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Recall that a filtered probability space (Ω,F ,{Ft}t≥0,P)
satisfying the usual conditions is given.

Definition
An adapted right-continuous process A = (At : t ≥ 0) is called a
finite variation process (or a process of finite variation) if A0 = 0
and t 7→ At is (a function) of finite variation a.s..
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Proposition

Let A be a finite variation process and K a progressively
measurable process s.t.

∀t ≥ 0, ∀ω ∈ Ω,
∫ t

0
|Ks(ω)||dAs(ω)|< ∞.

Then ((K ·A)t : t ≥ 0), defined as (K ·A)t(ω) :=
∫ t

0 Ks(ω)dAs(ω),
is a finite variation process.
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Proof

The right continuity is immediate from the deterministic theory,
but we need to check that (K ·A)t is adapted (and hence
progressive, by Proposition ??). For this we check that if t > 0 is
fixed and h : [0, t]×Ω→ R is measurable with respect to
B([0, t])⊗Ft , and if∫ t

0
|h(s,ω)||dAs(ω)|< ∞

for every ω ∈ Ω, then ∫ t

0
h(s,ω)dAs(ω)

is Ft-measurable.
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Fix t > 0. Consider first h defined by h(s,ω) = 1(u,v ](s)1Γ(ω) for
(u,v ]⊆ [0, t] and Γ ∈Ft . Then

(h ·A)t = 1Γ(Av −Au)

is Ft-measurable. By the Monotone Class Theorem, (h ·A)t is
Ft-measurable for any h = 1G with G ∈B([0, t])⊗Ft , or, more
generally, any bounded B([0, t])⊗Ft-measurable function h.
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If h is a general B([0, t])⊗Ft-measurable function satisfying∫ t

0
|h(s,ω)||dAs(ω)|< ∞ ∀ω ∈ Ω,

then h is a pointwise limit, h = limn→∞ hn, of simple functions with
|h| ≥ |hn|. The integrals

∫
hn(s,ω)dAs(ω) converge by the

Dominated Convergence Theorem, and hence
∫ t

0 h(s,ω)dAs(ω) is
also Ft-measurable (as a limit of Ft-measurable functions). In
particular, (K ·A)t(ω) is Ft-measurable since by progressive
measurability, (s,ω) 7→ Ks(ω) on [0, t] is
B([0, t])⊗Ft-measurable.
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