
B8.2 Continuous Martingales and Stochastic
Calculus

Stochastic Integration

Stochastic integral w.r.t. L2-
bounded martingales

Samuel Cohen
Hilary Term 2021



I At the beginning of the course we argued that whereas
classically differential equations take the form

dX (t) = a(t,X (t))dt,

in many settings, the dynamics of interest may also have a
random component and so perhaps take the form

dXt = a(t,Xt)dt +b(t,Xt)dBt .

I We actually understand equations like this in the integral form:

Xt −X0 =
∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dBs .

I If a is nice enough, then the first term has a classical
interpretation. It is the second term, or rather a generalisation
of it, that we want to make sense of now.
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We will take two approaches to constructing this stochastic
integral:

I The first approach (this lecture) will be to mimic what we
usually do for construction of the Lebesgue integral, namely
work out how to integrate simple functions and then extend to
general functions through passage to the limit.

I We’ll then (next lecture) provide a very slick, but not at all
intuitive, approach that nonetheless gives us some ‘quick wins’
in proving properties of the integral.
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Remark on Notation:

I We are going to use the notation ϕ •M for the (Itô)
stochastic integral of ϕ with respect to M.

I This is not universally accepted notation; many authors would
write

∫ t
0 ϕsdMs for (ϕ •M)t .

I Moreover, for emphasis, when the integrator is stochastic, we
have used ‘•’ in place of the ‘·’ that we used for the Stieltjes
integral.
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I We’re going to develop a theory of integration w.r.t.
martingales in H 2,c .

I Recall that H 2,c
0 is the space of continuous martingales M,

zero at zero, which are bounded in L2.

I It is a Hilbert space with the inner product
〈M,N〉H 2,c = E[M∞N∞] and induced norm

‖M‖H 2,c =
√
E[M2

∞] =
√

E[〈M〉∞].

(In a very real sense we are identifying H 2,c with L2.)
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Step 1: Riemann sums and simple integrals
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I Define E to be the space of simple bounded process of the
form

ϕt =
m

∑
i=0

ϕ
(i)1(ti ,ti+1](t), t ≥ 0, (1)

for some m ∈ N, 0≤ t0 < t1 < .. . < tm+1 and where ϕ(i) are
bounded Fti -measurable random variables.

I Define the stochastic integral ϕ •M of ϕ in (1) with respect
to M ∈H 2,c via

(ϕ •M)t :=
m

∑
i=0

ϕ
(i)(Mt∧ti+1−Mt∧ti ), t ≥ 0. (2)
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I If we write M i
t := ϕ(i)(Mt∧ti+1−Mt∧ti ) then clearly

M i ∈H 2,c and so ϕ •M is a martingale.

I Moreover, since for i 6= j the intervals (ti , ti+1] and (tj , tj+1]

are disjoint, M i
tM

j
t is a martingale and hence 〈M i ,M j〉t = 0.

I Using the bilinearity of the bracket process then yields

〈ϕ •M〉t =
m

∑
i=0

〈M i 〉t =
m

∑
i=0

(
ϕ
(i)
)2 (
〈M〉ti+1∧t −〈M〉ti∧t

)
=
∫ t

0
ϕ
2
s d〈M〉s , t ≥ 0.
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I We already used the notation that if K is progressively
measurable and A is of finite variation, then

(K ·A)t =
∫ t

0
Ks(ω)dAs(ω), t ≥ 0.

I In that notation
〈ϕ •M〉= ϕ

2 · 〈M〉.

More generally, for N ∈H 2,c ,

〈ϕ •M,N〉t =
m

∑
i=0

〈M i ,N〉t =
m

∑
i=0

ϕ
(i)
(
〈M,N〉ti+1∧t −〈M,N〉ti∧t

)
=
∫ t

0
ϕsd〈M,N〉s = (ϕ · 〈M,N〉)t .

(3)
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Proposition

Let M ∈H 2,c . The mapping ϕ 7→ ϕ •M is a linear map from E to
H 2,c

0 . Moreover,

‖ϕ •M‖2H 2,c = E
[∫

∞

0
ϕ
2
t d〈M〉t

]
. (4)
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I The proof is easy – we just need to show linearity.

I But given ϕ, ψ ∈ E , we use a refinement of the partitions on
which they are constant to write them as simple functions
with respect to the same partition and the result is trivial.

Remark
If we were considering martingales with jumps, then it would be
important that the processes in E are left continuous.
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Step 2: Simple integrals are dense
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I We are expecting an L2-theory – we have already found an
expression for the ‘L2-norm’ of ϕ •M.

I Let us define the appropriate spaces more carefully.

Definition
Given M ∈H 2,c we denote by L2(M) the space of progressively
measurable processes K such that

‖K‖2L2(M) := E
[∫

∞

0
K 2
t d〈M〉t

]
< +∞. (5)
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I L2(M) is a Hilbert space, with inner product

H,K 7→ E
[∫

∞

0
HtKtd〈M〉t

]
= E [(HK · 〈M〉)∞] .

I We have E ⊆ L2(M) and our definition tells us that the map
E → H2

0 given by ϕ 7→ ϕ •M is a linear isometry.

I If we can show that the elementary functions are dense in
L2(M), this observation will allow us to define integrals of
functions from L2(M) with respect to M via a limiting
procedure.
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Proposition

Let M ∈H 2,c . Then E is a dense vector subspace of L2(M).

Practically, this means that any function in L2(M) can be
approximated (in L2(M)-norm) by a sequence of simple functions.
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Proof

It is enough to show that if K ∈ L2(M) is orthogonal to ϕ for all
ϕ ∈ E , then K = 0 (as an element of L2(M)).

So suppose that 〈K ,ϕ〉L2(M) = 0 for all ϕ ∈ E . Let X = K · 〈M〉,
i.e. Xt =

∫ t
0 Kud〈M〉u.

This is well defined and, by Cauchy–Schwarz/Kunita–Watanabe

E[|Xt |]≤ E
[∫ t

0
|Ku|d〈M〉u

]
≤

√
E
[∫ t

0
K 2
u d〈M〉u

]√
E〈M〉t < +∞

since M ∈H 2,c and K ∈ L2(M) (we took one of the functions to
be identically one in Cauchy–Schwarz).

B8.2: Stochastic Integration 16



Taking ϕ = ξ 1(s,t] ∈ E , with 0≤ s < t and ξ a bounded
Fs -measurable r.v., we have

0 = 〈K ,ϕ〉L2(M) = E
[

ξ

∫ t

s
Kud〈M〉u

]
= E [ξ (Xt −Xs)] .

Since this holds for any Fs -measurable bounded ξ , we conclude
that E[(Xt −Xs)|Fs ] = 0.

In other words, X is a martingale. But X is also continuous and of
finite variation and hence X ≡ 0 a.s.

Thus K = 0 d〈M〉−a.e. a.s. and hence K = 0 in L2(M).
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Step 3: General integrals in L2(M)
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I We now know that any K ∈ L2(M) is a limit of simple
processes ϕn→ K .

I For each ϕn we can define the stochastic integral ϕn •M.

I The isometry property then shows that {ϕn •M}n∈N converges
in H 2,c to some element that we denote K •M and which
does not depend on the choice of approximating sequence ϕn.
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Theorem
Let M ∈H 2,c . The mapping ϕ 7→ ϕ •M from E to H 2,c

0 defined
in (2) has a unique extension to a linear isometry from L2(M) to
H 2,c

0 which we denote K 7→ K •M.
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Remark
For K ∈ L2(M), the martingale K •M is called the Itô stochastic
integral of K with respect to M and is often written as
(K •M)t =

∫ t
0 KudMu. The isometry property may be then written

as

‖K •M‖2H 2,c =E

[(∫
∞

0
KtdMt

)2
]

=E
[∫

∞

0
K 2
t d〈M〉t

]
= ‖K‖2L2(M).

(6)
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Example

Let M = BT be a standard Brownian motion stopped at a time
T > 0. Consider Kt = t3. To define K •B, we take a sequence of
simple functions Kn which converge to K in the sense

E
[∫ ∞

0
(Kn

t −Kt)
2d〈M〉t

]
= E

[∫ T

0
(Kn

t − t3)2dt
]
→ 0.

Then the approximate integrals Kn •M (which are defined by
Riemann sums) converge in H 2 to a process which we call K •M,
or equivalently

(K •M)t =
∫ t

0
s3dBs , for t ≤ T .
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Notice that if B is standard Brownian motion and we calculate
(B •B)t , then

(B •B)t = lim
‖π‖→0

N(π)−1

∑
j=0

Btj

(
Btj+1−Btj

)
. (7)

We also know already that the quadratic variation is

t = lim
‖π‖→0

N(π)−1

∑
j=0

(
Btj+1−Btj

)2
=B2

t −B2
0−2

N(π)−1

∑
j=0

Btj

(
Btj+1−Btj

)
,

and so rearranging we find∫ t

0
BsdBs =

1

2

(
B2
t −B2

0 − t
)

=
1

2

(
B2
t − t

)
.
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This is not what one would have predicted from classical
integration theory (the extra term here comes from the quadratic
variation).

Even more strangely, it matters that in (7) we took the left
endpoint of the interval for evaluating the integrand. On the
problem sheet, you are asked to evaluate

lim
‖π‖→0

∑Btj+1

(
Btj+1−Btj

)
, and lim

‖π‖→0
∑

Btj +Btj+1

2

(
Btj+1−Btj

)
.

Each gives a different answer.
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We can more generally define∫ T

0
f (Bs)◦dBs = lim

‖π‖→0
∑

( f (Btj ) + f (Btj+1)

2

)(
Btj+1−Btj

)
.

This is the so-called Stratonovich integral, and has the advantage
that from the point of view of calculations, the rules of Newtonian
calculus hold true.

From a modelling perspective however, it can be the wrong choice.
For example, suppose that we are modelling the change in a
population size over time and we use [ti , ti+1) to represent the
(i + 1)st generation. The change over (ti , ti+1) will be driven by
the number of adults, so the population size at the beginning of
the interval.
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