t"-J—l)}

Jj=1
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It is convenient to write &, for | By, — By, , ‘2 —(tnj—
Then
) N(7n)
S~ TP =Y, (8242 80j6ns).
j=1 k>j

Note that since Brownian motion has independent increments,
E[850ni] = E[0nj]E[6,u] =0 if j # k.
Also
IE[S,?J] =E “ Bfnj - Btn.j—l ‘4 - 2‘ Bth - Btn.j—l |2 (t"J - t"u'*l)

+ (tnj— fnflﬂ-
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For a normally distributed random variable, X, with mean zerq:;@w
variance A, E[|X|*] =312, so we have

E[87;] = 3(tnj—tnj1)’—2(tnj—tnj1)* + (tnj—tnj1)
= 2(th—tn’j71)2
< 27| (tn) — tnj-1)-
Summing over j
) N(7,)
B[S~ TP < 2 ) 7l (tnj— tnj1)
j=1
= 2|m,||T
— 0 as n — oo,
L]
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Corollary

Brownian sample paths are of infinite variation on any interval
almost surely.

Corollary

Brownian sample paths are almost surely nowhere locally Holder
continuous of order y > %

(The proofs are exercises.)
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In fact, a very precise statement is possible.

Theorem (Lévy's modulus of continuity (Not Examinable))

For B a Brownian motion,

|B: — Bs| >:1

lim sup ( sup e
O\ ocscrat it s<e 2elog(1/¢)

Consequently, Brownian sample paths are almost surely nowhere
locally Hélder continuous of order y=1/2, and the 2-variation is
almost surely infinite.

Proof.

Omitted (proof is a straightforward but fiddly calculation of

estimates, see, for example, Revuz & Yor, p30ff) O
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