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Our integral can also be obtained in the usual way:

I Let f : [0,T ]→ R be left-continuous and
0 = tno < tn1 < · · ·< tnpn = T be a sequence of partitions of
[0,T ] with mesh tending to zero. Then∫ T

0
f (s)da(s) = lim

n→∞

pn

∑
i=1

f (tni−1)
(
a(tni )−a(tni−1)

)
.

I The proof is easy: let fn : [0,T ]→ R be defined by
fn(s) = f (tni−1) if s ∈ (tni−1, t

n
i ], 1≤ i ≤ pn, and fn(0) = 0.

Then

pn

∑
i=1

f (tni−1)
(
a(tni )−a(tni−1)

)
=
∫
[0,T ]

fn(s)µ(ds),

where µ is the signed measure associated with a. The desired
result now follows by the Dominated Convergence Theorem.
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I In the argument above, fn took the value of f at the left
endpoint of each interval.

I In the finite variation case, we could equally have
approximated by fn taking the value of f at the midpoint of
the interval, or the right hand endpoint, or any other point in
between, but the limits could differ if a were not continuous.

We now will state some properties of the finite variation integral
(and prove some of them).
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Proposition (Associativity)

Let a be of finite variation as above and f ,g measurable functions,
f is a-integrable and g is (f ·a)-integrable. Then gf is a-integrable
and ∫ t

0
g(s)d(f ·a)(s) =

∫ t

0
g(s)f (s)da(s).

In our ‘dot’-notation:

g · (f ·a) = (gf ) ·a. (1)
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Proposition (Stopping)

Let a be of finite variation as above and fix t ≥ 0. Set
at(s) = a(t ∧ s). Then at is of finite variation and for any
measurable a-integrable function f∫ u∧t

0
f (s)da(s) =

∫ u

0
f (s)dat(s) =

∫ u

0
f (s)1[0,t](s)da(s), u ∈ [0,∞].
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Proposition (Integration by parts)

Let a and b be two right-continuous functions of finite variation
with a(0) = b(0) = 0. Then for any t

a(t)b(t) =
∫ t

0
a(s−)db(s) +

∫ t

0
b(s−)da(s) + ∑

s∈[0,t]
∆a(s)∆b(s)

where ∆a(t) = a(t)−a(t−) and a(t−) = lims↑t a(s).

Remark
As a and b are right-continuous they have at most countably many
discontinuities, and as they are of finite variation, the left-limits
exist.
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Sketch.
For a partition πn, take a telescoping sum

a(t)b(t) = ∑
ti∈πn

(a(ti )b(ti )−a(ti−1)b(ti−1))

= ∑
ti∈πn

a(ti−1)
(
b(ti )−b(ti−1)

)
+ ∑

ti∈πn

b(ti−1)
(
a(ti )−a(ti−1)

)
+ ∑

ti∈πn

(
a(ti )−a(ti−1)

)(
b(ti )−b(ti−1)

)
.

By dominated convergence, these converge to the stated
integrals.
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Proposition (Chain-rule)

If F is a C 1 function and a is continuous of finite variation, then
F (a(t)) is also of finite variation and

F (a(t)) = F (a(0)) +
∫ t

0
F ′(a(s))da(s).

Proof.
The statement is trivially true for F (x) = x . Now by integration by
parts, it is straightforward to check that if the statement is true for
F , then it is also true for xF (x). Hence, by induction, the
statement holds for all polynomials. To complete the proof,
approximate F ∈ C 1 by a sequence of polynomials.
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Proposition (Change of variables)

If a is non-decreasing and right-continuous then so is its ‘right
inverse’

c(s) := inf{t ≥ 0 : a(t) > s},

where inf /0 = +∞. Let a(0) = 0. Then, for any Borel measurable
function f ≥ 0 on R+, we have∫

∞

0
f (u)da(u) =

∫ a(∞)

0
f (c(s))ds.
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Proof.
If f (u) = 1[0,ν](u), then the claim becomes

a(ν) =
∫

∞

0
1{c(s)≤ν}ds = inf{s : c(s) > ν},

and equality holds by definition of c . Take differences to get
indicators of sets (u,ν]. The Monotone Class Theorem allows us
to extend to functions of compact support and then take
increasing limits to obtain the formula in general.
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