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Overview

Welcome to B7.3 Further Quantum Theory, part of the third year (Part B) of the Oxford University

Mathematics course. This course is a continuation from the Part A long option Quantum Theory.

In that first course, you have been introduced to many of the core concepts of quantum theory

(often referred to as quantum mechanics, in reference to its status as an improvement upon the

classical mechanics of particles that you’ve studied in your Dynamics course, as well as possibly

B7.1 Classical Mechanics).

In this course we will be developing the subject more broadly and deeply, giving more time and em-

phasis to the abstract mathematical formalism of the theory as well as developing several important

technical methods that are used to analyse quantum mechanical systems in practice. Along the

way, a number of concepts from the theories of functional analysis, Lie groups, and representation

theory will arise and be introduced, though you will not be expected to be familiar with these

subjects in advance. Whenever possible I will point out places where the mathematically precise

version of a statement exists but involves more machinery than we have available, before giving a

simplified treatment that will serve our purposes.

Synopsis

• Abstract formulation of quantum mechanics in terms of linear operators on Hilbert spaces;

Dirac notation; discrete and continuum states; time evolution and the propagator.

• Systems of several particles and Hilbert space tensor products; distinguishable and indis-

tinguishable particles; Fermi-Dirac and Bose-Einstein statistics; Pauli exclusion principle;

elementary aspects of quantum entanglement.

• Symmetries in quantum mechanics as unitary and anti-unitary operators; rotations, angular

momentum, and spin; spin- 12 and projective representations of SO(3); addition of angular

momentum; spin-statistics theorem.

• Approximation methods: Rayleigh-Schrödinger perturbation theory; variational methods;

WKB approximation and Bohr-Sommerfeld quantisation.

• Time-dependence in the Heisenberg, Schrödinger, and interaction/Dyso pictures; time-dependent

perturbation theory and the Feynman-Dyson expansion. (Not Covered in 2021 - Not Ex-

aminable in 2021)



• Elementary scattering theory.

Reading

You can never have enough quantum mechanics textbooks (I count around fifteen on my bookshelves

right now). Accordingly, you should feel encouraged to look at a number of sources and find some

that are written in a way that you find appealing. This said, the primary textbook references for

this course are officially

• S. Weinberg, Lectures on Quantum Mechanics (CUP 2015).

• K. Hannabuss, An Introduction to Quantum Theory (OUP 1997).

The former probably more than the latter. We won’t follow the notation of either of those references

religiously. The following are also recommended for reference:

• E. Merzbacher, Quantum Mechanics (Wiley International 1970).

• D. Griffiths and D. Schroeter, Introduction to Quantum Mechanics (CUP 2018).

• J. Sakurai and J. Napolitano, Modern Quantum Mechanics (CUP 2017).

The latter two are standards, with Sakurai being a bit closer to the lecturer’s style. The first is an

older text that treats a number of topics in a bit more detail. In particular, the section on Wave

Packets and Free Particle Motion in Merzbacher is nice, as well as the treatment of the WKB

approximation.

Mathematical purists and rigour enthusiasts may want to take a peak at the (quite advanced)

textbooks

• B. Hall, Quantum Theory for Mathematicians (Springer 2013).

• V. Moretti, Fundamental Mathematical Structures of Quantum Theory (Springer 2019).

These are both go far beyond the level of the present course, but (unlike the most of the other

references) they were really written for mathematicians rather than physicists.

Note on these notes

These notes are meant to correspond to and supplement the recorded lectures for this course. They

will be updated throughout the term with new Chapters added once the corresponding lectures

are recorded. I also welcome feedback on the notes if there are typos or places where the text is

unclear. Please send comments and corrections to christopher.beem@maths.ox.ac.uk.

mailto:christopher.beem@maths.ox.ac.uk
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Chapter 0

Review of Wave Mechanics, Standard Ex-
amples

The majority of your first course on quantum theory focused on the study of the Schrödinger equa-

tion (usually time-independent, but occasionally time-dependent) for single-particle wave functions

in one, two, or occasionally three dimensions. These topics generally fall within the realm of what

is called wave mechanics. We include in this (preparatory) section a brief recap of that formalism

along with a review of some standard examples treated in this formalism that should be familiar

from your previous course. In the remainder of this course we will freely refer back to these standard

results. This is not meant to be a comprehensive review of the material from your part A course;

and you should be prepared to refer to background material from that course as well. The material

in this section will not be the subject of any lectures.

0.1 Review of wave mechanics

The primary object of wave mechanics is Schrödinger’s wave function for a particle moving in,

say, one dimension. This is a complex valued function of position x on the real line and time t,

conventionally denoted Ψ(x, t). The wave function is usually normalised to obey

∞∫
−∞

dx |Ψ(x, t)|2 = 1 . (0.1)

The wave function encodes the probability density ρ(x, t) for detecting the presence of the particle

at a given point at a given time according to

ρ(x, t) = |Ψ(x, t)|2 , (0.2)

so the normalisation condition is just the condition that the total probability for finding the particle

somewhere is one.

If a particle moves subject to an external potential energy function V (x), then the wave function

evolves according to the time-dependent Schrödinger equation, which says that

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) . (0.3)

Here ~ is the reduced Planck constant, which is a fundamental unit of angular momentum (i.e., it

has units of [mass]× [length]2× [time]−1).1 It is a simple exercise to confirm that if Ψ(x, t) evolves

in time according to (0.3) then the normalisation condition (0.1) will hold for all time t if it holds

at any given time t0.

The differential operator in x acting on Ψ(x, t) on the right hand side of this equation is the

Hamiltonian operator for the theory. If we introduce the operators P and X acting on wave

1In SI units, the reduced Planck constant is ~ ≈ 1.0546× 10−34 kg ·m/s2. In a quantum mechanical world, it is
often a better idea to use units in which ~ = 1 (so-called natural units). For much of this course, ~ will behave more
like a formal parameter.
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function according to

PΨ(x, t) = −i~ ∂

∂x
Ψ(x, t) , XΨ(x, t) = xΨ(x, t) , (0.4)

then the Hamiltonian operator takes the form of the classical total energy operator (also the Hamil-

tonian of the corresponding classical system, if you have taken Part B Classical Mechanics),

H =
P 2

2m
+ V (X) . (0.5)

The time-dependent Schrödinger equation then takes the abstract form

i~
∂

∂t
Ψ(x, t) = HΨ(x, t) . (0.6)

In good cases, we look for separable solutions to this equation of the form

Ψ(x, t) = ψn(x) exp

(
− iEnt

~

)
, (0.7)

where En are identified with the energies of these solutions, and the ψn(x) are stationary state

wave functions that obey the time-independent Schrödinger equation,

Hψn(x) = − ~2

2m

d2

dx2
ψn(x) + V (x)ψn(x) = Enψn(x) . (0.8)

We see that all of the time-dependence for stationary states is encapsulated by the time-dependent

phase in (0.7). Then if the ψn form a basis for the space of possible wave functions at a fixed time,

we can understand time-evolution in general by observing

Ψ(x, 0) =
∑
n

anψn(x) =⇒ Ψ(x, t) =
∑
n

an exp

(
− iEnt

~

)
ψn(x) . (0.9)

This follows from the linearity of Schrödinger’s equation.

By virtue of the structure outlined above, a major part of one’s introduction to the world of quantum

mechanics often involves learning a variety of standard examples where the stationary-state wave

functions ψn(x) can be understood completely. Below we review a few of these for ease of reference

in the future.

Example 0.1.1 (Particle in a box). When our particle is restricted to move in a fixed interval,

say x ∈ [0, a], this is referred to as the particle in a (one-dimensional) box. One can think of this

as considering the general case of a particle on a real line with a potential V (x) that is zero in the

given interval and infinite outside of it.

The stationary state wave functions satisfy

− ~2

2m
ψ′′n(x) = Enψn(x) , ψn(0) = ψn(a) = 0 . (0.10)

It follows that the stationary states and their energies are given by

ψn(x) =

√
2

a
sin
(nπx

a

)
, En =

~2n2π2

a2
. (0.11)
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The pre-factor is to render the stationary-state wave functions normalised. Indeed we have

a∫
0

dx ψn(x)ψm(x) = δn,m . (0.12)

Indeed, these sin functions form an orthonormal basis for the space of wave function on the interval

in the sense of Fourier series, so the time-evolution of a general wave function can be understood

by decomposing into its Fourier representation and introducing time-dependent phases depending

on energies.

Example 0.1.2 (Harmonic Oscillator). The next standard example is the harmonic osciillator, for

which x is allowed to range over the entire real line but we have a potential function V (x) = 1
2mω

2x2.

This is written so that the classical angular frequency of oscillator for the system would be ω.

Here the stationary state wave functions are given by

ψn(x) =
1√

2n n!

(mω
π~

) 1
4

exp

(
−mωx

2

2~

)
Hn

(√
mω

~
x

)
, (0.13)

where Hn(x) is the Hermite polynomial,

Hn(x) = (−1)nex
2 dn

dxn

(
ex

2
)
. (0.14)

The analysis of this system is rendered must simpler by introducing the differential operators

α+ =
1√

2m~ω
(P + imωX) , α+ =

1√
2m~ω

(P − imωX) , (0.15)

which obey a number of helpful relations,

α−α+ − α+α− =: [α−, α+] = 1 , (0.16)

[H,α±] = ~ωα± , (0.17)

H = ~ω(α±α∓ ± 1
2 ) , (0.18)

In particular, the second relation implies that if Hψ = Eψ, then Hα±ψ = (E ± ~ω)α±ψ, so the

α± differential operators move amongst stationary states in the space of wave functions.

Then the ground state wave function can be argued to obey α−ψ0 = 0, which can be immediately

solved to give the expression from (0.13) for n = 0, with energy E0 = ~ω/2 by virtue of (0.18). The

higher energy states are obtained by the action of α+,

ψn =
(α+)n√
n!

ψ0 , (0.19)

where the prefactor is such that the results are normalised when ψ0 is normalised. These states

then give the general result for the energy spectrum of the quantum harmonic oscillator,

Hψn = Enψn = ~ω
(
n+

1

2

)
ψn . (0.20)

Example 0.1.3 (Hydrogenic atom). Finally, there is the famous Hydrogen atom (or the Hydrogen-

like or Hydrogenic atom if you allow general nuclear charge Z > 0). Here we have a three-
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dimensional problem with Coulomb potential,2

V (r) = −Zqe
|r|

. (0.21)

A detailed analysis of the time-independent Schrödinger equation for this problem appeared in your

Part A course, and we give a lightning review here. The stationary states are labelled by three

quantum numbers, (n, `,m), known as the principal quantum number, the orbital quantum number,

and the magnetic quantum number, respectively. These are restricted according to n = 1, 2, 3, . . .,

` = 0, 1, . . . , n− 1, m = −`,−`+ 1, . . . , `− 1, `. The stationary state wave functions take the form

ψn`m(r, θ, φ) = Rn,`(r)Y`,m(θ, φ) = Rn,`(r)P`,m(cos θ)eimφ . (0.22)

The Y`,m(θ, φ) are spherical harmonic functions, which obey

L2Y`,m(θ, φ) = ~2`(`+ 1)Y`,m(θ, φ) , L3Y`,m(θ, φ) = ~mY`,m(θ, φ) , (0.23)

where

L = −i~ (x ∧∇) , L3 = −i~
(
x
∂

∂y
− y ∂

∂x

)
= −i~∂φ . (0.24)

The P`,m(cos θ) are the associated Legendre polynomials. The radial wave function takes the form

Rn,`(r) = exp

(
− Zr

na0

)
fn,`(r) , (0.25)

where fn,`(r) is a polynomial of degree n − 1. The energy, En, depends only on the principal

quantum number and is given by

En = − ~2Z2

2ma20n
2

= − q2eZ
2

2a0n2
. (0.26)

In the first expression we used the Bohr radius a0 = ~2/(mq2e). Note that the energy is always

negative, so the exponential in (0.25) is decaying with r.

Unlike the previous two cases, the stationary state wave functions given here don’t form a basis for

all possible wave functions of the Hydrogen atom problem. Rather, they form a basis only for the

bound state wave functions.3 The possibility of additional wave functions for the Hydrogen atom

that are not bound states is relevant in the context of scattering theory.

2We adopt Gaussian units to avoid a factor of πε0 in the denominator. Here qe is the charge of the electron, often
written as e in spite of the ambiguity with Euler’s constant.

3We don’t give a technical definition of bound state, but intuitively it corresponds to states where the electron
stays localised in the neighborhood of the nucleus instead of running off to infinity.
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Chapter 1

Postulates and Examples

To begin, we review the foundational postulates of quantum theory. You will have encountered

these in perhaps a less detailed form, in Part A Quantum Theory. Here we will strive for a high

degree of accuracy, while stopping short of a completely rigorous discussion that would require more

substantial background in functional analysis. Where we gloss over technical subtleties there will

(usually) be a footnote or comment to this effect. Interested students are encouraged to look in the

books by Hall and Moretti for quite a bit more discussion.

After introducing the postulates, we will inspect two characteristic examples of quantum systems

and observe how they are incorporated into the quantum theoretical framework. These will be the

two-state qubit system and the system of a single particle moving on the one-dimensional real line.

1.1 Postulates of quantum theory

We adopt the abstract, algebraic formulation of quantum mechanics in terms of operators acting

on Hilbert spaces. This is the main language of the subject, and was developed to a high degree

of completeness by P. A. M. Dirac and John von Neumann; people often refer to these as the

Dirac-von Neumann axioms of quantum theory. Many aspects of the original theory have come to

be better understood mathematically since the inception of the framework, especially in connection

with infinite-dimensional Hilbert spaces and their attendant subtleties. Here we will introduce, with

comments, a set of working postulates/axioms for how physical systems should be described within

the context of quantum mechanics. A high degree of familiarity with abstract linear algebra and

metric/inner product spaces is assumed.

Postulate 1 (Space of states). The states of a physical system are represented by rays in a complex

Hilbert space (often denoted H).

A complex Hilbert space is a complex vector space (often infinite dimensional) with an Hermitian

inner product, i.e., given φ, ψ ∈ H, and α ∈ C we have,4

(φ, ψ) = (ψ, φ) , (αφ, ψ) = α(φ, ψ) , (φ, αψ) = α(φ, ψ) . (1.1)

IfH is infinite dimensional, one also demands that the space be complete (limits of Cauchy sequences

must exist) and separable (there exists a countable basis). We do not emphasise these subtleties in

this course, but they are important for providing rigorous foundations to the subject.

A ray in H is the set of scalar multiples of a given non-zero vector. So given ψ ∈ H, the vector

αψ ∈ H represents the same physical state. We can promote this to an equivalence relation on

non-zero vectors in H:

ψ ∼ αψ ∀α ∈ C× . (1.2)

The space of quantum states is then the quotient of the space of nonzero vectors in H by this

equivalence relation, i.e.,

{Quantum States} =
(
H− {0}/

∼
)
∼= P(H) . (1.3)

4Observe that we adopt “physics conventions”, in which the inner product is conjugate-linear in the first argument.
In the mathematical literature it is more common to have the second entry be conjugate linear.
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The latter equivalence identifies this space with the projectivisation of the Hilbert space. Often it

is useful to adopt the convention of working with normalised state vectors (as in the discussion of

wave functions in Chapter 0. This leaves an overall phase ambiguity, so we also have

P(H) ∼=
(
{ψ ∈ H | (ψ,ψ) = 1}/

ψ ∼ eiϕψ
)
. (1.4)

The two characterisations are completely equivalent, but by working with normalised vectors one

can often simplify formlulæ.

Remark 1.1.1. The interplay between the physical space of states (P(H)) and the larger Hilbert

space H is the source of a variety of interesting facets of quantum theory. By working in Hilbert

space, which in particular is a vector space, one makes manifest the important linear aspects of

quantum theory. However, as we shall see in our discussion of symmetries and, in particular, of

spin, it is sometimes important not lose sight of the true space of states being the projectivised

Hilbert space.

Postulate 2 (Observables). Observables of a physical system correspond to self-adjoint operators

on the Hilbert space H.

Recall that the adjoint of a linear operator A : H → H is an operator A∗ : H → H such that for

any φ, ψ ∈ H we have5

(φ,Aψ) = (A∗φ, ψ) . (1.5)

A standard result that you have shown in Part A Quantum Theory is that the eigenvalues of a self-

adjoint operator are necessarily real. There is also an important and, in the general case, difficult

result that we will return to obliquely in the next lecture: the spectral theorem for self-adjoint

operators on a Hilbert space. This says that in a suitable sense, a self-adjoint operator on a Hilbert

space always admits a complete basis of eigenvectors, so for a general observable we can write

ψ =
∑
n

cnψn , (1.6)

where the ψn are eigenstates of the obsevable A,

Aψn = anψn . (1.7)

The set of eigenvalues {an} is known as the spectrum of the operator A. The stationary states

that solve the time-independent Schrödinger equation are just the eigenvectors for the Hamiltonian

observable.

Postulate 3 (Measurement). When measuring an observable A, the only possible results are the

elements of the spectrum of A. The probability of a given result a is the squared norm of the

orthogonal projection of the (normalised) initial state onto the a eigenspace Ha.

In the case when all eigenvalues of A are nondegenerate, this means that for a (normalised) state ψ

as in (1.6), the probability of obtaining, say, ai when measuring A is exactly |ci|2. More generally,

suppose that for for some subset {ψi∈I} of the A eigenbasis, the A eigenvalues are all degenerate

5There is a subtlety here in the case of infinite-dimensional H, which I mention here for completeness. General
linear operators on an infinite-dimensional H are only partially defined, so their domain D(A) ( H (the exceptions
are so-called bounded operators). The adjoint of an operator then has its own domain D(A∗), and self-adjointness
requires D(A) = D(A∗) which is not automatic. For our purposes in this course, it will not be important to keep
track of domains of the observables we study in any systematic way.
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ai∈I = a. Let Pra denote the orthogonal projection operator onto the a eigenspace Ha ⊂ H for

which the {ψi∈I} form a basis, i.e., the operator that acts on a state as given in (1.6) according to

Praψ =
∑
i∈I

ciψi . (1.8)

Then the probability of observing a when measuring A is given by

(Praψ, Praψ) =

(∑
i∈I

ciψi,
∑
i∈I

ciψi

)
=
∑
i∈I
|ci|2 . (1.9)

These probabilistic statements are compatible with the definition of the expectation value for the

observable A in the state ψ,

Eψ(A) ≡ 〈A〉ψ = (ψ,Aψ) =
∑
n

an|cn|2 . (1.10)

Similarly, we recall the dispersion of the observable A in the state ψ,

∆ψ(A) = Eψ
((

A− 〈A〉ψ
)2)

= Eψ
(
A2 − 〈A〉2ψ

)
, (1.11)

which agrees with the usual statistical notion of the variance of a random variable.6

Postulate 4 (Wave function collapse). Immediately following a measurement of the observable A

that yields the result a, the state of the system is given by the orthogonal projection of the initial

state onto the a eigenspace.

This postulate is the subject to quite a bit of discussion under the headings of interpretations of

quantum mechanics and the measurement problem. These discussions sometimes take a philosophi-

cal turn and will not be pursue in this course; indeed we will spend very little or no time discussing

measurement. Some of the (more technical than interpretational) aspects of quantum measurement

play an important role in quantum information theory, and if you’re interested you might look into

C7.4 Introduction to Quantum Information.

As a practical matter, the statement of wave function collapse has the reasonable consequence that

if one measures an observable A and finds some value a, then immediately measuring A again will

reproduce the result a (since the state of the system has been projected into the eigenspace where

A evaluates to a identically).

Remark 1.1.2 (Compatible and Incompatible Measurements). If two observables A and B commute,

so [A,B] = 0, then there exists (in the same sense as in Postulate 2) a basis of states which are

simultaneous eigenstates of A and B. In this case, one can unambiguously observe A and B

simultaneously because the projection operators onto the appropriate eigenspaces commute. On

the other hand, if [A,B] 6= 0 then measurement of A and B are incompatible, in the sense that if I

measure A it will effect the outcome of a measurement of B and vice versa. In the special case of

position and momentum operators, this idea is encapsulated in the Heisenberg uncertainty relation

that you have seen in Part A.

Postulate 5 (Time evolution). The time development of a given state ψ is controlled by a special

obervable called the Hamiltonian, usually denoted by H, according to the time-dependent Schrödinger

6In the above discussion, our formulæ were all tailored to the case of a normalised state vector ψ. For general ψ,
one must divide through by a normalising factor.
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equation,

i~
d

dt
ψ = Hψ . (1.12)

In general, H as an operator can depend explicitly on time H = H(t), but this doesn’t effect the

form of the time-dependent Schrödinger equation. (In most of the examples we study this will not

be the case; we study time-independent Hamiltonians.)

An important consequence of this equation (which you have seen before) is that the inner product

(a.k.a., the overlap) between any two state vectors is preserved under time evolution,

d

dt
(φ, ψ) =

(
dφ

dt
, ψ

)
+

(
φ,
dψ

dt

)
,

=

(
Hφ

i~
, ψ

)
+

(
φ,
Hψ

i~

)
,

=
i

~
(Hφ,ψ)− i

~
(φ,Hψ) ,

= 0 .

(1.13)

In particular, for the case φ = ψ this implies that normalised states remain normalised under time

evolution.

Let us define the operator U(t1; t0) : H → H that sends a state defined at time t0, say ψ(t0), to its

time evolution forward to time t1 > t0, which we call ψ(t1). Because (1.12) is linear, then U(t1; t0)

is itself a linear operator. We now have

(φ(t1), ψ(t1)) = (U(t1; t0)φ(t0), U(t1; t0)ψ(t0)) ,

= (φ(t0), U(t1; t0)∗U(t1; t0)ψ(t0)) ,

= (φ(t0), ψ(t0)) .

(1.14)

with the last equality a consequence of the time-independence of overlaps. So we have that the

time-evolution operator U(t1; t0) obeys the important relation

U(t1, t0)∗ = U(t1, t0)−1 . (1.15)

Such operators are called unitary operators.

Definition 1.1.1. A unitary operator U on a Hilbert space is a linear map U : H → H that obeys

U∗U = UU∗ = 1H . (1.16)

This is, equivalently, a surjective map from H to H obeying U∗U = 1H. The requirement to

separately consider left- and right-composition by U∗ or to demand surjectivity is associated with

the subtleties of infinite-dimensional Hilbert space. In finite dimensional settings, this is the usual

notion of a unitary matrix.

In the case where the Hamiltonian is time-independent, the time evolution operator will only depend

on the time interval t1− t0 and we can write U(t1− t0) instead. To understand time-evolution then

amounts to identifying the basis of states that diagonalises the action of the Hamiltonian, i.e., the

stationary states obeying

Hψn = Enψn . (1.17)
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The time evolution operator U(t1 − t0) can be understood very simply in the basis of stationary

states, with its action given by

U(t1 − t0)ψn(x) = exp

(
− iEn(t1 − t0)

~

)
ψn(x) , (1.18)

from which the action on a general state can be deduced by linearity. We observe that we can write

this operator as an exponentiation of the Hamiltonian operator,

U(t1 − t0) = exp

(
− iH(t1 − t0)

~

)
, (1.19)

where the expression on the right has an obvious interpretation when applied to stationary states,

and the more general case follows by linearity.

1.2 Qubit system as an instance of the framework

The simplest instances of quantum systems are those with finite-dimensional Hilbert spaces. The

simplest non-trivial example is then when the Hilbert space has dimension two, in which case the

system is often called a qubit.7 Choosing an orthonormal basis we get an identification H ∼= C2

with inner product

(u,v) = u · v . (1.20)

The space of quantum states in this case is just the complex projective line (i.e., the Riemann

sphere), P(C2) = CP1. Topologically CP1 ∼= S2, the two-sphere, so the space of quantum states of

the qubit system is actually a sphere – this is known as the Bloch sphere.

Observables in this qubit system are 2×2 self-adjoint (a.k.a. Hermitian) matrices, a basis for which

is as follows,

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.21)

Here σ0 is just the identity operator and so does not play much of a role as an observable. The σi,

i = 1, 2, 3 are the so-called Pauli matrices, which obey the commutator algebra

[σ1, σ2] = 2iσ3 , [σ2, σ3] = 2iσ1 , [σ3, σ1] = 2iσ2 . (1.22)

In the given basis for H, σ3 is diagonalised with eigenvalues ±1 while σ1 and σ2 are not, and the

nontrivial commutators imply that these are incompatible observables. By choosing a different

basis one could diagonalise σ1 or σ2 instead, or an arbitrary linear combination of the σi. We will

encounter more properties of these matrices when we revisit this Hilbert space in the context of our

treatment of rotations and spin.

For a qubit, the possible time-evolution operators are elements of the two-dimensional unitary

group U(2) of 2× 2 matrices whose transpose-conjugate (adjoint) is their inverse. It is interesting

to consider the action of this group on the space of quantum states. In particular, note that there

7Qubits play an important role as a building block of quantum computers. They stand in as the quantum
mechanical of a classical bit, which is a degree of freedom that takes one of two values, conventionally called 0 and 1.
Unlike classical bits, qubits can live in any linear superposition of their two basis states, which leads to their more
powerful computational properties.
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is a subgroup U(1) ⊂ U(2) of matrices of the form

U =

(
eiϕ 0

0 eiϕ ,

)
(1.23)

whose action on the space of quantum states is actually trivial (because states related by an overall

phase are equivalent). Thus, we have that the action of U(2) on the space CP1 factors through the

quotient by this U(1) subgroup, which happens to be the three-dimensional orthogonal group,

U(2)/U(1) ∼= SO(3) . (1.24)

There is an obvious action of SO(3) on CP1 which is just the rigid rotations of the two-sphere, and

indeed this is how this action arises (we won’t prove it here). We are most familiar with SO(3) in

connection with rotations in three-dimensional space, and its appearence here is no accident, as we

will see in more detail later in Chapter 6.

1.3 The one-dimensional particle as an instance of the formalism

The main instance of this formalism treated in Part A Quantum Theory arose in describing the

movement of a single point-particle in d = 1, 2, or 3 dimensions. Here we restrict to d = 1. In this

case, a state vectors is represented by a Schrödinger wave function ψ : R→ C, a complex function

of position x ∈ R. The Hermitian inner product of two state vectors is then given by

(φ, ψ) =

∫
R

φ(x)ψ(x) dx . (1.25)

Physical wave functions are required to be normalisable, so

(ψ,ψ) =

∫
R

|ψ(x)|2 dx <∞ . (1.26)

The Hilbert space of such a system is then, roughly speaking, the vector space of complex, square-

integrable functions on Rd. With some technical improvements,8 this leads to the definition of the

Hilbert space H ∼= L2(R) (here L is for Lebesgue and 2 indicates that it is the norm squared that

appears in inner product).

The observables that we most frequently discuss in this setting are realised as differential operators

on wave functions. In particular, the most natural observabes are the momentum and position

operators P and X, which act according to

(Pψ)(x) = −i~
(

dψ

dx

)
(x) , (Xψ)(x) = xψ(x) . (1.27)

More generally, we can construct many self-adjoint differential operators as observables by compos-

ing the actions of P and X appropriately. (However, recall that because in general (AB)∗ = B∗A∗,

a generic composition of P ’s and X’s will not be self-adjoint though P and X themselves are.) For

8As you may know if you have taken Part A Integration of B4.1 Functional Analysis, to really define this space
well one needs to form equivalence classes of functions that agree almost everywhere (i.e., outside of sets of Lebesgue
measure zero). This technical subtlety will not be important to us for the duration of this course.
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example, the Hamiltonian in one dimension is usually taken to have its classical form

H =
P 2

2m
+ V (X) , (1.28)

for some function V (x) that is (normally) bounded below. This acts on states-as-wave-functions

according to

Hψ(x) = − ~2

2m

d2ψ

dx2
(x) + V (x)ψ(x) , (1.29)

The stationary states, or H eigenstates, are those {ψn(x)}, that obey the wave-function version of

the time-independent Schrödinger equation (see the review in Chapter 0),

− ~2

2m

d2ψn
dx2

(x) + V (x)ψn(x) = Enψn(x) , (1.30)

for En in the spectrum of H. For examples like the harmonic oscillator, these form an orthonormal

basis for L2(R).

Remark 1.3.1. Though X and P are intuitively two very natural observables for this system, note

that the space of all square-integrable functions includes many functions which are not differentiable

(or even continuous!) and many functions which, after multiplication by x, would no longer be

square normalisable. This fact is indicative of the aforementioned subtlety that observables are

often only defined on a (dense) subspace of the Hilbert space in the infinite-dimensional case. X

and P also don’t admit proper eigenfunctions in H, an issue that we will return to in Chapter 2.

A class of observables that are better behaved, and which you in fact studied a bit in Part A in

different terms, are the projection operators

PrE : H −→ H ,

ψ(x) 7−→ 1E(x)ψ(x) ,
(1.31)

where 1E(x) is the indicator function for a measurable set E ⊂ R. This operator is easily verified to

be self-adjoint and a projection (in that PrE ◦ PrE = PrE), which implies that its eigenvalues can

only be zero or one. Indeed, by inspection one observes that a function can only be an eigenfunction

if it is supported entirely within E (in which case it has eigenvalue one) or if it is supported entirely

outside of E (in which case it has eigenvalue zero).

A measurement of PrE corresponds to asking the yes/no question “is the particle located within

E?”. The expectation value for this operator is given by

Eψ(PrE) =

∞∫
−∞

dx |ψ(x)|21E(x) =

∫
E

dx |ψ(x)|2 , (1.32)

which is exactly how in Part A you computed the probability that the particle was located in the

region E. Here we see that this result is reproduced in a framework where one only asks questions

of a system that can be encoded in an observable.
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Chapter 2

Dirac’s Formalism and Continuum Normal-
isation

The subject of this section is, in some sense, a matter of notational formalism. We will (re-)introduce

the bra-ket formalism of Dirac for representing states and observables in quantum mechanical

systems. In reality, Dirac’s formalism (in the broadest sense) is more substantive than just a

change of notation. The novelty arises when discussing observables with a continuous spectrum.

This can happen only in infinite-dimensional Hilbert spaces.

2.1 States, dual states, and matrix elements

The basic notational device introduced by Dirac is the bra-ket. Here we represent vectors in a

Hilbert space as kets,

ψ ∈ H ←→ |ψ〉 . (2.1)

Since a Hilbert space is equipped with an inner product, we can also assign to a given state a dual

vector

ϕψ : H → C ,

: χ 7→ (ψ, χ) .
(2.2)

Due to the sesquilinearity of the inner product on H, this map is C-conjugate-linear: ϕλψ = λ̄ϕψ
for λ ∈ C. An important result in functional analysis is the following:

Theorem 2.1.1 (Riesz-Fréchet representation theorem). Let H be a Hilbert space. For every

continuous linear functional ϕ ∈ H∗, there exists a unique ψ ∈ H such that ϕ = ϕψ (using the

notations above).

We will not give a proof here. In the finite-dimensional setting, it is not a difficult result, but in

the infinite-dimensional case it is not as obvious. Indeed, the presence of the adjective continuous

in the above is relevant precisely in the case of infinite-dimensional H (all linear functionals are

continuous in a finite dimensional Hilbert space). This theorem establishes a canonical bijective,

antilinear isometry between H and H∗.

In Dirac notation, we denote elements of the (continuous) dual space H∗ by bras:

ϕ ∈ H∗ ←→ 〈ϕ| . (2.3)

As a somewhat abusive notational convention, we often use as the label for a bra the name of the

state in H to which it corresponds under the Riesz-Fréchet isometry,

ϕψ ←→ 〈ψ| . (2.4)

With these conventions in place, we denote the inner product between two states ϕ and ψ as a

composite bra-ket, where the state and dual state are joined in the way that they visually want to

be,

(ϕ,ψ) ←→ 〈ϕ|ψ〉 . (2.5)
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An operator A can act on kets from the left, whereupon it can be absorbed into the ket

A |ψ〉 = |Aψ〉 . (2.6)

Similarly, operators act from the right upon bras, and are replaced by their adjoint when absorbed

into the bra,

〈ϕ|A = 〈A∗ϕ| . (2.7)

Within an inner product, an operator can be moved around accordingly,

〈ϕ|Aψ〉 = 〈ϕ|A|ψ〉 = 〈A∗ϕ|ψ〉 . (2.8)

The quantity 〈ϕ|A|ψ〉 will be referred to as the matrix element of A between ϕ and ψ.

2.2 Constructions with bra-kets

The bra-ket formalism is convenient for representing variious natural constructions utilising linear

opearations on Hilbert spaces. For example, given the state |α〉 and the dual-state 〈β|, we can

construct the outer product,

|α〉 〈β| : H → H ,

|ψ〉 7→ |α〉 〈β|ψ〉 = (〈β|ψ〉) |α〉 .
(2.9)

So we can concatenate bras and kets in the visually obvious manner and get meaningful operations.

Outer products also behave well under taking adjoints,

(|α〉 〈β|)∗ = |β〉 〈α| . (2.10)

Now let {|i〉 , i ∈ I} be a complete orthonormal basis for H (here I is some finite or countably

infinite indexing set). Orthonormality means we have 〈i|j〉 = 〈j|i〉 = δij . We can then write an

arbitrary vector in H uniquely as a (possibly infinite) linear combination of these basis vectors,

|ψ〉 =
∑
i∈I

ci |i〉 . (2.11)

We can “measure” the components cj for some j ∈ I by acting with the bra corresponding to |j〉,

〈j|ψ〉 =
∑
i∈I

ci 〈j|i〉 =
∑
i∈I

ciδij = cj . (2.12)

Using this, we see that we can build the operator that performs an orthogonal projection onto the

one-dimensional subspace Hj spanned by the basis vector |j〉 by using the outer product |j〉 〈j|:9

|j〉 〈j|ψ〉 = cj |j〉 . (2.14)

More generally, for linear subspace H′ ⊆ H with orthonormal basis |i′〉 , i′ ∈ I ′ we can form the

9For the a general state vector ψ, not necessarily normalised, we have the orthogonal projection operator,

PrHψ =
|ψ〉 〈ψ|
〈ψ|ψ〉

. (2.13)
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manifestly self-adjoint, orthogonal projection operator from H onto H′:

PrH′ =
∑
i′∈I′
|i′〉 〈i′| . (2.15)

In particular, for the case H′ = H, we have an expression for the identity operator,

PrH ≡ 1H =
∑
i∈I
|i〉 〈i| . (2.16)

This expression is often referred to as a resolution of the identity or completeness relation. Given a

linear operator A : H → H, we can then resolve it in terms of its matrix elements with respect to

the given basis,

A = 1HA1H =
∑
i,j∈I

|i〉 〈i|A|j〉 〈j| =
∑
i,j∈I

Aij |i〉 〈j| . (2.17)

where

Aij = 〈i|A|j〉 . (2.18)

Finally, for A an observable if the states {|i〉} are an orthonormal basis of A eigenstates obeying

A |i〉 = ai |i〉 then we have matrix elementsAij = aiδij and (2.17) becomes the spectral decomposition

of A,

A =
∑
i

ai |i〉 〈i| . (2.19)

In the case where H is finite-dimensional, this is all pretty familiar. The outer product |i〉 〈j|
corresponds to the matrix that is all zeroes except for having a one in the i’th row at the j’th

column, and (2.17) describes the building up the operator A entry by entry as a matrix, while

(2.19) corresponds to the matrix expression for A in the basis where A is diagonalised, which is

the usual spectral decomposition of an Hermitian matrix. The resolution of the identity is just the

expression for the identity operator as the identity matrix.

In terms of bra-kets, we can represent the expectation value of an observable as follows. If our basis

{|i〉} diagonalises the observable A as above, then we have

Eψ(A) = Eψ(A1H) = =
∑
i∈I
〈ψ|A|i〉 〈i|ψ〉 ,

=
∑
i∈I

ai| 〈i|ψ〉 |2 ,
(2.20)

which matches the notion of expectation value for a random variable.

2.3 Continuous observables

We now come to the issue of observables with continuous spectrum. In finite dimensional Hilbert

spaces the spectrum of any observble is discrete, so this is an issue of infinite-dimensional Hilbert

spaces. Dirac suggested in his original treatise on the subject to extend his bra-ket formalism to

this case in a natural, but mathematically tenuous, manner, and this is the method that is standard

in the physics community. His approach can in retrospect be understood as being essentially an

application of the spectral theorem for self-adjoint operators applied to infinite-dimensional Hilbert

spaces. We will introduce this method in an operational sense.

To ground our discussion, let’s return to our standard infinite-dimensional example: a particle
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moving on the real line, so with Hilbert space L2(R).10 The two fundamental observables in this

setting are the position and momentum operators. Let us first consider the position operator X.

Now suppose we want to define an eigenstate |ξ〉 for this operator for ξ ∈ R,11

X |ξ〉 = ξ |ξ〉 . (2.21)

If we introduce a wave function ψξ(x) to represent such a state, it should satisfy the unlikely-looking

identity

xψξ(x) = ξψξ(x) . (2.22)

For this to hold, it must be that ψξ(x) = 0 for x 6= ξ, and indeed if this were an element of L2(R)

that would mean it was the zero function, so certainly this can’t correspond to a non-zero element

of the Hilbert space. However, we propose to still introduce such an obejct, which we refer to as

a generalised eigenstate. Note that since this generalised state is meant to represent a situation

where the particle is definitely at x = ξ, it is reasonable to demand

〈ξ|ψ〉 = ψ(ξ) , 〈ψ|ξ〉 = ψ(ξ) . (2.23)

This is actually an important idea: the value of the wave function at a point x = ξ is the overlap of

the state in question with the generalised position eigenstate |ξ〉. Expressing this in terms of wave

functions, we have
∞∫
−∞

dxψξ(x)ψ(x) = ψ(ξ) , (2.24)

This is exactly the sifting property of (confusingly named) Dirac δ-function. Rather than a function,

this is a distribution, meaning it is a linear functional on functions. You have met the Dirac

δ−function before in M4 Multivariable Calculus, and maybe also in ASO Integral Transforms.

Indeed, we will identify

|ξ〉 ←→ ψξ(x) = δ(x− ξ) . (2.25)

Note that while these generalised position eigenstates are not normalisable in the usual sense, they

obey a continuum normalisation condition,

〈ξ|ξ′〉 =

∞∫
−∞

dx δ(x− ξ)δ(x− ξ′) = δ(ξ − ξ′) . (2.26)

This is a fairly natural generalisation of the usual normalisation condition where we have a Kronecker

δ, but with the Dirac δ instead.

Happily, it turns out that we can largely use these generalised position eigenstates in the same ways

we would use ordinary basis states as discussed previously. Justification for this rests upon the

functional analysis that we are sweeping under the rug,12 but as we mentioned above, the quantum

10A similar discussion here could take place for the particle moving on an interval [0, 1] ⊂ R, with Hilbert space
L2([0, 1]). The free particle on the entire real line is even a bit more subtle.

11Here we begin to adopt a fairly standard notational choice: in the context of discussing a particular observable
(in this case P ), we denote states whose eigenvalue is some number (in this case q ∈ R) by a ket whose label is
that same eigenvalue (in this case |q〉). There is some danger of getting confused if not sufficiently diligent with this
notational system, so be careful!

12There are a couple of realisations of these generalised eigenstates within a more rigorous framework. In one
version of the spectral theorem for self-adjoint operators on infinite-dimensional Hilbert spaces, one constructs the
Hilbert space of interest as a direct integral of smaller Hilbert spaces, and these generalised states are elements of the
integrand of that direct integral. Alternatively, Hilbert spaces arising in quantum mechanics can be equipped with
additional structure known as a Gel’fand triple. In this case the generalised states are elements of a larger space of
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mechanical formalism (due to Dirac) actually predated the rigorous justification. In particular, we

have a resolution of the identity in terms of these position eigenstates,

1L2(R) =

∞∫
−∞

dξ |ξ〉 〈ξ| . (2.27)

Acting on normalisable states (corresponding to authentic wave functions), we have

1H |ψ〉 =

∞∫
−∞

dξ |ξ〉 〈ξ|ψ〉 ,

=

∞∫
−∞

dξ |ξ〉ψ(ξ) ,

= |ψ〉 ,

(2.28)

where the final equality gives us the continuum analogue of the decomposition of a general state in

an orthonormal basis.

Generalising this resolution of the identity, if we integrate the (generalised) outer product |ξ〉 〈ξ|
over any Lebesgue measurable subset E ⊂ R, we obtain the self-adjoint projection operator corre-

sponding to multiplication by the indicator function 1E discussed in Chapter 1.3,

PrE =

∫
E

dξ |ξ〉 〈ξ| , 〈x|PE |ψ〉 = 1E(x)ψ(x) . (2.29)

In a careful version of these constructions, it is this association of a self-adjoint projection operator to

measurable subsets of R that is rigorously defined and guaranteed to exist by the spectral theorem;

it is called a projection valued measure.

There is a similar story with the momentum operator P = −i~ d
dx . We introduce (generalised)

momentum eigenstates |p〉,

P |p〉 = p |p〉 , p ∈ R , (2.30)

and if we denote the actual wave function associated to this state as ψp(x), then we can easily solve

the corresponding differential equation in a formal sense,

−i~ψ′p(x) = pψp(x) ,

ψp(x) = N e
ipx
~ ,

(2.31)

where N is some normalisation factor. The problem is now clear: these wave functions are not

square-normalisable at all (on the entire real line), so like in the position case, this is not giving us

an element of L2(R), but rather something that can be interpreted as a distribution.

Using our previous insight about the relationship between wave functions and the generalised po-

sition eigenstates, we find the overlap equation

〈x|p〉 = ψp(x) = N e
ipx
~ . (2.32)

distributions that form a part of that structure. You don’t need to know any of this for the present course!
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We can now compute the continuum normalisation condition for the momentum eigenstates,

〈p|p′〉 = N 2

∞∫
−∞

dx e−
ipx
~ e

ip′x
~ = 2π~N 2

∞∫
−∞

ds e2πi(p−p
′)s = 2π~N 2δ(p− p′) , (2.33)

where in the last equation we have used the integral representation for the delta function. It is

then natural to adopt the normalisation conventions N = (2π~)−1/2 giving canonical continuum

normalisation to the generalised momentum eigenstates. We then have an analogous resolution of

the identity in terms of momentum states,

1H =

∞∫
−∞

dp |p〉 〈p| . (2.34)

This formalism of position and momentum (generalised) bases for L2(R) gives us a nice new per-

spective on the quantum mechanics of a particle. To a given state vector |ψ〉, we can associated

either its expression in position space,

ψ(x) = 〈x|ψ〉 , |ψ〉 =

∞∫
−∞

dxψ(x) |x〉 , (2.35)

or its expression in momentum space,

ψ̂(p) = 〈p|ψ〉 , |ψ〉 =

∞∫
−∞

dp ψ̂(p) |p〉 . (2.36)

So there are actually (at least) two wave functions associated to the abstract state ψ. These are

related by the Fourier transform,

ψ(x) = 〈x|ψ〉 =

∞∫
−∞

dp 〈x|p〉 〈p|ψ〉 =
1√
2π~

∞∫
−∞

dp e
ipx
~ ψ̂(p) . (2.37)

ψ̂(p) = 〈p|ψ〉 =

∞∫
−∞

dx 〈p|x〉 〈x|ψ〉 =
1√
2π~

∞∫
−∞

dx e−
ipx
~ ψ(x) . (2.38)

Indeed, the Fourier transform is a unitary map from L2(R) to itself (this is the Plancherel theorem),

so the change from position to momentum representation is just a change of basis of sorts for our

Hilbert space.

Remark 2.3.1. This formalism for generalised position eigenstates generalises immediately to the

case of a particle moving in, say, d = 2 or d = 3 dimensions. There for x = (x1, . . . , xd) we have

the generalised eigenstates

Xi |x〉 = xi |x〉 , (2.39)

obeying the continuum normalisation condition,

〈x|x′〉 = δd(x− x′) , (2.40)
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and the corresponding resolution of the identity,

1L2(Rd) =

∞∫
−∞

· · ·
∞∫
−∞

dx1 · · · dxd |x〉 〈x| . (2.41)

Similarly, we have generalised momentum eigenstates corresponding to non-normalisable plane-wave

wave functions,

|p〉 −→ ψp(x) =
1

(2π~)d/2
e
ip·x
~ , (2.42)

obeying the same continuum normalisation condition and admitting the same type of resolution of

the identity. d-dimensional wave functions in position space and momentum space are related now

by the d-dimensional Fourier transform.

2.4 Application: free particle propagator

A nice application of what we’ve developed here is to introduce an important object in studying

time-dependent quantum mechanical behaviours: the propagator. Intuitively, this is the quantity

that tells you the quantum mechanical amplitude (square root of probability density) for a particle

that starts at a given position to be detected at some other position at some definite time in the

future. In terms of these generalised position eigenstates, this is formalised as

U(x1, t1;x0, t0) := 〈x1|U(t1; t0)|x0〉 , (2.43)

where U(t1; t0) is the unitary time evolution operator. If one has the propagator under good control,

then one can understand general time evolution as follows double integral

〈ψ1|U(t1, t0)|ψ0〉 = 〈ψ1|

 ∞∫
−∞

dx1 |x1〉 〈x1|

U(t1; t0)

 ∞∫
−∞

dx0 |x0〉 〈x0|

 |ψ0〉 ,

=

∞∫
−∞

∞∫
−∞

dx1 dx0 ψ1(x1)U(x1, t1;x0, t0)ψ0(x0) ,

(2.44)

In general, the propagator is not so easy to compute. Here we will do it for the case of the free

particle in one dimension. The Hamiltonian is H = P 2/2m and the (generalised) energy eigenstates

are precisely the (generalised) momentum eigenstates:

H |p〉 = Ep |p〉 =
p2

2m
|p〉 . (2.45)

As we know well, time evolution is then defined via phase multiplication on these states,

U(t1, t0) |p〉 = exp

(
−iEp(t1 − t0)

~

)
|p〉 = exp

(
−ip2(t1 − t0)

2m~

)
|q〉 . (2.46)

This means that the momentum-space propagator is very simple for the free particle,

〈p1|U(t1; t0) |p0〉 =: Û(p1, t1; p0, t0) = δ(p1 − p0) exp

(
− ip

2
0(t1 − t0)

2m~

)
. (2.47)
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The position-space propagator is then obtained by a double Fourier transform,

U(x1, t1;x0, t0) = 〈x1|

 ∞∫
−∞

dp0 |p0〉 〈p0|

U(t1; t0)

 ∞∫
−∞

dp1 |p1〉 〈p1|

 |x0〉 , (2.48)

=

∞∫
−∞

∞∫
−∞

dp0dp1 〈x1|p0〉 Û(p1, t1; p0, t0) 〈p1|x0〉 , (2.49)

=
1

2π~

∞∫
−∞

∞∫
−∞

dp0dp1 δ(p1 − p0) exp

(
ip1x1 − ip0x0

~
− ip20(t1 − t0)

2m~

)
, (2.50)

=
1

2π~

∞∫
−∞

dp exp

(
ip(x1 − x0)

~
− ip2(t1 − t0)

2m~

)
, (2.51)

=
1

2π~

∞∫
−∞

dp exp

(
ip(x1 − x0)

~
− ip2(t1 − t0)

2m~

)
, (2.52)

The last integral can be computed using results for Fresnel integrals,13 which leaves us with

U(t1, x1; t0, x0) =

(
m

2πi~(t1 − t0)

) 1
2

exp

(
−m(x1 − x0)2

2i~(t1 − t0)

)
. (2.53)

It is interesting to observe that instantly when t1 > t0, the propagator is nonzero for arbitrarily large

x1 − x0. This reflects the infinite uncertainty in momentum that is associated with the completely

localised position eigenstate at time t0. However, the phase in the exponential is also very large for

large x1 − x0 and small t1 − t0, so when we average over positions (as we should if we start with

a normalisable wave function) then there will be cancellations and the wave function will remain

somewhat localised near its original support.

13The general formula is
∞∫
−∞

dx exp

(
i

2
ax2 + ibx

)
=

(
2πi

a

) 1
2

exp

(
−
ib2

2a

)
.
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Chapter 3

Composite Systems, Tensor Products, En-
tanglement

It will prove important to be able to build up the description of a quantum system from those

of more elementary subsystems with a smaller number of degrees of freedom. In this section we

introduce the basic mathematical machinery for doing this (the Hilbert space tensor product), and

look at a simple example of the phenomenon of quantum entanglement, which arises naturally as a

consequence.

3.1 Hilbert space tensor product

Suppose we are presented with two non-interacting quantum systems that are to be subsumed

into a single description. You might imagine two atoms (or collections of atoms) kept far enough

apart so as to be non-interacting, or alternatively you might imagine a more general system of

two particles that, in a first approximation, do not interact at all with one another and so can be

treated separately. The two systems taken on their own will have their states encoded by Hilbert

spaces H1 and H2, respectively, while as a composite system we should assign a single Hilbert space

H3. How should this Hilbert space H3 behave? The following construction arises naturally from

physical considerations:

• For state vectors |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, there should exist a definite state vector

|ψ1 ⊗ ψ2〉 ∈ H3. Such a vector is called a pure tensor, or alternatively, decomposable.14

• By linearity, we should be able to take linear superpositions of these pure tensors. As a first

approximation, we can consider the vector space F (H1,H2) corresponding to all (finite) C-

linear combinations of these free tensors. This is known as the free vector space on the set

H1 ×H2.

• The free vector space overcounts in some obvious ways, and we introduce a number of iden-

tifications:

◦ |λψ1 ⊗ ψ2〉 ∼ λ |ψ1 ⊗ ψ2〉 ∼ |ψ1 ⊗ λψ2〉 for λ ∈ C .

Since state vectors only encode physical states up to overall scalar multiplication, the

consequence of rescaling either tensor factor should be no different from rescaling the

vector as a whole.

◦ |(ψ1 + φ1)⊗ ψ2〉 ∼ |ψ1 ⊗ ψ2〉+ |φ1 ⊗ ψ2〉 .

If system two is definitely in state |ψ2〉, then when system one is in a superposition of two

states, the total system is in the superposition of the corresponding two decomposable

states where the second system remains in |ψ2〉.

◦ |ψ1 ⊗ (ψ2 + φ2)〉 ∼ |ψ1 ⊗ ψ2〉+ |ψ1 ⊗ φ2〉 .

Same as above with the two systems switched.

14When not using bra-ket notation, it is common to write this vector as ψ2 ⊗ ψ2. We may also sometime use
|ψ1, ψ2〉 or |ψ1〉 ⊗ |ψ2〉 interchangeably. Hopefully the situation will always be clear in context.
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• The vector space tensor product is then defined as the quotient of the free vector space above

by these equivalence relations,

H1 ⊗H2 := F (H1,H2)/ ∼ . (3.1)

• An inner product on H1 ⊗ H2 is inherited from those on H1 and H2 by defining for pure

tensors

〈ψ1 ⊗ ψ2|φ1 ⊗ φ2〉 = 〈ψ1|φ1〉 〈ψ2|φ2〉 , (3.2)

and extending this to general elements by sesquilinearity. Note that this definition is compat-

ible with the equivalence relations given above.

• The Hilbert space tensor product is obtained by taking the completion of this vector space

tensor product with respect to the metric induced by the inner product. As usual, this is a

technical detail that is relevant in the infinite dimensional case. It essentially means that we

allow the possibility of taking infinite linear combinations of pure tensors whose norm is still

finite. Finer aspects of this construction won’t be important or examinable in this course,

though we will see examples.

Remark 3.1.1 (Alternate construction of tensor product). There is an alternative, and in a sense

much simpler, definition of the Hilbert space tensor product. Let |αi∈I〉 and |βj∈J〉 denote bases

for H1 and H2, respectively. Then H1 ⊗ H2 can be identified with the Hilbert space with given

basis |αi ⊗ βj〉 (again, in the infinite dimensional case one takes a completion which allows infinite

linear combinations of these). To a purist, the first definition has the advantage being explicitly

basis-independent. For practical purposes, this latter definition is often the most useful.

If we have a system described by a tensor product Hilbert space H1 ⊗ H2, then operators and

observables that are defined to act separately on H1 and H2 naturally extend to the tensor product.

If A1 : H1 → H1 and A2 : H2 → H2, then we can define

A1 ⊗A2 : H1 ⊗H2 −→ H1 ⊗H2

|ψ1 ⊗ ψ2〉 7−→ |A1ψ1 ⊗A2ψ2〉 .
(3.3)

In particular, when either A1 or A2 is the identity operator, then this gives operators that act

on the tensor product only through the second or first tensor factor, respectively. Such operators

naturally commute,

(A1 ⊗ 1H2
)(1H1

⊗A2) = (A1 ⊗A2) = (1H1
⊗A2)(A1 ⊗ 1H2

) , (3.4)

which is in correspondence with the physical criterion that making observations on one system

should not impact another, in principle disjoint system.

We can similarly form the n-fold tensor product H1⊗H2⊗ . . .⊗Hn with basis αi1 ⊗βi2 ⊗ . . .⊗ γin
with ij indexing a basis of Hj . This is the Hilbert space for the composite of the n quantum

mechanical systems described by Hi, i = 1, . . . , n. When the constituent Hilbert spaces are all

identical to H we simply write ⊗nH or H⊗n.

A first important behaviour of Hilbert spaces under tensor product is that their dimensions (when

finite) combine multiplicatively,

dim(H1 ⊗H2) = dimH1 × dimH2 . (3.5)

– 21 –



This follows immediately from the second construction of the tensor product given above, where

the number of basis elements clearly obeys this relation. It is worth pausing to compare this

situation with what one encounters classically. If a two classical systems have configuration spaces

of dimensions d1 an d2, say, then taken together their joint configuration space will be of dimension

d1 + d2. In this sense, quantum mechanical state spaces get very big very fast compared to their

classical analogues. Indeed, this is one of the properties that underlies the power of quantum

computation.

There is a subspace of the tensor product Hilbert space that behaves a bit more classically: this is

the subspace of pure tensors. Note that this is not a linear subspace of H1⊗H2, since the property

of being a pure tensor is not preserved under addition. The dimensionality of the subspace of pure

tensors does behave additively,

dim(H1 ⊗H2)decomposable = dimH1 + dimH2 − 1 , (3.6)

where the correction by one comes from the equivalence of rescaling the two tensor factors in a pure

tensor. Another way to see this result is to consider the relevant subspaces in projectivised Hilbert

space. Here we have that subspace of decomposable states is of the form

P(H1)× P(H2) ⊂ P(H1 ⊗H2) . (3.7)

The dimensionality of the let hand side is dimH1 +dimH2−2, and de-projectivising to recover the

subspace of the Hilbert space adds one dimension. The embedding describing how the left hand

side of (3.7) sits inside the right hand side is known as the Segre embedding.

3.2 Example: tensor product of qubits; entanglement

Let’s consider the tensor product in the simplest case of combining several qubits (see Chapter 1.2).

We recall that the qubit has Hilbert space H ∼= C2; let us now (adopting Dirac notation) denote a

fixed orthonormal basis for the qubit by |1〉 and |0〉 such that σ3 |1〉 = 1 and σ3 |0〉 = −1.15 We can

then take as a basis for the tensor product C2 ⊗ C2 ∼= C4 the following pure tensors

|0⊗ 0〉 , |0⊗ 1〉 , |1⊗ 0〉 , |1⊗ 1〉 . (3.8)

Within this vector space, the most general state takes the form

a |0⊗ 0〉+ b |0⊗ 1〉+ c |1⊗ 0〉+ d |1⊗ 1〉 . (3.9)

while the most general pure tensor takes the form

(α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉) = αγ |0⊗ 0〉+ αδ |0⊗ 0〉+ βγ |0⊗ 0〉+ βδ |0⊗ 0〉 (3.10)

One can check that a state of the form (3.9) can be written as in (3.10) if and only if ad− bc = 0,

so indeed the set of pure states is a nonlinear subspace of H dimension 2 + 2− 1 = 3.

If we combine more qubits the dimension of the Hilbert space grows exponentially. In particular,

⊗n C2 ∼= C2n , (3.11)

15These basis vectors are often denoted instead by |↑〉 and |↓〉 respectively due to their interpretation in terms of
spins, and sometimes also |+〉 and |−〉. We may use either or both of these when we revisit this system in later
chapters.
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while the space of pure tensors is dramatically smaller (namely 2n− 1).

The two qubit system lets us introduce the simplest example of quantum entanglement. Suppose

we have two qubit systems that are prepared (somehow) in the initial state16

|EPR〉 =
|0⊗ 0〉 − |1⊗ 1〉√

2
. (3.12)

Then suppose that Alice carries the first qubit with her to a faraway star system, while Bob remains

on Earth with the second qubit. If Alice makes a measurement corresponding to the observable σ3
on her qubit (so corresponding to the obsevable σ3⊗σ0 on the tensor product Hilbert space), there

is a 50% probability that she will find the value +1 and a 50% probability that she will find the

value −1. In either case, she should find that the quantum state collapses according to the wave

function collapse postulate,

Alice measures + 1 −→ |ψ〉 = |1⊗ 1〉 ,
Alice measures − 1 −→ |ψ〉 = |0⊗ 0〉 .

(3.13)

In each of the collapsed states, the results of a σ3 measurement by Bob of his qubit (corresponding

to the observable σ0 ⊗ σ3 on the combined system) should return a definite answer, with which

answer is returned being dictated by the results of Alice’s measurement. One might phrase this in

a paradoxical-sounding way, as saying that when Alice makes her measurement, it instantaneously

impacts the outcomes of Bob’s experiment.

This sounds odd, especially in view of Einstein’s theory of relativity, which says that there should be

no communication faster than the speed of light. Upon additional scrutiny, however, the situation

is not quite so paradoxical; though the result of Alice’s measurement means that the result of Bob’s

measurement can only take a particular value, Bob has no way of knowing what result Alice found.

What we really get from the entangled state is a perfect correlation between the results of Alice

and Bob’s experiments.17

Note that by virtue of the significant difference in the growth rate between the dimensionality of

the space of pure tensors and the dimensionality of the Hilbert spaces we get upon iterated tensor

products, entangled states are by far the generic ones in composite quantum systems.

3.3 Example: multi-particle systems of distinguishable particles

Another incarnation of the tensor product arises when we consider systems of several elementary

particles. If our particles move in d dimensional space, then the Hilbert space for the i’th particle

will be identified as Hi ∼= L2(Rd), and for n particles we are supposed to be interested in the Hilbert

space

H ∼= L2(Rd)1 ⊗ L2(Rd)2 ⊗ · · · ⊗ L2(Rd)n . (3.14)

The result of the Hilbert space tensor product turns out to just be the space of square-normalizable

wave functions of the n particle positions ψ(x1,x2, . . . ,xn), i.e.,

H ∼= L2(Rdn) . (3.15)

16EPR here stands for Einstein-Podolsky-Rosen, the authors of a famous paper pointing out seemingly paradoxical
properties of entangled quantum systems. This kind of a state is also sometimes called a Bell pair.

17There is a lot more to say here and we won’t pursue it in this course. The actual EPR ‘paradox’ is related
to a slightly different set of thought experiments involving Alice choosing one of several measurements to perform,
which has a consequence for the resultant probability distribution for Bob’s experiment after the fact. Rest assured,
though, it still doesn’t lead to a real paradox or any faster-than-light communication.
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At a technical level, this is a case where the final step of completing the Hilbert space is relevant. We

identify a pure tensor of single-particle wave functions with a separable n-particle wave function,

ψ1(x1)⊗ ψ1(x1)⊗ · · · ⊗ ψn(xn) ←→ ψ(x1,x2, . . . ,xn) = ψ1(x1)ψ1(x1) · · ·ψn(xn) . (3.16)

While a general n-particle wave function certainly can’t be written as a finite linear combination of

separable wave functions of the above form, given a Hilbert space basis ψi(x), i = 1, 2, . . . ,∞ for

L2(Rd), then pure tensors formed from these basis elements form an orthonormal basis for L2(Rdn).

Remark 3.3.1. The technical subtlety associated with completion of the Hilbert space is, at least for-

mally, evaded when we choose to work with our continuum basis of generalised position eigenstates.

In this case, we introduce basis elements

|x1, . . . ,xn〉 = |x1〉 ⊗ · · · ⊗ |xn〉 , (3.17)

which obey

〈x1, . . . ,xn|x′1, . . . ,x′n〉 = δd(x1 − x′1) · · · δd(xn − x′n) = δnd((x1; . . . ; xn)− (x′1; . . . ; x′n)) , (3.18)

where in the last expression we are using the nd-dimensional Dirac delta function. Then the most

general state takes the form

|ψ〉 =

∫
Rnd

ddx1 · · · ddxnψ(x1, . . . ,xn) |x1, . . . ,xn〉 , (3.19)

which is just an n-particle wave function in the usual sense as an element of L2(Rnd).

In view of what is to come in the next section, notice that for, say, the n = 2 case of two particles,

the basis elements ψi(x1)⊗ψj(x2) and ψ2(x1)⊗ψj(x2) are inequivalent, and correspondingly, for a

general two-particle wave function, ψ(x1,x2) and ψ(x2,x1) are unrelated. In words, the probability

that particle one is in state i and particle two is in state j is not the same as particle one being in

state j and two in state i. In this sense, this is a description of distinguishable particles, for which

we know a priori what we mean by particle one and particle two.
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Chapter 4

Identical particles and statistics

A curious consequence of the quantum mechanical picture of the world is that elementary particles

of the same type (electrons, quarks, etc.) naturally come to be thought of as being fundamentally

indistinguishable. To motivate this consider the following thought experiment.18

Suppose that at time t = 0 you have a pair of electrons whose positions are known well enough to

distinguish them (i.e., one is definitely in one half of the room and the other is definitely in the other

half). After a period of time elapses, the wave function will have evolved so that both electrons

could be anywhere in the room with some probability. At this point, we may make measurements

to determine the positions of two electrons, but we will have no way to distinguish the two different

electrons; in contrast to the classical case, we can’t keep track of “electron one” by following it

along its trajectory during the time interval – it had no definite trajectory when it was not being

observed!

4.1 Indistinguishable particles and wave functions

We wish to address the consequences of indistinguishability on multi-particle wave functions, start-

ing with the case of two particles. A two particle wave function is a (square-normalisable) function

of two positions ψ(x1,x2). If we now demand that the wave function represent indistinguishable

particles, then it should assign the same probability (density) to find “particle one” at x1 and

“particle two” at x2 as it does to finding “particle one” at x2 and “particle two” at x1.19 In other

words, the wave function should obey

|ψ(x2,x1)|2 = |ψ(x1,x2)|2 =⇒ ψ(x2,x1) = λψ(x1,x2) , (4.1)

where λ = eiϕ is a phase. Iterating this relation we see that

ψ(x1,x2) = λ2ψ(x1,x2) , (4.2)

so there are just two possibilities: λ = ±1.20 In the case λ = 1 we are restricting ourselves

to symmetric functions of the two particles’ positions, while for λ = −1 we have anti-symmetric

functions.

4.1.1 Permutations and Statistics

In the case of many particles, we have an obvious action of the symmetric group Sn on the space

of n-particle wavefunctions, (
Sn, L

2(Rnd)
)
−→ L2(Rnd)

(π, ψ(x1, . . . ,xn)) 7−→ ψ(xπ(1), . . . ,xπ(n)) .
(4.3)

18It also turns out that the indistinguishability of elementary particles is a natural prediction of quantum field
theory, which is the framework that synthesizes quantum theory with the special theory of relativity.

19Scare quotes because, of course, there is no unambiguous notion of particle one and particle two; this is just
referring to the order of the arguments in the wave function.

20There is an oft-mentioned caveat here, which is that in two-dimensions there is a possibility for a more general
phase λ, with the corresponding particles referred to as anyons. To see the possibility of this more general phase,
it is necessary to be a bit more flexible about the description of the Hilbert space for several particles to allow
multi-valued functions of positions. We will not pursue this here.
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By the same argument as given above for the n = 2 case, indistinguishability requires that this

action obeys

ψ(xπ(1), . . . ,xπ(n)) = λ(π)ψ(x1, . . . ,xn) , (4.4)

with λ(π) a (now π-dependent) phase: λ(π) = eiϕ(π). Composing the action of two permutations

π, σ ∈ Sn we find

ψ(x(π◦σ)(1), . . . ,x(π◦σ)(n)) = λ(π)ψ(xσ(1), . . . ,xσ(n)) = λ(π)λ(σ)ψ(x1, . . . ,xn) ,

= λ(π ◦ σ)ψ(x1, . . . ,xn) .
(4.5)

So we have the rule λ(π ◦ σ) = λ(π)λ(σ).

Definition 4.1.1. A multiplicative character of a group G is a group homomorphism from G into

the circle group U(1) (or more generally into the ring of units k× of a field k).

Thus, we have that the map λ : Sn → C defines a multiplicative character for the permutation

group Sn. It turns out that there are only two inequivalent multiplicative characters for Sn, as we

shall now see.

First observe that any two elements of Sn that are conjugate to each other are mapped to the same

value by a multiplicative character,

λ(π ◦ σ ◦ π−1) = λ(π)λ(σ)λ(π−1) = λ(π)λ(σ)λ(π)−1 = λ(σ) . (4.6)

Now recall that in Sn, a transposition is a permutation that just swaps two elements of {1, . . . , n},
say r and s, and is denoted (r s). Such transpositions are all conjugate to one another:

(r s) = (1 r)(2 s)(1 2)(2 s)−1(1 r)−1 . (4.7)

Thus we have that λ((r s)) = λ((1 2)) = ±1, where our previous argument in the two-particle case

implies the latter equality.

General permutations are generated by the composition of transpositions, and are unambiguously

classified as either being odd or even according to whether they arise from an odd or even number

of transpositions. Thus we have the following

Proposition 4.1.2. Let λ : Sn → C be a multiplicative character for the symmetric group. Then

either λ(π) ≡ 1 or λ(π) = ε(π), where ε gives the signature of the permutation,

ε(π) :=

{
1 for π even ,

−1 for π odd .
(4.8)

Thus the two possibilities for wave functions of indistinguishable particles are totally symmetric

wave functions (λ ≡ 1) and totally antisymmetric wave functions (λ = ε), generalising the two-

particle case. For a given species of elementary (indistinguishable) particle, one of these two cases

must apply. This leads to a binary classification of indistinguishable particles:

Definition 4.1.3. Indistinguishable particles satisfying (4.4) are called bosons if the corresponding

group character is the trivial one; these particles are said to obey Bose-Einstein statistics. Particles

satisfying (4.4) with the nontrivial character (ε) are called fermions; these particles are said to obey

Fermi-Dirac statistics.
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The known elementary fermions in nature are electrons, muons, τ -particles, and neutrinos, along

with their anti-particles (collectively, leptons) as well as quarks. Also composite particles made up

of an odd number of elementary fermions, such as protons and neutrons, are fermions.

The known elementary bosons in nature are photons, gluons, W - and Z-bosons, gravitons, and the

Higgs boson. Also composite particles made up of an even number of elementary fermions, such as

mesons.

An important fact that can be observed from nature is that the statistics of a particle is correlated

with its spin (we will give a full treatment of spin in a later chapter). In fact, this empirical fact

is also a mathematical theorem that can be proven within the context of relativistic quantum field

theory.

Theorem 4.1.4 (Spin-statistics theorem in three dimensions). In a relativistic quantum theory in

three spatial dimension, particles with integral spin must obey Bose-Einstein statistics. Particles

with half-integral spin (n+ 1
2 for n ∈ N) must obey Fermi-Dirac statistics.

An analogous theorem holds in any number of spatial dimensions greater than three, where one must

be a bit more precise about the meaning of integral/half-integral spin (spin is no longer charcterised

by a single number in higher dimensions).

4.2 Bosonic and fermionic wave functions

It is useful to have some tools for producing and manipulating wave functions for particles obey-

ing appropriate statistics. We first define projection operators onto the subspaces of completely

symmetric and completely anti-symmetric (bosonic and fermionic, respectively) wave functions. In

particular, for a general n-particle wave function ψ, define21

Prλψ =
1

n!

∑
π∈Sn

λ(π−1)ψ(xπ(1), . . . ,xπ(n)) , (4.9)

where as before, λ is the identity for Bose-Einstein and is ε for Fermi-Dirac. We can think of this

as averaging over the action of the permutation group, with the average weighted by the relevant

group character. We easily prove the following:

Proposition 4.2.1. For σ ∈ Sn we have

(Prλψ)(xσ(1), . . . ,xσ(n)) = λ(σ)(Prλψ)(x1, . . . ,xn) . (4.10)

and Pr2λ = Prλ so Prλ is an orthogonal projection operator whose range consists of bosonic/fermionic

wave functions.

21Since for our multiplicative characters λ(π) = ±1 = λ(π−1), the π−1 argument could be replaced with a π. The
expression here is the one that generalises to more complicated finite groups admitting more general multiplicative
characters.
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Proof. We proceed by direct calculation:

(Prλψ)(xσ(1), . . . ,xσ(n)) =
1

n!

∑
π∈Sn

λ(π−1)ψ(x(π◦σ)(1), . . . ,x(π◦σ)(n)) ,

=
1

n!

∑
π∈Sn

λ(σ ◦ (π ◦ σ)−1)ψ(x(π◦σ)(1), . . . ,x(π◦σ)(n)) ,

=
1

n!

∑
π̃∈Sn

λ(σ ◦ π̃−1)ψ(xπ̃(1), . . . ,xπ̃(n)) ,

= λ(σ)(Prλψ)(x1, . . . ,xn) .

to get to from the second to the third line we have used that for fixed σ ∈ Sn, as π ranges over Sn,

so does π̃ = π ◦ σ and so we can replace the latter by the former in the summation.

Using this we find

Prλ(Prλψ)(x1, . . . ,xn) =
1

n!

∑
π∈Sn

λ(π−1)(Prλψ)(xπ(1), . . . ,xπ(n)) ,

=
1

n!

∑
π∈Sn

λ(π−1)λ(π)(Prλψ)(x1, . . . ,xn) ,

= (Prλψ)(x1, . . . ,xn) ,

where we’ve used that |Sn| = n!. Finally, the orthogonality of the projection is equivalent to its

self-adjointness. Self-adjointness can be shown by term-by-term change of variables in the inner

product. We leave the details to the interested reader. The stated result then follows. �

4.2.1 Two-particle projections

For the two-particle case n = 2, where the space of distinguishable-particle wave functions is L2(Rd×
Rd) the two projectors we’ve just deinfed are just the symmetric and antisymmetric combinations:

Pr1ψ(x1,x2) =
ψ(x1,x2) + ψ(x2,x1)

2
, P rεψ(x1,x2) =

ψ(x1,x2)− ψ(x1,x2)

2
. (4.11)

In this case (n = 2), all wave functions can be decomposed into symmetric and antisymmetric parts,

so the full space of (distinguishable) two-particle wave functions can be decomposed into bosonic

and fermionic wave functions. Alternatively, this can be phrased as the identity

Pr1 + Prε = 1L2(Rd×Rd) , (4.12)

which can be re-interpreted as the resolution of the identity for the permutation operator that

exchanges x1 ↔ x2.

Note that this is not the situation for larger values of n; there are wavefunctions that cannot be

decomposed into just totally-symmetric and totally-antisymmetric parts. We will see a related

phenomenon when we count bosonic and fermionic states associated to finite Hilbert spaces later

in this Chapter.

4.2.2 n-particle projections

Though the general projection operator is a little complicated to perform in practice for general

wave functions (it involves choosing a sufficiently efficient way to sum over permutations), there

– 28 –



is a case where things can be phrased more compactly. This is where we start with a separable

distinguishable-particle wave function:

ψ(x1, . . . ,xn) = ψ1(x1)ψ2(x2) . . . ψn(xn) . (4.13)

This is a particularly natural class of wavefunctions to consider when considering non-interacting

identical particles, where we might chose the ψi to be stationary states of the one-particle Hamil-

tonian acting on xi to get stationary states for the full n-particle system.

In the fermionic case, the projection can then be realised as the Slater determinant,

Prεψ =
1

n!

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . . . . ψn(x1)

ψ1(x2) ψ2(x2) . . . . . . ψn(x2)
...

...
...

...
...

ψ1(xn) . . . . . . . . . ψn(xn)

∣∣∣∣∣∣∣∣∣ . (4.14)

Since arbitrary states can be expressed as (infinite) linear combinations of separable states, all

fermionic wave functions can be obtained as (infinite) linear combinations of these.

An analogous construction works for the bosonic case, though this uses the so-called permanent of

a matrix, which is like the determinant but without the signs,

Pr1ψ =
1

n!
perm


ψ1(x1) ψ2(x1) . . . . . . ψn(x1)

ψ1(x2) ψ2(x2) . . . . . . ψn(x2)
...

...
...

...
...

ψ1(xn) . . . . . . . . . ψn(xn)

 . (4.15)

As in the fermionic case, arbitary bosonic wave functions can be constructed from these permanent

states.

4.3 Symmetric and anti-symmetric tensor products

Though the above focused on fermionic and bosonic wave functions, the (anti-)symmetrisation

procedure we developed applies equally well to the case when we are taking tensor powers of some

general Hilbert space H such as the qubit Hilbert space (or even a general vector space, for that

matter). Here the n-fold tensor product of H admits a natural action of the symmetric group Sn
just as was the case for wave functions. If we let {ψi} denote a basis for H, then we have

(Sn,H⊗n) −→ H⊗n

(π, ψ1 ⊗ · · · ⊗ ψn) 7−→ ψπ(1) ⊗ · · · ⊗ ψπ(n) .
(4.16)

where the action on pure tensors extends by linearity to all of H⊗n. We can then define bosonic

and fermionic projection operators analogous to the ones we used for wave functions above. Just

like we had for separable wave functions, we can define the action of these projection operators in

terms of the Slater determinant and the related permanent constructions, but now acting on pure

tensors in H⊗n and then extended to the general case by linearity. We can correspondingly define

bosonic and fermionic states in the n-fold tensor product of identical Hilbert spaces as the ranges

of the corresponding orthogonal projectors:

Definition 4.3.1. The n-fold symmetric tensor product of the Hilbert space H is the subspace of
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the n-fold tensor product H⊗n on which Pr1 acts as the identity, or equivalently,

�n H = RanH⊗nPr1 . (4.17)

This is sometimes also denoted SymnH, and these are states that are compatible with Bose-Einstein

statistics.

Definition 4.3.2. The n-fold antisymmetric tensor product of the Hilbert space H is the subspace

of the n-fold tensor product H⊗n on which Prε acts as the identity, or alternatively,

∧n H = RanH⊗nPrε . (4.18)

This is sometimes called the exterior tensor product, and these states are compatible with Fermi-

Dirac statistics.

From the standard properties of determinants, a Slater determinant state will vanish identically if

two of the constituent ψi are proportional. This means that the basis of n-particle states we get by

acting with the fermionic projection operator on a basis of pure tensors all come from states where

each of the n particles is in a distinct basis state. This is often phrased in terms of the following,

The Pauli exclusion principle: Two fermions cannot occupy the same state.

Indeed, this leads to a significant reduction in the number of fermionic states that can be constructed

from a given set of single-particle states. To see this more explicitly, let us count the bosonic

and fermionic states that can be built from a given N -dimensional Hilbert space under interated

symmetric and anti-symmetric tensor products. We have the following,

Lemma 4.3.3. The space of fermionic n-particle states built from an N -dimensional single-particle

Hilbert space H has dimension given by

dim (∧nH) =

(
N

n

)
. (4.19)

Proof. We choose a basis for H and build a basis of states for the fermionic n-particle Hilbert space

using Slater determinants where the ψi are elements of that basis. There are N choices for ψ1, but

since ψ2 cannot be the same as ψ1, there are N − 1 choices for ψ2 and so on. The final state is

independent of the ordering of ψ1, . . . , ψn so we have

dim (∧nH) =
N(N − 1) · · · (N − n+ 1)

n!
=

N !

n!(N − n)!
=

(
N

n

)
. (4.20)

�

Which leads to an immediate important observation:

Corollary 4.3.4. At most N identical, non-interacting fermionic particles can coexist in a given

N -dimensional single-particle Hilbert space H.

This will be an important restriction when we consider atomic structure in the presence of several

electrons.

For completeness, we also consider the ccase of bosonic multi-particle states built from a given

N -dimensional Hilbert space.
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Lemma 4.3.5. The space of bosonic n-particle states built from an N -dimensional single-particle

Hilbert space H has dimension given by

dim (�nH) =
(N + n− 1)!

(N − 1)!n!
. (4.21)

Proof. In order to prove this we introduce a generating function known as a partition function that

has much wider applicability. In general a separable bosonic state can be represented as

Q1

(
ψ⊗k11 ⊗ ψ⊗k22 · · ·ψ⊗kNN

)
,

∑
ki = n . (4.22)

The overall order doesn’t matter because of the symmetrisation, so we only pay attention to how

many times each basis element appears. We therefore want to count the number of integer “par-

titions of n”, ki ∈ N such that the ki add up to n. Let us replace the ψi by formal variables xi,

whereupon our problem becomes that of counting the number of distinct monomials of the form

xk11 x
k2
2 · · ·x

kN
N with the ki addint up to n. If we further multiply each xi by s, then the total power

of s will be the sum of the ki. If we form the sum over all k1, . . . , kN , we obtain

∑
k1,...,kN∈N

(sx1)k1(sx2)k2 . . . (sxN )kN =

N∏
j=1

∑
kj∈N

(sxj)
kj =

N∏
j=1

1

1− sxj
. (4.23)

If we then set all the xi to one, we obtain 1/(1− s)N and the coefficient of sn will simply count the

number of terms where
∑
ki = n. The generalised binomial theorem then gives

1

(1− s)N
=
∑
n∈N

(
N + n− 1

n

)
sn , (4.24)

from which the result follows. �

One can now observe that while for n = 2 there is an accidental equality

dimH⊗n = Nn = dim∧nH+ dim�nH , n = 2 , (4.25)

for more than two particles we have

dimH⊗n = Nn > dim∧nH+ dim�nH , n > 2 . (4.26)

So for more than two particles, a general distinguishable multiparticle state cannot be decomposed

into just bosonic and fermionic parts.
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Chapter 5

Symmetries and One-Parameter Unitary
Groups

We next turn our attention to the realisation of symmetries in quantum theories/systems. Before

developing a formal theory of quantum symmetry, we will look at a simple example that illustrates

the formalism and many of the key ideas.

5.1 An appetizer: spatial and time translations

Consider a free particle moving on the real line (so, as in Chapter 1.3, the Hilbert space is identified

as H ∼= L2(R), and additionally the Hamiltonian is just H = P 2/2m). There is an intuitive sense

in which linear translations in space should be symmetries of the theory. How does this manifest

in the quantum mechanical formalism?

For a ∈ R, we can define an operator T (a) : H → H that corrresponds to a translation of the entire

system by a relative to a fixed reference frame. This will act on wavefunctions according to

(T (a)ψ)(x) = ψ(x− a) . (5.1)

To see why the minus sign is there, note that the value of the transformed wavefunction at a will be

the value of the original wave function at the origin. In terms of our generalised position eigenstates,

we have22

T (a) |ξ〉 = |ξ + a〉 , (5.2)

because a (generalised) eigenstate that was previously localised at x = ξ should be localised at

x = ξ + a after translation. We see this is equivalent to (5.1) as follows,

(T (a)ψ)(x) = 〈x|T (a)|ψ〉 =

∞∫
−∞

dξ 〈x|T (a)|ξ〉 〈ξ|ψ〉 ,

=

∞∫
−∞

dξ 〈x|ξ + a〉ψ(ξ) ,

=

∞∫
−∞

dξ δ(x− ξ − a)ψ(ξ) ,

= ψ(x− a) .

(5.3)

We can make some immediate structural observations regarding the properties of these translation

operators:

(1) T (a)T (b) = T (a+ b) ∀ a, b ∈ R

(2) T (a)−1 = T (−a) ∀ a ∈ R
22Keeping track of the signs here is a good exercise in disambiguating generalised positions eigenstates from their

wavefunctions
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(3) T (0) = 1

We can also determine the adjoint of this translation operator by a change of variables in the

integral expression for the inner product,

〈χ|T (a)ψ〉 =

∞∫
−∞

dxχ(x)ψ(x− a) =

∞∫
−∞

dxχ(x+ a)ψ(x) = 〈T (−a)χ|ψ〉 . (5.4)

so we have

(4) T (a)∗ = T (−a) = T (a)−1

As in our discussion of time translation, this last condition identifies the operators T (a) as unitary

operators. The four properties that we have listed then precisely identify this structure as a unitary

representation of the additive group (R,+) on the Hilbert space H.

Definition 5.1.1. The unitary group U(H) is the group of unitary operators on the Hilbert space

H. For the case of when H is finite-dimensional (say dim(H) = n, this can be identified with the

usual matrix group U(n)

Definition 5.1.2. A unitary representation of a group G on a Hilbert space H is a group homo-

morphism U : G → U(H).

In the case of infinite-dimensional H, this is required to be a strongly continuous homomorphism,

but we will not need to pay attention to that restriction in this course and so will not define it.

(See, though, Def. 5.2.5 below for a related condition).

An important feature of the group of translations is that they can be taken arbitrarily small, in

which case the translation operator should become arbitrarily close to the identity operator in an

appropriate sense. We can observe how this transpires in terms of the action of translations on

(differentiable) wave functions:23

lim
ε→0

(T (ε)ψ)(x) = lim
ε→0

ψ(x− ε) = ψ(x)− εψ′(x) +O(ε2) . (5.5)

We wish to interpret this result as defining an infinitesimal expansion of the translation operator

itself,

T (ε) = 1− iε

~
Tinf +O(ε2) , (Tinfψ)(x) = −i~ψ′(x) . (5.6)

We have inserted conventional factors of i and ~ that alows us to make the identification of Tinf
with the momentum operator P .

The relationship between translations and momentum is easier to tease out in momentum space.

23The restriction to differentiable wave functions here is, once again, related to the infinite dimensionality of our
Hilbert space, which means that the infinitesimal version of translation that we are defining is only partially defined
on L2(R). Differentiable wave functions are dense in L2(R).
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On generalised momentum eigenstates, we have

T (a) |p〉 =

∞∫
−∞

dxT (a) |x〉 〈x|p〉 =

∞∫
−∞

dx |x+ a〉 e
ipx
~ ,

=

∞∫
−∞

dx |x〉 e
ip(x−a)

~ = e−
ipa
~

∞∫
−∞

dx |x〉 e
ipx
~ , (5.7)

= e−
ipa
~ |p〉 = e−

iPa
~ |p〉 ,

so on our (continuum) basis of generalised momentum eigenstates we have the operator relation

T (a) = exp

(
− iPa

~

)
, (5.8)

from which we would formally deduce Tinf = P just by taking the power series expansion of

the exponential. We summarise this situation by saying that P is the infinitesimal generator of

translations.24 Note also that unitarity of T (a) follows from self-adjointness of P and vice versa,

T (a)∗ =
(
e−

iPa
~

)∗
=
(
e
iPa
~

)
= T (a)−1 . (5.9)

What we’ve said so far makes no reference to translations being a dynamical symmetry of the sys-

tem, i.e., being a symmetry of the equations of motion (in our case, the time-dependent Schrödinger

equation). Intuitively, this should depend on the potential V (X) being constant (or zero), as oth-

erwise the potential would violate translation invariance. To have translations as a dynamical

symmetry, we would like to require that the symmetry transformation of the infinitesimal time evo-

lution of a state vector is the same as the infinitesimal time evolution of the symmetry-transformed

state vector, i.e.,

T (a) |Hψ〉 = H |T (a)ψ〉 , (5.10)

which, by writing |ψ〉 = T (a)∗ |ϕ〉 for some |ϕ〉 we can equivalently characterise as

T (a)HT (a)∗ = H . (5.11)

Further looking at the case of infinitesimal translations, this gives the condition(
1− iε

~
P +O(ε2)

)
H

(
1 +

iε

~
P +O(ε2)

)
= H +

iε

~
[H,P ] +O(ε2) = H , (5.12)

from which we deduce the requirement [H,P ] = 0. Using our expression for finite translations as an

exponentiated version of P , one can show that this vanishing commutator also implies the relation

(5.11). And indeed, these will only hold for a Hamiltonian of the form H = P 2/2m+ V (X) only if

V (X) is a constant.25

24If you are familiar with Noether’s theorem from classical mechanics, then this should sound familiar as a coun-
terpart of the fact that momentum is the conserved quantity associated with translation invariance, and it generates
infinitesimal translations through the Poisson bracket.

25As a concrete example of this, in your first homework exercise, you will have shown that for the harmonic
oscillator the finite spatial translation of the ground state is a coherent state, which is certainly no longer an energy
eigenstate, let alone the ground state.
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5.2 A general theory of quantum symmetries

What we’ve seen above gives us some insight into the general structure of symmetries in quantum

systems. Now we’ll look at this topic more abstractly.

5.2.1 A first attempt at generalisation

If we try to generalise a bit from what we’ve seen in our example, we might propose the following

structures associated with the presence of a symmetry in a quantum system. It will turn out that

these are not quite the complete story; we’ll return to the correct formulation after some technical

discussion.

• Symmetries should be implemented via unitary operators on H, so as to preserve norms and

overlaps.

• Symmetries naturally form a group—call it G—and the operators implementing their action

on H should form a unitary representation of that group,

U : G → U(H) , U(g1)U(g2) = U(g1g2) ∀ g1, g2 ∈ G . (5.13)

• For continuous symmetries, infinitesimal transformations are realised by self-adjoint operators

that generate finite transformations (parameterised by s ∈ R) via exponentiation according

to

U(g(s)) = exp

(
− iGs

~

)
, G = G∗. (5.14)

• For dynamical symmetries, we require

U(g)HU(g−1) = H ([H,G] = 0 for infinitesimal generators) . (5.15)

These properties do hold in quite a few examples of interest. For example, you should compare the

above to our discussion of time evolution in Chapter 1. However, they are not the most general

version of the story, and we have also been a bit cavalier about some technical details in our

discussion of infinitesimal symmetries. We will address both of those issues below.

5.2.2 Quantum symmetries and projective representations

The main shortcoming of the formulation above arises from having neglected the distinction between

Hilbert space H and the true space of quantum states, P(H). A priori, one expects that a quantum

symmetry need only be formulated as a map

s : P(H) −→ P(H) . (5.16)

Rather than requiring that overlaps be preserved, it should be sufficient to require that transition

probabilities are preserved, as these are the physically meaningful quantities. Let us denote a

quantum state corresponding to the ray in H that passes through a vector ψ by [ψ], so [ψ] = [λψ] for

λ ∈ C×. For quantum states [ψ], [φ] ∈ P(H), we then require equality of the transition probabilities:

| 〈φ|ψ〉 |2

||φ||2||ψ||2
=
| 〈s(φ)|s(ψ)〉 |2

||s(φ)||2||s(ψ)||2
, (5.17)
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where in this expression ψ and φ could really be any representatives of the quantum states [ψ]

and [φ], respectively. (The transition probabilities are, as usual, independent of the choice of such

representative.) Naively, this seems that it could be a weaker condition than the requirement that

we have a unitary map on H. This is indeed the case, but perhaps to a lesser extent than one might

first think. The situation is explained by the following

Theorem 5.2.1 (Wigner). For any quantum symmetry s defined as above on projective Hilbert

space, there exists an operator V (s) : H → H that is compatible with s that is either unitary or

anti-unitary that induces s when treated as a map of rays. When dim(H) > 2, the operator V (s) is

unique up to an overall phase.

(In the case that dim(H) = 1, V (s) can be chosen to be either unitary or anti-unitary for the

same s; in higher dimensional Hilbert spaces it will be one or the other, with no choice involved

other than the aforementioned phase.) We will set aside the topic of anti-unitary operators for the

moment and focus on symmetries that are realised as unitary operators on H.

Definition 5.2.2. The projective unitary group of a Hilbert space H is the quotient

PU(H) = U(H)/{eiθ1H, θ ∈ R}

of the group of unitary transformations on H by the normal subgroup consisting of multiplications

by a constant phase.

What Wigner’s theorem is telling us, given this definition, is that (neglecting the anti-unitary

caveat) a quantum symmetry can be unambiguously lifted to an element of the projective unitary

group for the corresponding Hilbert space.

Definition 5.2.3. A projective unitary representation of a group G on a Hilbert space H is a group

homomorphism U : G → PU(H).

What we should then be interested in are these projective unitary representations of a symmetry

group G. We can then lift these symmetries to actual unitary operators, but we have to choose

phases. If we do this arbitrarily (choosing arbitrary phases for each g ∈ G), then at the level of

unitary operators the group law may not be defined, indeed we only expect

U(g1)U(g2) = eiξ(g1,g2)U(g1g2) , ξ(g1, g2) ∈ [0, 2π) . (5.18)

Associativity of the multiplication of operators on G gives a condition on these phases,26

ξ(g1, g2g3) + ξ(g2, g3) = ξ(g1, g2) + ξ(g1g2, g3) mod 2π , (5.19)

It follows immediately that we have the following

Proposition 5.2.4. A projective unitary representation of a group G on a Hilbert space H is

equivalently a map U : G → U(H) obeying (5.18) and (5.19).

Indeed, this is sometimes used as the definition; physicists will say that “in quantum mechanics, the

group law for symmetries only needs to be obeyed up to phase ambiguities”. The phase ambiguities

26Though it isn’t important for us, this condition means that the map ξ : G × G → U(1) is what’s known as a
group 2-cocycle valued in U(1).
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in the definitions of the operators U(gi) themselves means we can modify the phases in (5.18) by

taking a map ϕ : G → S1 to produce an equivalent projective unitary representation but now with

ξ(g1, g2)→ ξ(g1, g2) + ϕ(g1) + ϕ(g2) mod 2π . (5.20)

Using this freedom to redefine phases, it turns out that in a large class of examples of continuous

groups (when either H is finite-dimensional or, if infinite-dimensional, if G is what is called a semi-

simple group), one can set the phases ξ(g1, g2) to be zero for transformations that are suitably close

to the identity, thus realising something that looks like a unitary representation for symmetries that

are close to the identity. Globally there can be an obstruction to setting these phases to zero for

all group multiplications; we will see an explicit example of this in the next chapter in the context

of rotations.

5.2.3 One parameter unitary groups

In the discussion of translations some of the statements about the infinitesimal limit may have felt

a bit sketchy. There is actually a powerful theorem that puts these statements on firm footing. We

start with a definition:

Definition 5.2.5. A strongly continuous one-parameter unitary group is a family U(t) for t ∈ R
of unitary operators on a Hilbert space H such that

• U(0) = 1H ,

• ∀s, t ∈ R , U(t+ s) = U(t)U(s) ,

• ∀t ∈ R , lim
s→t

U(s)ψ = U(t)ψ .

The first two points defines a one-parameter unitary group, which you will recognise as being the

same as a unitary representation of the additive group (R,+) as we had in the case of translations.

The third point is the notion of strong continuity. We will not be very attentive to this continuity

condition in this course; it will always hold in examples we consider.

Definition 5.2.6. For U(·) a strongly continuous one-parameter unitary group, the infinitesimal

generator of U(·) is the operator K defined by27

Kψ = lim
t→0

1

i

U(t)ψ − ψ
t

. (5.21)

It turns out that defined this way, K will be defined for a dense subset of H (or all of H in the

finite-dimensional case). We then have the following:

Theorem 5.2.7 (Stone’s Theorem on One-Parameter Unitary Groups). Let U(·) be a strongly

continuous one-parameter unitary group, the infinitesimal generator K of the family is a self-adjoint

operator, and for all t we have

U(t) = exp (itK) . (5.22)

Conversely, every self-adjoint operator K generates a strongly continuous one-parameter unitary

group this way.

27This definition differs by a conventional minus sign and factor of ~ relative to what we used in the case of
momentum and translations. In the quantum mechanical setting we will normally include those additional factors.
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The exponential of K can be defined in terms of its action on a basis of (generalised) K-eigenstates.

We won’t study a proof of this theorem; instead it is meant to provide a justification for some of

the more casual manipulations that arise when studying symmetries in what follows. It should be

noted that even in the finite dimensional case this is a non-trivial theorem; it establishes a kind of

differentiability for families of operators/matrices based only upon continuity.

We can observe now that the quantity U(t1 − t0) that we considered in Chapter 1 and in the

discussion of the propagator is precisely a one-parameter unitary group whose infinitesimal generator

is the Hamiltonian. This is in the case when the Hamiltonian is time-independent. In the time-

dependent case, one actually gets a unitary groupoid ! But we won’t discuss it here.

5.2.4 Anti-unitary operators

Now we return to the issue of anti-unitary operators, which appeared in the statement of Wigner’s

theorem.

Definition 5.2.8. An anti-unitary operator on a Hilbert space H is a sujective linear map A : H →
H obeying

〈Aφ|Aψ〉 = 〈φ|ψ〉 = 〈ψ|φ〉 . (5.23)

We can see that an anti-unitary operator must be C anti-linear. The standard example of an anti-

unitary operator on a complex Hilbert space is the complex conjugation operation, which takes

states of the form

ψ =
∑
i

ciψi −→ Aψ =
∑
i

ciψi , (5.24)

for ψi and orthonormal basis. In the case of L2(R), you could think of the operation that takes the

complex conjugate of a wave function.

An important observation is that if A is anti-unitary, then A2 is unitary,〈
A2φ

∣∣A2ψ
〉

= 〈Aψ|Aφ〉 = 〈φ|ψ〉 . (5.25)

This means that any symmetry that can be realised as the square of another symmetry will be

realised unitarily on H. In the case of continuous groups of symmetries, like translations and

rotations, this lets us get away with ignoring anti-unitary symmetries all together. On a homework

exercise, you will investigate the relationship between anti-unitary symmetries and time-reversal.

5.2.5 The form of quantum symmetries

We are now in position to formulate a more precise characterisation of the form that symmetries

take in quantum mechanical systems.

• Symmetries are implemented via unitary or anti-unitary operators on H.

• Symmetries naturally form a group and the operators implementing them form a projective

representation of that group on H.

• Continuous symmetries are generated, in the sense of Stone’s theorem, by self-adjoint opera-

tors via exponentiation.

• For unitarily realised symmetries to be compatible with time evolution (dynamical symme-

tries), we require any of the following equivalent conditions
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– U(t)U(g) = U(g)U(t) ,

– [H,U(g)] = 0

– [U(t), G] = 0

– [H,G] = 0

Here U(t) = exp(−iHt/~) is the time evolution operator while U(g) is the unitary corre-

sponding to an element g ∈ G of the symmetry group, and if U(g) is part of a one-parameter

group then it has infinitesimal generator G.
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Chapter 6

Rotations, angular momentum, and their
representations

In this chapter we will analyse an important instance of a symmetry realised in quantum systems:

that of three-dimensional rotations. You know well from your geometry course (and perhaps else-

where) that the proper rotation group in three dimensions is SO(3), which can be identified with

the group of three-by-three orthogonal matrices with unit determinant. From the general formalism

of the previous section, we expect that for a quantum system describing objects in three-dimensions,

there should be a (projective) unitary representation of SO(3) on our Hilbert space. We will how

this cashes out in practice by the end of the chapter.

6.1 Rotation group SO(3) and its infinitesimal generators

The three-dimensional orthogonal group O(3) is realised as a group of matrices acting on Cartesian

coordinates as xi = (x1, x2, x3) according to

xi −→
3∑
j=1

Rijxj , RRᵀ = 13×3 , (6.1)

where 13×3 is the three-by-three identity matrix. The special orthogonal group SO(3) is the sub-

group of O(3) for which det(R) = 1; these correspond to rotations.

As with translations, rotations can be taken arbitrarily close to the identity. To capture this, let

us consider a one-parameter family of rotation matrices R(t) with R(0) = 13×3. (You may wish to

think of this as the family or rotations about a fixed axis with t the angle of rotation.) If the matrix

elements of R are differentiable functions of t, we can define the matrix elements of an infinitesimal

rotation matrix ω according to

Rij(ε) = δij + εωij +O(ε2) . (6.2)

Expanding the condition R(ε)Rᵀ(ε) = 13×3 to first order in ε gives

ωij + ωji = 0 (6.3)

or in matrix notation ω + ωᵀ = 0, i.e., ω is a skew symmetric matrix. As you saw in your

geometry course in prelims, it is natural to organise the components ωij of this matrix into a vector

ω = (ω1, ω2, ω3) = (ω32, ω13, ω21) that encodes the axis about which the instantaneous rotation is

taking place and its magnitude. The vector and matrix index labelling for these parameters are

related according to

ωi = −1

2

∑
j,k

εijkωjk , ωij = −
∑
k

εijkωk . (6.4)

The first-order action of R(ε) on the coordinate xi then is given by

δxi =
∑
j

ωijxj =
∑
j

εijkωjxk = (ω ∧ x)i . (6.5)
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The group SO(3) is non-Abelian, so in general pairs of rotations do not commute, i.e., R1R2 6=
R2R1. This lack of commutativity is encoded in the group-theoretic commutator R1R2R

−1
1 R−12 ,

which is an element of SO(3) that will be the identity if and only if R1 and R2 commute. Let us

consider this commutator at the level of infinitesimal rotations. If we take t and t′ small (say both

of order ε) in R(t), R′(t′), then expanding the commutator to second order we have28

R(t)R′(t′)R(t)−1R′(t′)−1 = (1 + tω + . . .) (1 + t′ω′ + . . .) (1− tω + . . .) (1− t′ω′ + . . .) ,

= 1 + tt′ (ωω′ − ω′ω) + . . . ,
(6.6)

so here the noncommutativity manifests in terms of the matrix commutator [ω, ω′] = ωω′ − ω′ω.

Notice that

[ω, ω′]ik =
∑
j

ωijω
′
jk − ω′ijωjk = −

∑
l

εikl(ω ∧ ω′)l , (6.7)

where to prove this it is useful to use the identity∑
k

εijkεklm = δilδjm − δimδjl . (6.8)

Alternatively, if we tacitly use (6.4) to identify vectors with skew-symmetric matrices,

[ω, ω′] = (ω ∧ ω′) . (6.9)

The vector space of three-by-three skew-symmetric matrices endowed with the bilinear operation

of the matrix commutator (observe that this preserves skew-symmetry) is known as the Lie algebra

so(3). In the theory of Lie groups, one finds that this matrix commutator encodes the full structure

of the group SO(3) up to a single ambiguity, to which we will return later in our discussion of spin.

6.2 Rotations and wave functions

As our first example, we can define a natural action of the rotation group on wave functions in

three dimensions, i.e., on the Hilbert space L2(R3), according to

ψ(x) 7−→ (U(R)ψ) (x) = ψ(Rᵀx) . (6.10)

The appearance of the transpose (i.e., inverse) in the argument is analogous to the minus sign

that we included in our translation operator, and analogously to that case we have for generalised

position eigenstates,

U(R) |x〉 = |Rx〉 . (6.11)

This corresponds to rotating the system in a fixed reference frame, which is sometimes called

an active transformation, and it is the most natural way to think about symmetries in quantum

mechanics when they are acting on the Hilbert space.

This action is manifestly complex linear. It is also unitary, since we have

〈U(R)ψ|U(R)ψ〉 =

∫
R3

|ψ(Rᵀx)|2 d3x =

∫
R3

|ψ|2 d3x = 〈ψ|ψ〉 , (6.12)

where the change of variables x→ Rx introduces no Jacobian because R is an orthogonal matrix.

28You can feel free to take this equation for granted, but deriving it while keeping second-order terms might be
instructive.
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Under composition, we see the importance of the transpose:29

(U(R1)U(R2)ψ) (x) = (U(R2)ψ) (Rᵀ
1x) = ψ(Rᵀ

2R
ᵀ
1x) = ψ ((R1R2)ᵀx) = (U(R1R2)ψ) (x) . (6.13)

so our operators satisfy the group law,

U(R1R2) = U(R1)U(R2) , (6.14)

and we have a unitary representation of SO(3).

Let us consider the infinitesimal action of rotations on wave functions. Using the expansion for

rotation matrices in Eqn. (6.2), we have

ψ(Rᵀ(t)x) = ψ
(
x− tω ∧ x +O(t2)

)
,

≈ ψ(x)− t(ω ∧ x) · ∇ψ(x) ,

= ψ(x)− tω · (x ∧∇ψ) ,

=

(
1L2(R) −

it

~
ω · L

)
ψ(x) .

(6.15)

where L is the orbital angular momentum operator that you met in Part A, which we can rewrite

in terms of position and momentum operators,

L := X ∧P . (6.16)

You have seen in Part A, and one can compute explicitly, that the components Li of the angular

momentum operator obey the commutation relations

[Li, Lj ] = i~
∑
k

εijkLk . (6.17)

For general vectors ω and ω′, one then finds

[ω · L,ω′ · L] = i~(ω ∧ ω′) · L , (6.18)

or alternatively, in terms of the infinitesimal generators with extra constants included,[
− i
~
ω · L,− i

~
ω′ · L

]
= − i

~
(ω ∧ ω′) · L , (6.19)

We observe that these exactly match the commutation relation (6.9) with the replacement

ω ←→ − i

~
ω · L , (6.20)

where on the left hand side, ω represents a skew-symmetric matrix, and on the right hand side we

have an operator on L2(R). We say that these operators furnish a representation of the Lie algebra

so(3) on the Hilbert space L2(R).

29You might try rewrite the manipulations in Eqn. (6.13) using bra-ket notations for wave functions to get a feeling
for the way the compositions here are behaving and the relation to the action on generalised position eigenstates.
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6.3 General unitary representations

Now let us consider the general case of a unitary representation of the rotation group on a Hilbert

space H. We denote by J the infinitesimal generator of rotations, in the sense that for a one-

parameter families of rotations R(t) we have

U (R(ε)) = 1H −
iεω · J

~
+O(ε2) . (6.21)

We can compare the group-theoretic commutator of two rotations with the composition taken both

before and after applying the map to U(H); we have the equation

U (R(t))U (R′(t′))U (R(t))
∗
U (R′(t′))

∗
= U

(
R(t)R′(t′)R(t)−1R′(t′)−1

)
, (6.22)

where on the left we have the commutator of elements of U(H), and on the right we have the image

in U(H) of the commutator of elements of SO(3). Letting each rotation be infinitesimal of the same

order, we get, by comparing terms at second order,

[ω · J,ω′ · J] = i~(ω(1) ∧ ω(2)) · J (6.23)

which is exactly analogous to (6.19) with L replaced by J. In components, this is

[Ji, Jj ] = i~
∑
k

εijkJk . (6.24)

This is an important result; whenever we have a representation of the rotation group on a Hilbert

space, we get a trio of self-adjoint angular momentum operators, {Ji}, that obey the commutation

relations (6.24). These generate the action of more general rotations via exponentiation in the sense

of Stone’s theorem.

6.4 Angular momentum multiplets

At an infinitesimal level, we have reduced the study of rotations in quantum systems to the study

of representations of the angular momentum operators:

Definition 6.4.1. A representation of the angular momentum operators is a Hilbert spaces H with

an action of self-adjoint operators Ji : H → H, i = 1, 2, 3, satisfying the commutation relations

(6.24).

Remark 6.4.2. This is the equivalent to a representation of the Lie algebra so(3) on H. The

difference is in the factor of ~ on the right hand side of (6.24), which can be removed by an

appropriate rescaling of the Ji. Also in some cases it is conventional for a representation of so(3)

to use anti-self adjoint operators, in which case a factor of i is included as well.

Definition 6.4.3. An irreducible representation of the angular momentum operators is a repre-

sentation of the angular momentum operators for which there is no a proper subspace H′ ⊂ H with

Ji : H′ → H′, i.e., H contains no proper sub-representation of the angular momentum operators.

In Part A Quantum Theory, in the context of discussing orbital angular momentum for three-

dimensional wave functions, you identified the structure of general irreducible representations of

the angular momentum operators. Here we will recall the story.
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We define the total angular momentum operator J2 = J · J. A short calculation shows that

[J2, Ji] = 0 , (6.25)

so the action of the Ji operators preserves eigenspaces of J2. Since J2 is self-adjoint, we can choose

a basis of its eigenstates, and so if H is irreducible then J2 must just act by a multiple of the

identity on H. We can give a completely explicit description of all finite-dimensional, irreducible

representations if we furthermore diagonalis e J3.

Theorem 6.4.4. The irreducible representations of the angular momentum operators are labeled

by a half-integer j = 0, 12 , 1, . . . ∈
1
2N known as the spin of the representation. Denote the Hilbert

space admitting such a representation by Hspin j. The dimension of Hspin j is 2j + 1 and J2 acts

with eigenvalue ~2j(j + 1).

There is an orthonormal basis of Hspin j consisting of eigenvectors |j,m〉 of J3 with J3 |j,m〉 =

~m |j,m〉 for m = −j,−j + 1, . . . j − 1, j.

Figure 1. Depiction of irreducible representation of the angular momentum operators.

Proof. We introduce the ladder operators

J± = J1 ± iJ2 , (6.26)

which commute with J2. We also can check

[J3, J±] = ±~J± . (6.27)

This gives them the interpretation as raising and lowering operators for eigenvectors |j,m〉 of J3
(with eigenvalue ~m, say):

J3 (J± |j,m〉) = ±~J± |j,m〉+ J±J3 |j,m〉 = ~(m± 1) (J± |j,m〉) . (6.28)

Thus J± |j,m〉 is a multiple of an eigenvector for J3 with eigenvalue ~(m± 1). The following then

shows that the values for |m| must be bounded.
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Lemma 6.4.5. Let J2 |ψ〉 = λ~2 |ψ〉 and J3 |ψ〉 = ~m |ψ〉. Then for all ϕ ∈ H,

〈J±ϕ|J±ψ〉 = ~2 (λ−m(m± 1)) 〈ϕ|ψ〉 and ||J±ψ||2 = ~2 (λ−m(m± 1)) ||ψ||2 . (6.29)

Proof. Observe from the angular momentum commutation relations that

J+J− = J2 − J2
3 + ~J3 , J−J+ = J2 − J2

3 − ~J3 , (6.30)

so the identities follow from

〈J−ϕ|J−ψ〉 = 〈ϕ|J+J−ψ〉 =
〈
ϕ
∣∣(J2 − J2

3 + ~J3)ψ
〉
, (6.31)

and using the eigenvalue relations (and similarly for the J+ plus version of (6.31)). �

Thus, given that λ is fixed on an irreducible representation, |m| cannot be too large as otherwise the

norm squared of these states would eventually become negative. The only way that |m| can avoid

becoming arbitrarily large in the negative direction is if for some smallest value m−, J−
∣∣ψm−〉 = 0

where J3
∣∣ψm−〉 = ~m−

∣∣ψm−〉, which requires λ = m−(m− − 1). The only way that |m| can avoid

becoming arbitrarily large in the positive direction is if analogously for some largest value m+,

J+
∣∣ψm+

〉
= 0, so λ = m+(m+ + 1). To realise both situations at once, we need

λ = j(j + 1) , m− = −j , m+ = j . (6.32)

By construction m+ − m− = 2j must be an integer (since starting with the
∣∣ψm−〉 and acting

repeatedly with J+ we must arrive eventually as
∣∣ψm+

〉
. Hence the constraints on the eigenvalues

stated in the theorem.

To finish we require that the J3 eigenvalues be nondegenerate. This follows from irreducibility.

Suppose that there are two linearly independent eigenvectors |j,m; 1〉 and |j,m; 2〉 that, without

loss of generality, can be taken to be mutually orthogonal. Then it follows from the expressions

above that Jn± |j,m; 1〉 and Jn± |j,m; 2〉 are orthogonal. Thus there will be two nontrivial Ji-invariant

subspaces spanned by Jn± |j,m; 1〉 and by Jn± |j,m; 2〉, contradicting irreducibility. �

We finish this discussion with a few additional comments:

• If we are working in a definite irreducible representation of spin j, we might sometimes simply

denote the state kets |m〉 to encode the J3 eigenvalue.

• The basis |j,m〉 of Hspin j is unique up to an overall phase for the entire representation if we

impose the normalisation conditions

|j,m± 1〉 =
J± |j,m〉

~
√
j(j + 1)−m(m± 1)

. (6.33)

This definition ensures in particular that the states |j,m〉 all have the same norm, so if

we choose a particular state, say |j, j〉, to be unit normalised and construct the rest of the

representation by the action of J−, then all of these states will be unit normalised.

• Important examples of representations with integer spin were given in Part A Quantum The-

ory in terms of spherical harmonics. These are angular momentum representations realised
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using the orbital angular momentum operators L, which can be written in spherical polar

coordinates as

L± = i~ e±iφ
(

cot θ
∂

∂φ
± i ∂

∂θ

)
, L3 = −i~ ∂

∂φ
. (6.34)

The total spin j is usually denoted by ` in this context. The wave functions Ψm
` (φ, θ) corre-

sponding to the basis states |`,m〉 take the form

Y m` (φ, θ) = Pm` (cos θ)eimφ , (6.35)

where Pm` (x) are associated Legendre functions. The requirement that ` and m be integral

follows from the need for eimφ to be single valued.

6.5 Spin 1/2

We saw that while half-integral spin is acceptable in the context of formal representations of the

angular momentum operators, it doesn’t arise in the context of orbital angular for three-dimensional

wave functions. Let us investigate the simplest case of spin j = 1/2.

The discussion above gives an explicit realisation of this representation,

Hspin 1
2

∼= C2 = Span
{ ∣∣ 1

2 ,
1
2

〉
,
∣∣ 1
2 ,−

1
2

〉 }
. (6.36)

Of course this is just our old friend the qubit. The above action of J± and hence J1 and J2 is

determined by (6.33) for which in this case the denominator is just ~, and the eigenvalue condition

determines J3. Thus, in this basis we have

J =
~
2
σ (6.37)

where σ = (σ1, σ2, σ3) are the same Pauli spin matrices we met in our qubit discussion. Now let

us consider a general rotation by some angle θ about an axis designated by the unit vector n; we

denote this by Rn(θ). By Stone’s theorem, this should be realised on our two-dimensional Hilbert

space by the unitary matrix

U(Rn(θ)) =: Un(θ) = exp

(
− iθ

~
n · J

)
= exp

(
− iθ

2
n · σ

)
. (6.38)

An explicit computation of this matrix exponential yields an expression for the matrix that should

represent the rotation,

Un(θ) = cos

(
θ

2

)
12×2 − i sin

(
θ

2

)
n · σ . (6.39)

By letting n range over the unit sphere in three dimensions and letting θ run from 0 to 2π, this gives

a parameterisation of the most general element of SU(2). However, compared to rotations this is

double counting! Rotating by θ around the axis defined by n is the same as rotating by 2π − θ
around the axis defined by −n. Equivalently, for fixed n, we see that setting θ = 2π doesn’t give

us back the identity, but rather minus the identity. It is only upon taking θ = 4π that our unitary

matrix returns to the identity. So there is a two-to-one correspondence between the elements of

SU(2) and the inequivalent rotations, i.e., the elements of SO(3).

What we’re encountering is precisely a situation where our symmetry group ( SO(3)) is implemented

via a projective unitary representation that is not strictly a unitary representation of the group we

started with. We can see this in terms of the group law. Consider the rotation Rn(π) that performs
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a half rotation about the axis n. Then performing this twice we have have

U (Rn(π))U (Rn(π)) = Un(2π) = −12×2 . (6.40)

whereas if we compose the rotations before taking the map to unitary matrices, we have

U (Rn(π)Rn(π)) = U(Rn(2π)) = U(Rn(0)) = 12×2 . (6.41)

The sign difference is precisely the type of “extra phase” that is allowed for projective representa-

tions!

It turns out that this example is indicative of the general story for half-integer-spin representations.

These are projective unitary representations of SO(3) that do not lift to unitary representations of

SO(3). Rather, they correspond to unitary representations of SU(2), where the relation between

the two groups is by a quotient,

P SU(2) := SU(2)/{±1} ∼= SO(3) . (6.42)

In the case of orbital angular momentum, there is manifestly a representation of the honest rotation

group via the action on wave functions; consequently only integer spin can occur.

Remark 6.5.1. There is a beautiful observation to make here that I cannot help but include for your

entertainment (I hope). As was observed above, we have a realisation of SU(2) by a choice of unit

vector in R3 and an angle θ ∈ 2π. This gives us a realisation of SU(2) as a circle fibration over the

two-sphere (you can imagine a circle corresponding to the choice of angle sitting over each point

on the two-sphere corresponding to the choice of unit vector). This is what’s known as the Hopf

fibration, which realises the three sphere S3 ∼= SU(2) as a circle fibration over S2. The rotation

group SO(3) then gets identified as the quotient space S3/Z2, with Z2 acting as the antipodal map.
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Chapter 7

Intrinsic Spin and Addition of Angular Mo-
mentum

When we consider a quantum particle or system that has some internal structure, the action of the

rotation group can be more complicated than what we have seen before with wave functions. We

could describe such a system in terms of its center of mass, which will be labelled by a point in

R3, as well as some internal structure whose quantum mechanical configurations are encoded in a

Hilbert space Hinternal. The full Hilbert space for such a structured particle will then given by

H = L2(R3)⊗Hinternal . (7.1)

We will then have a (projective) unitary representation of SO(3) on this Hilbert space generated

by some total angular momentum operators J. At the infinitesimal level, we know that J will act

on the center of mass wave function as the orbital angular momentum operator L, while we can

introduce operators S that describe the action on Hinternal,

J = L⊗ 1Hinternal
+ 1L2(R) ⊗ S , (7.2)

where the J and L operators commute, and we also have

[Si, Sj ] = i~
∑
k

εijkSk . (7.3)

In the case of elementary particles, we can expectHinternal to support an irreducible angular momen-

tum representation; otherwise we would think of the different subrepresentations as corresponding

to (detectably!) different versions of the elementary particle, and therefore we would call them dif-

ferent elementary particles. If a particle has Hspin j as its internal Hilbert space with the attendant

operators S describing rotations, then we say the particle itself has intrinsic spin j, though often

we simply shorten this to say the particle has spin j. This intrinsic spin is the quantity that was

referred to in the spin statistics theorem of Chapter 4.

7.1 Addition of angular momentum

If we want to understand the full action of rotations on a system with both orbital angular mo-

mentum and intrinsic spin, then we will will have to understand the action of the total angular

momentum operators in a system where we initially understand the action of the components L

and S. Similarly, if we have a system of n particles each of which has some angular momentum

operator Ji acting on its single-particle Hilbert space, then we will want to understand the total

angular momentum30 J = J(1) + . . . + J(n) acting on the composite Hilbert space starting with

an understanding of the individual angular momentum representations. This procedure is, in the

physics literature, usually referred to as the addition of angular momentum. We first pose the

problem in the context of there being two constituent representations of angular momentum.

Problem 7.1.1. Consider the Hilbert space H ∼= H1 ⊗H2 where Hi supports an irreducible repre-

sentation of the angular momentum operators J(i) with spin ji. We have dimH = (2j1+1)(2j2+1).

30Here and in what follows we drop the explicit tensor notation for these sums of operators acting on different
tensor factors of a composite Hilbert space.
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How does this composite system decompose into irreducible representations of the total angular mo-

mentum operator J = J(1) + J(2)?

The answer is given by the following

Proposition 7.1.2. Under the action of the total angular momentum, the tensor product H ∼=
H1⊗H2 of irreducible representations with spins j1 and j2, respectively, decomposes into irreducible

representations according to

H1 ⊗H2 =

j1+j2⊕
J=|j1−j2|

Hspin J . (7.4)

Thus we can find an orthonormal basis for this tensor product that we denote by |J,M〉 with J =

|j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 − 1, j1 + j + 2 and M = −J,−J + 1, . . . , J − 1, J obeying,31

(J(1))2 |J,M〉 = ~2j1(j1 + 1) |J,M〉 , J2 |J,M〉 = ~2J(J + 1) |J,M〉 , (7.5)

(J(2))2 |J,M〉 = ~2j2(j2 + 1) |J,M〉 , J3 |J,M〉 = ~M |J,M〉 . (7.6)

Proof. In what follows we assume, without loss of generality, that j1 > j2.

We proceed inductively, first finding the representation of highest total spin Hspin (j1+j2) inside

H, then proceeding to find the representation of next highest total spin inside the orthogonal

complement H⊥spin (j1+j2)
⊂ H, and so on.

We will write our pure-tensor basis vectors as |m1;m2〉,32 which as a reminder, obey

(J(1))2 |m1;m2〉 = ~2j1(j1 + 1) |m1;m2〉 , (J (1))3 |m1;m2〉 = ~m1 |m1;m2〉 ,

(J(2))2 |m1;m2〉 = ~2j2(j2 + 1) |m1;m2〉 , (J (2))3 |m1;m2〉 = ~m2 |m1;m2〉 .
(7.7)

These are evidently already eigenvectors of J3 = (J (1))3 + (J (2))3, with eigenvalues M = m1 +m2.

There is a unique state with maximum M = j1 + j2, which we must be able to identify with the

“top” state in a spin j1 + j2 representation; we can therefore identify

|j1 + j2, j1 + j2〉 = |j1; j2〉 . (7.8)

The rest of the spin j1 + j2 representation can be recovered by acting with the total lowering

operator J− = J
(1)
− + J

(2)
− . Normalising these using (6.33), we obtain the states |j1 + j2,M〉 that

still have total spin J = j1 + j2, but now have J3 eigenvalue M . These constitute a complete spin

J = j1 + j2 representation inside H.

Next we consider the states with M = j1 + j2 − 1. There are two linearly independent such states,

|j1 − 1; j2〉 and |j1; j2 − 1〉. One combination of these occurs in the spin j1 + j2 representation

defined above. Taking a vector in the orthogonal complement, we get a state vector that must be

the top state in a spin j1 + j2 − 1 representation, since acting with a raising operator must give

zero, else this would be part of the previous spin j1 + j2 representation. We therefore denote a

normalised element of this orthogonal complement by |j1 + j2 − 1, j1 + j2 − 1〉. Again acting with

J
(1)
− + J

(2)
− on this state generates a full irreducible subrepresentation, this time of spin j1 + j2 − 1.

31Occasionally, these states are written |j1, j2; J,M〉 to make manifest the constituent spins that are being com-
bined. We will leave these implicit to avoid overly burdensome notation whenever possible.

32As with the previous basis states, these will sometimes be labelled |j1,m1; j2,m2〉 to indicate the constituent
spins. We will avoid this when possible.
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Figure 2. Depiction of states in the tensor product of irreducible representations of angular momentum
with spins j1 and j2, where we assume j1 > j2.

If j2 = 1
2 , then the degeneracy for M eigenvalues with j1 + j2− 1 >M > −(j1 + j2− 1) is just two,

corresponding to the m2 = ± 1
2 states, and so must be spanned by the corresponding M -eigenstates

of the two multiplets we have just found. In this case we would be done.

If j2 > 1
2 , then the degeneracy for the M = j1 + j2 − 2 eigenvalue is three with (m1,m2) =

(j1, j2−2), (j1−1, j2−1) or (j1−2, j2). Thus, as before, there is a nontrivial orthogonal normalised

vector |j1 + j2 − 2, j1 + j2 − 2〉 orthogonal to those M = j1 + j2− 2 eigenvalues of total spin j1 + j2
and j1 +j2−1, unique up to a phase. This gives rise to a spin j1 +j2−2 representation by lowering.

In general, the degeneracy of the M -eigenstates is 1 + j1 + j2− |M | for |M | > j1− j2, but is 2j2 + 1

otherwise as it cannot exceed the number of choices 2j2 + 1 for m2 (see Figure 7.1). So we can

carry on by induction, generating a new multiplet at each stage, until we eventually produce all

the angular momentum multiplets with spins from J = j1 − j2 to J = j1 + j2, as required. This

gives a total of 2j2 + 1 irreducible representations (2j2 + 1 being the maximal degeneracy of the M

eigenvalue, realised for |M | 6 j1 − j2). �

Before moving on, we’ll look at the simplest example of addition of angular momentum: the tensor

product of two spin 1/2 systems.

Example 7.1.3 (Two qubits). We can be very explicit in examining the two-qubit system,

H = H⊗2
spin 1

2

. (7.9)

If we now adopt the basis for the qubit from the last chapter, we have as our basis for the tensor
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product Hilbert space
∣∣± 1

2 ;± 1
2

〉
, with the signs chosen independently. To make things easier on

the eyes, we will adopt the notation |±±〉. If we organise these by J3 eigenvalue M = m1 +m2, we

have

M = +1 : |++〉
M = 0 : |+−〉 |−+〉
M = −1 : |−−〉

(7.10)

Starting with the top state, we produce the following states in the spin-one sub-representation of

this system,

|1, 1〉 = |++〉 , |1, 0〉 =
|+−〉+ |−+〉√

2
, |1,−1〉 = |−−〉 . (7.11)

There is an additional spin-zero state (so a rotationally-invariant state),

|0, 0〉 =
|+−〉 − |−+〉√

2
. (7.12)

It may be worth remarking that the spin-one representation consists of bosonic (symmetric) states,

while the spin-zero representation is the one fermionic (anti-symmetric) state in this tensor product.

Indeed, the total angular momentum operators can be seen by inspection to commute with the action

of permutations on the n-fold tensor product of identical representations of angular momentum,

which means that the bosonic and fermionic subspaces will always transform amongst themselves

under rotations.

Example 7.1.4 (Everything from spin one half). The previous example suggests a general con-

struction of the spins j representation for any j using spins 1/2 representations as building blocks.

Consider the n-fold symmetric tensor product of the qubit Hilbert space �nHspin 1
2
. By our results

in Chapter 4, this has dimension

dim
(
�nHspin 1

2

)
= n+ 1 . (7.13)

If we consider the state |+ + · · ·+〉, this has

J
(tot)
3 |+ + · · ·+〉 = 1

2~n |+ + · · ·+〉 , (7.14)

so this must be an element of a representation with spin greater than or equal to n/2. But based

on the dimensionality of the Hilbert space, this can only be a representation of spin n/2 exactly,

and indeed it is clear that this state is the top state of its angular momentum representation.

Thus, if you like, you can think of any irreducible representation of angular momentum in terms

of an appropriate number of identical (bosonic) qubits. This can prove a useful mental model for

these representations.

7.2 Clebsch-Gordan coefficients

Equation (7.4) tells us in general terms how the tensor product of irreducible angular momentum

representations will transform under the total angular momentum. However, to work with these

composite systems and do calculations in practice, one needs to be able to concretely construct

and manipulate the elements of the different irreducible representations appearing in that direct

sum. This means having expressions for the precise linear combinations of the states |m1;m2〉 that

constitute the states |J,M〉 and vice versa. To this end we make the following definition.
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Definition 7.2.1. The Clebsch-Gordan coefficients Cj1 j2(J,M ;m1,m2) are defined by

|J,M〉 =
∑
m1,m2

m1+m2=M

Cj1j2(J,M ;m1,m2) |m1;m2〉 , (7.15)

so these are the coefficients of the expansion of our orthonormal basis of states in the (J,M) basis

in terms of those in the separable, (m1,m2) basis.

The coefficients defined as such are not uniquely well-defined, because there is some choice over

overall phases in the states for each irreducible representation involved. However, this freedom

can be fixed by requiring that the Clebsch-Gordan coeffiecients be real along with an additional

convention.

Because both bases are orthonormal, we can deduce a number of useful expressions involving the

Clebsch-Gordan coefficients. For example, we can realise them explicitly in terms of inner products

of the form

Cj1j2(J,M ;m1,m2) = 〈m1;m2|J,M〉 . (7.16)

If we make the conventional choice mentioned above to ensure reality of the Clebsch-Gordan coef-

ficients, then we will also have

Cj1j2(J,M ;m1,m2) = 〈J,M |m1;m2〉 . (7.17)

The completeness relation for our Hilbert space leads to the following identity,

1 = 〈J,M |J,M〉

=
∑
m1,m2

m1+m2=M

〈J,M |m1;m2〉 〈m1;m2|J,M〉

=
∑
m1,m2

m1+m2=M

|Cj1j2(J,M ;m1,m2)|2
(7.18)

Let’s see how this works in a couple of simple examples.

Example 7.2.2. Let j2 = 1
2 with j1 6= 0 an arbitrary spin. Then we have as usual for the highest

spins state overall
∣∣j1 + 1

2 , j1 + 1
2

〉
=
∣∣j1; 1

2

〉
. Acting with the total lowering operators we get

∣∣j1 + 1
2 , j1 −

1
2

〉
=

1

~
√

2j1 + 1
J−
∣∣j1 + 1

2 , j1 + 1
2

〉
,

=
1

~
√

2j1 + 1

(
J
(1)
− + J

(2)
−

) ∣∣j1; 1
2

〉
,

=
1√

2j1 + 1

(√
2j1
∣∣j1 − 1; 1

2

〉
+
∣∣j1;− 1

2

〉)
. (7.19)

We can identify the most general (normalised) orthogonal complement in the M = j1− 1
2 eigenspace

as ∣∣j1 − 1
2 , j1 −

1
2

〉
∼ 1√

2j1 + 1

(∣∣j1 − 1; 1
2

〉
−
√

2j1
∣∣j1;− 1

2

〉)
. (7.20)

At this point we can use some of our freedom in introducing phases to fix the overall phase of this

state. Demanding that the Clebsch-Gordan coefficients (so the coefficients of the expansion) be real
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gives us ∣∣j1 − 1
2 , j1 −

1
2

〉
= ± 1√

2j1 + 1

(√
2j1
∣∣j1;− 1

2

〉
−
∣∣j1 − 1; 1

2

〉)
. (7.21)

To fix the final sign ambiguity, one may adopt a standard convention known as the Condon-Shortley

convention. This amounts to declaring that

Cj1j2(J, J ; j1, J − j1) > 0 . (7.22)

In the above, this selects the plus sign, and with that highest state fixed, we can produce the rest

of the spin j1 − 1
2 multiplet by acting with J−. (Note that this convention depends on the order of

the two constituent spins j1 and j2.)

One can read off the Clebsch-Gordan coefficients from the resulting expressions for our states, e.g.,

from (7.19) and (7.21) we have

Cj1 1
2

(
j1 + 1

2 , j1 + 1
2 ; j1,

1
2

)
= 1 ,

Cj1 1
2

(
j1 + 1

2 , j1 −
1
2 ; j1,− 1

2

)
=

1√
2j1 + 1

,

Cj1 1
2

(
j1 + 1

2 , j1 −
1
2 ; j1 − 1, 12

)
=

√
2j1

2j1+1 , (7.23)

Cj1 1
2

(
j1 − 1

2 , j1 −
1
2 ; j1,− 1

2

)
=

√
2j1

2j1+1 ,

Cj1 1
2

(
j1 − 1

2 , j1 −
1
2 ; j1 − 1, 12

)
=

−1√
2j1 + 1

.

You can look up tables of Clebsch-Gordan coefficients in textbooks and online, but you should learn

to love them and practice deriving some!

7.3 Angular momenta of hydrogen energy levels

An important instance of this general story arises in the analysis of atoms. Let us start with a

single-electron atom (a.k.a., a Hydrogen-like atom). We model this as an electron moving in an

external Coulomb potential, and you have studied the corresponding stationary state wave functions

in Part A. However, the electron is a fermionic particle with intrinsic spin 1/2, so we should really

think of its Hilbert space as being the tensor product

Helectron
∼= L2(R3)⊗Hspin 1/2 . (7.24)

A general state in the electron Hilbert space will then consist of two wavefunctions, one for each of

the possible internal spin states

|ψ〉 = ψ+(x)
∣∣+ 1

2

〉
+ ψ−(x)

∣∣− 1
2

〉
, (7.25)

where
∣∣± 1

2

〉
are the ms = ± 1

2 intrinsic spin eigenstates for, say, the S3 operator. Thus ψ+(r)

gives the wave function for the situation that the electron has ms = 1
2 spin and ψ−(r) gives the

wave function for the situation that the electron has ms = − 1
2 spin. In non-relativistic quantum

mechanics, the Schrödinger equation doesnt mix the two m-values, so the component wave functions

ψ±(x) must both individually satisfy the same Schrodinger equation.33

33In a relativistic setting, the usual Schrödinger equation is replaced by the Dirac equation, which does mix up
the different spin states. This is beyond the scope of our course.
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If we then take the ψ±(x) to be one of the stationary state wave functions that you have met in

your previous course, we end up with states that we write as

|n, `,m`;ms〉 = fn`(r)Y
m`
` (θ, φ) |ms〉 , (7.26)

where on the right we have brought out the explicit wave function part in front and left only the

intrinic spin state in the ket. Here, as elsewhere, the Y m`` (θ, φ) are the spherical harmonics with

eigenvalues ~2`(`+ 1) for L2 and ~m` for L3, and fn`(r) is a (particular) polynomial in r of degree

n− 1 multiplied by exp(−Zr/na0). These states simultaneously diagonalise L2, S2, L3, S3, and H,

with energy

En =
E0

n2
, E0 = −Z

2q2e
2a0

. (7.27)

The energy eigenstates depend only on the principal quantum number, n, and for a given n there

are states with ` = 0, . . . , n − 1, and for each ` there are 2` + 1 different values of m`. Each such

wave function also occurs twice, once for each of the two values of ms. Adding everything up, there

is a degeneracy of 2n2 for the energy level En.

Now for various purposes it proves useful to adopt a basis of states that diagonalises the total

angular momentum operator J2 (where J = L + S). Following our previous discussion of addition

of angular momentum, we can find a basis of states that does this with eigenvalue j(j+1)~2, where

j = `± 1
2 (or j = 1

2 if ` = 0). These are given by the linear combinations,

|n, `, j,mj〉 =
∑
m`,ms

m`+ms=mj

C`, 12 (j,mj ;m`,ms) |n, `,m`;ms〉 . (7.28)

where C`, 12 (j,mj ;m`,ms) are of course the Clebsch-Gordan coefficients. This gives us a basis of

stationary states that are eigenvectors for H, L2, J2, and J3, the latter with eigenvalue mj , but

not for L3 and S3.

There is a standard nomenclature for the electron states in this form. The set of states with given

values of n, `, and j are known as n`j orbitals. For historical reasons, instead of writing the numeri-

cal value for ` = 0, 1, 2, 3, 4, . . ., one normally substitutes the letters s, p, d, f, g, . . . respectively (con-

tinuing alphabetically). Each such orbital contains 2j+ 1 states with mj = −j,−j+ 1, . . . , j− 1, j.

So, for example:

• For all n we have the ` = 0 states, i.e., s states, which appear only in the orbital ns 1
2

with

the two states corresopnding to mj = ms = ± 1
2 .

• For n > 2 we can have ` = 1, the p orbitals, which arise in the configuration np 1
2

with two

states or np 3
2

with four states, giving a total of 6 states for the np states.

• In general, we have orbits n``± 1
2

with n > ` + 1, and a similar counting for the n` type of

energy level gives a total of 2(`− 1
2 ) + 1 + 2(`+ 1

2 ) + 1 = 4`+ 2 states.

Remark 7.3.1. We have here reorganised the Hydrogen stationary states so as to diagonalise the

total angular momentum operator; it may not yet be clear that this is a superior basis to choose.

We will see in some examples in the next chapter that when we start considering corrections to

the Hydrogen atom Hamiltonian arising from more subtle physical effects, these will often lead to

a preference for one basis over another.
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Figure 3. Periodic table of the elements.34

7.4 Fermionic statistics and the periodic table

Finally, let us combine the fermionic nature of electrons with the structure of angular momentum

representations for the Hydrogen-like atom’s energy eigenstates to develop a qualitative understand-

ing of the periodic table of the elements.

As a first approximation to describing an atom with n electrons, we might model the n electrons

to be non-interacting amongst themselves, so the n-particle energy eigenstates will simply be built

from single electron energy eigenstates. But by the Pauli exclusion principle, as soon as, say, the two

states in the 1s orbital are filled, a third electron will be required to lie in the first excited state (in

the 2s or 2p orbital).35 It turns out that although the model of non-interacting fermions is good for

the first few energy levels, more elaborate calculations that incorporate, e.g., shielding of nuclear

charge by the inner orbits, affect the overall energy levels of the different orbitals and gives the

following ordering from lowest energy to highest, with levels on the same line being approximately

equal:
orbital labels number of states

1s, 2

2s, 2p, 2 + 6 = 8

3s, 3p, 2 + 6 = 8

4s, 3d, 4p 2 + 10 + 6 = 18

5s, 4d, 5p 2 + 10 + 6 = 18

6s, 4f, 5d, 6p, 2 + 14 + 10 + 6 = 32

7s, 5f, 6d, 7p, . . . . . .

(7.29)

and so on. (We ignore the so-called fine structure separation for different j-values in a given orbital

at this level of approximation; we will return to it in the next chapter on perturbation theory.)

The point here is that for the larger ` orbits, the electrons in the smaller ` orbits are shielding the

35We are being a bit careless with our language here; really we are dealing with antisymmetrised wave functions
and there is no distinguishable “third electron”. For the purposes of thinking about energy eigenstates the sloppier
terminology will suffice.
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nuclear charge, reducing the attraction towards the nucleus and hence raising the energy level of

the outer orbits.

This already gives a reasonably good understanding of the periodic table of the elements. This is

ordered by the charge of the nucleus and hence number of electrons. The elements in the same

column are grouped by their physical and chemical properties. As can be seen the lengths of the

rows line up precisely with the numbers of states in the different orbitals given above. Most notable

are those on the far right, the noble gases. These are the most stable unreactive elements and are

those for whom the orbitals of a given energy are full. This is because chemical bonds arise from

sharing electrons between different atoms. However, the noble gases find it hard to accept new

electrons because a new electron would have to go into a higher energy orbital than the existing

one, and the existing electrons are tightly bound so they don’t like to leave. On the left hand side

are elements with one electron sitting alone in a higher orbital. This electron can be lost easily

because it has more energy. Such an element is said to have valency one. Similarly, an element

on the left of a noble gas has one space left in its orbital, and so easily accepts an electron and is

said to have valency −1, and so on. The qualitative theory of chemical bonding all comes down to

this valency in which stable molecules have net valency zero (i.e., H2O with +1 for each Hydrogen

atom and −2 for the Oxygen atom).

35Periodic table (polyatomic) by DePiep- Own work. Licensed under Creative Commons Attribution-Share Alike
3.0 via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Periodic table (polyatomic).svg.
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Chapter 8

Rayleigh-Schrödinger Perturbation Theory

We now turn to an important practical and conceptual question in quantum thoery, which is how

to approximate the energy levels of systems that are close to being described by a system that

we can solve. We will say a little (but not a lot) more below about what we mean by “close”,

but intuitively, we can imagine, for example, modelling an atom with several electrons as being

approximated by such an atom where the elecrons are assumed to not interact amongst themselves

(except through fermionic statistics), as in our discussion of the periodic table in the previous

Chapter. Alternatively, when we consider a Hydrogen-like, single-electron atom in the real world,

we think of it as being well-described by the usual Hamiltonian with Coulomb potential, but there

are actually small corrections to this due to the effects of (for example) special relativity.

8.1 Formal perturbation theory

First we’ll introduce the basic idea. We imagine a scenario in which the Hamiltonian (for now

we take this to be time-independent) of a quantum system can be written as a perturbation of a

reference Hamiltonian H(0) taking the form

H = H(0) + δH . (8.1)

We have in mind (though it need not be the case to develop the abstract formalism) that H(0) is

a Hamiltonian whose spectral problem we have understood exactly, such as that of the harmonic

oscillator or the Hydrogen atom (restricting to bound states). Now we want to consider δH as

being small in an appropriate sense, and we make this explicit by writing

δH = εH(1) , (8.2)

where ε is a small parameter, either in the sense of being numerically small (with H ′ being somehow

fixed in size and so not scaling like an inverse power of ε), or more accurately for our immediate

purposes, in the sense of being formally small. So we will take our energy levels and stationary

states to be formal series expansions in this parameter ε,

ψε = ψ(0) + εψ(1) + ε2ψ(2) + . . .+ εnψ(n) + . . . ,

Eε = E(0) + εE(1) + ε2E(2) + . . .+ εnE(n) + . . . ,
(8.3)

and ask that these satisfy the time-independent Schrödinger equation as formal series,

Hψε = Eεψε , order by order in ε . (8.4)

The issue of normalisation for this formal solution can be a little bit subtle, since the normalisation

of our formal solution will itself be a formal series in ε. It turns out that a convenient normalisation

is, rather than demanding ψε be unit normalised, to require〈
ψ(0)

∣∣∣ψε〉 = 1 , (8.5)

which is equivalent to

〈ψ(0)|ψ(n)〉 = δn,0 . (8.6)
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You may find it useful to think about how one should go about enforcing this normalisation if given

a formal solution with an arbitrary normalisation.

If we write out the the formal series in (8.4) then we have(
H(0) + εH(1)

)(
ψ(0) + εψ(1) + ε2ψ(2) + . . .

)
=(

E(0) + εE(1) + ε2E(2) + . . .
)(

ψ(0) + εψ(1) + ε2ψ(2) + . . .
)
,

(8.7)

and equating coefficients of order εn then gives the infinite sequence of relations

H(0)ψ(n) +H(1)ψ(n−1) =

n∑
m=0

E(m)ψ(n−m) . (8.8)

The first of these relations, where n = 0 (by convention we let ψ(−1) = 0) just tells us that zeroeth

term in each expansion corresponds to an eigenstate and energy level of the unperturbed system,

H(0)ψ(0) = E(0)ψ(0) . (8.9)

We will turn to an analysis of higher order terms momentarily. However, first we should make a

short comment about how we should interpret this formal series.

Remark 8.1.1 (Analytic considerations). The analytic status of these formal series solutions is an

interesting subject. Natural questions include whether we can assign some numerical value to ε so

that the resultant series expansions for the energies and the eigenstates converge, and if so what

the radius of convergence might be. The following theorem due to Kato gives some sense of under

what conditions we get convergence.

Theorem 8.1.2. If there exist real constants a, b > 0 such that for any ψ in the domain of H(0), we

have

||H(1)ψ|| 6 a||ψ||+ b||H(0)ψ|| , (8.10)

then the formal series for ψε and Eε will have a finite radius of convergence.

Estimating this radius of convergence is a more subtle issue. Observe that for the case of a finite

dimensional Hilbert space, this is always satisfied since all of the quantities appearing in (8.10) will

be bounded. In the infinite dimensional case, the simplest scenario is again when the left hand side

is simply bounded for all ψ ∈ H; in such a case there is always a positive radius of convergence.

The cases that are most often of interest in a physical setting are of the more complicated variety,

where H is infinite dimensional and the operators in question lead to unbounded left hand side of

(8.10). In these cases establishing the bound in question might be a difficult problem. However,

even when the series have zero radius of convergence, these expansions can often be interpreted as

asymptotic series, and can be used to do computations that give good agreement with experiment

(sometimes extraordinarily good agreement) with experiment by simply truncating the formal series

after a fixed number of terms. In our applications this will be our modus operandi.

8.2 First order perturbation theory (nondegenerate)

Now we return to our equation in (8.8) and look at the first correction term (m = 1),

H(1)ψ(0) +H(0)ψ(1) = E(1)ψ(0) + E(0)ψ(1) . (8.11)
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Rewriting this gives (
H(0) − E(0)

)
ψ(1) = −

(
H(1) − E(1)

)
ψ(0) . (8.12)

We want this equation to determine both E(1) and ψ(1), given the unperturbed (zeroeth order)

information. For now we assume that E(0) is a nondegenerate energy level, so ψ(0) is the only

state vector (up to rescaling) with eigenvalue E(0). An important fact is that we can determine the

energy correction E(1) without worrying about ψ(1). To do this, we take the inner product of both

sides of equation (8.12) with the state vector ψ(0),〈
ψ(0)

∣∣∣(H(0) − E(0)
)∣∣∣ψ(1)

〉
= −

〈
ψ(0)

∣∣∣(H(1) − E(1)
)∣∣∣ψ(0)

〉
. (8.13)

The left hand side vanishes, since H(0) can act to the left and just give E(0), and we get the equation

for our energy correction

E(1) =
〈
ψ(0)

∣∣∣H(1)
∣∣∣ψ(0)

〉
. (8.14)

This simple expression is extremely important and extremely powerful; in a slogan it tells us that

the leading correction to the energy of a stationary state is given by the expectation value of the

perturbation in that state.

We can then consider the problem of determining ψ(1). We will find an expression for the expan-

sion of this correction vector in terms of a basis of stationary state vectors for the unperturbed

Hamiltonian, which we denote by {ψ(0)
n } where

H(0)
∣∣∣ψ(0)
n

〉
= E(0)

n

∣∣∣ψ(0)
n

〉
. (8.15)

We label these states so that the state whose perturbation we are studying is the m’th state (n = m),

with energy E
(0)
m . We write such an expansion of the correction vector using a resolution of the

identity,

ψ(1)
m =

∑
n 6=m

〈
ψ(0)
n

∣∣∣ψ(1)
m

〉
ψ(0)
n . (8.16)

where n = m is not included in the sum due to our normalisation condition. Now we can compute

these overlaps by taking the inner product of both sides of (8.12) with ψ
(0)
n , which yields〈

ψ(0)
n

∣∣∣(H(0) − E(0)
m

)∣∣∣ψ(1)
m

〉
= −

〈
ψ(0)
n

∣∣∣(H(1) − E(1)
m

)∣∣∣ψ(0)
m

〉
,

=⇒
(
E(0)
n − E(0)

m

)〈
ψ(0)
n

∣∣∣ψ(1)
m

〉
= −

〈
ψ(0)
n

∣∣∣H(1)
∣∣∣ψ(0)
m

〉
, (8.17)

=⇒
〈
ψ(0)
n

∣∣∣ψ(1)
m

〉
=

〈
ψ
(0)
n

∣∣∣H(1)
∣∣∣ψ(0)
m

〉
E

(0)
m − E(0)

n

.

This allows us to give the expansion of the first order correction vector in our orthonormal basis

with explicit coefficients.

Remark 8.2.1. There is a nice way of thinking about the expression for the first state correction

that is a bit slicker and offers a useful heuristic. Formally, we would like to take (8.12) and solve

for ψ(1)m by inverting the operator appearing on the left hand side,

ψ(1)
m = − 1

H(0) − E(0)
m

(
H(1) − E(1)m

)
ψ(0)
m . (8.18)

– 59 –



However, we know that the operator H(0) −E(0)
m is not invertible since it has a kernel (spanned by

ψ
(0)
m in this non-degenerate case). A related fact is that the range of this operator doesn’t include all

of H; ψ
(0)
m is absent, and indeed it is the only one of our basis vectors that is absent. Consequently,

we can only define this inverse operator on the subspace of H that is orthogonal to ψ
(0)
m , and it is

defined only up to the possible addition of multiples of ψ
(0)
m . The first of these requirements gives

us a solvability condition that is exactly our condition that determines E
(1)
m . The second requires us

to adopt a convention, which is exactly our normalisation condition for the formal solution. With

both of those issues square away, we get an expression for ψ
(1)
m upon inserting a resolution of the

identity for the Hilbert space H⊥ that is orthogonal to ψ
(0)
m , which must act as the identity given

that we have ensured that the state vector to the right is orthogonal to ψ
(0)
m ,

ψ(1)
m =

−1

H(0) − E(0)
m

∑
n 6=m

∣∣∣ψ(0)
n

〉〈
ψ(0)
n

∣∣∣ (H(1) − E(1)
m

) ∣∣∣ψ(0)
m

〉
,

=
∑
n 6=m


〈
ψ
(0)
n

∣∣∣H(1)
∣∣∣ψ(0)
m

〉
E

(0)
m − E(0)

n

∣∣∣ψ(0)
n

〉
.

(8.19)

In passing to the second line we have defined the action of the inverted operator using our usual

rule that on eigenvectors of an observable A with eigenvalue a, we let a function of the observable

f(A) act by f(a). We see that this procedure neatly reproduces the more piecemeal analysis carried

out above.

Example 8.2.2 (The Helium atom ground state). Consider an atom with two electrons (so prob-

ably Helium), and for now imagine that we can ignore spin (so treat electrons as if they were spin

zero). The Hamiltonian of such an atom will be given by

H = H1 +H2 +Hint , (8.20)

where

Hi = − ~2

2m
∇2
i −

Zq2e
|ri|

, i = 1, 2, Hint =
q2e

|r1 − r2|
. (8.21)

Here the nuclear charge Z would be two for Helium, H1 and H2 are the standard single-electron

Hamiltonians, and Hint is interaction Hamiltonian that encodes the repulsion between the two

electrons. If the Hamiltonian were H1 +H2, this would just be the tensor product of two copies of

the Hydrogen atom, so we would have separable energy eigenstates of the form

ψn1,n2(x1,x2) = ψn1(x1)ψn2(x2) . (8.22)

In particular, the ground state is non-degenerate and given by

ψ1,1(x1,x2) =

(
Z3

πa30

) 1
2

exp

(
−Zr1
a0

)
×
(
Z3

πa30

) 1
2

exp

(
−Zr2
a0

)
,

=

(
Z3

πa30

)
exp

(
−Z(r1 + r2)

a0

)
.

(8.23)

Though it is by no means clear that the interaction Hamiltonian is small, we can nevertheless

proceed with a formal perturbative analysis setting δH = Hint. The first order correction to the
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ground state energy using our machinery from above is then given by the expectation value,

E
(1)
1 =

〈
ψ(0)

∣∣∣H(1)
∣∣∣ψ(0)

〉
=

(
Z3

πa30

)2 ∫
R6

q2e exp
(
−2Z(r1+r2)

a0

)
|x1 − x2|

d3x1 d3x2 . (8.24)

Evaluating integrals like these is, unfortunately, largely unavoidable when it comes time to turn

the abstract algebra of perturbation theory into actual numbers for systems like the Helium atom.

We can perform this integral by first noting that by spherical symmetry we can take x1 to point in

the ẑ direction (picking up a factor of 4π from the solid angle for x1). Introducing spherical polar

oordinates for x2, we then have x1 · x2 = r1r2 cos θ and so |x1 − x2| = (r21 + r22 − 2r1r2 cos θ)1/2.

The φ integral for x2 is trivial and gives an extra factor of 2π. The remaining integral becomes

(
8Z6q2e
a60

) ∞∫
0

∞∫
0

π∫
0

exp

(
−2Z(r1 + r2)

a0

)
r21r

2
2 sin θ√

r21 + r22 − 2r1r2 cos θ
dθ dr1 dr2 . (8.25)

The angular integral can be done immediately,

2π∫
0

sin θ dθ√
r21 + r22 − 2r1r2 cos θ

=
1

r1r2

(
r21 + r22 − 2r1r2 cos θ

)
1
2

∣∣∣π
0
. (8.26)

=
1

r1r2
((r1 + r2)− |r1 − r2|) , (8.27)

=

{
2
r1

r1 > r2 ,
2
r2

r2 > r1 .
(8.28)

By symmetry the integration regions where r1 > r2 and that with r2 > r1 contribute equally, so we

can write the resulting radial integral as

E
(1)
1 =

(
32Z6q2e
a60

) ∞∫
0

∞∫
r2

exp

(
−2Z(r1 + r2)

a0

)
r1r

2
2 dr1 dr2 . (8.29)

This leaves radial integrations, and these can be performed with the help of the following useful

integral identity

Lemma 8.2.3. For any non-negative integer n, we have

∞∫
R

e−krrn dr =
n! exp (−kR)

kn+1

n∑
j=0

(kR)j

j!
. (8.30)

This is proved by induction on n by differentiating with respect to k.

Applying this lemme a few times, we end up with the result

E
(1)
1 =

5

8

Zq2e
a0

. (8.31)

Selecting Z = 2 as is appropriate for Helium and performing a crude truncation of the perturbation

– 61 –



series to first order, this gives an estimation for the ground state energy as

E1 ≈ E(0)
1 + E

(1)
1 = −2q2e

a0

(
2− 5

8

)
= −2.75q2e

a0
. (8.32)

The experimental result for the Helium atom’s ground state energy is

E
(exp)
1 ≈ −2.92q2e

a0
. (8.33)

Though we don’t have systematic control of higher order corrections, we can see that our estimate

with a coefficient of 2.75 is much closer to the experimental value than the zeroeth order estimate

with a coefficient of 4.

An interesting interpretation of this result is that the corrected energy is as it would be for non-

interacting electrons if the nuclear charge Z were equal to 11/8 instead of two. One could imagine

modelling the effect of extra electrons as “shielding” some of the electric charge of the nucleus that

the other electrons experience, but otherwise having no interactive effect. We will see in a later

Chapter when discussing variational methods that such an approach can be made quite effective.

8.3 First order perturbation theory (degenerate)

In general we need to be wary of the case where the energy level whose corrections we are considering

is degenerate in the unperturbed theory. For example, we may be considering a Hydrogen-like ion

where the energy levels all have some degeneracy, some quite a bit, as described in the previous

chapter. In this case, the analysis of the previous section is a bit too naive.

This becomes apparent when we consider the determination of the first correction to a given de-

generate energy level. Suppose that both ψ(0) and ϕ(0) have unperturbed energy E(0). Taking the

inner product of both sides of (8.11) with both ψ(0) and ϕ(0) we find

E(1) =
〈
ψ(0)

∣∣∣H(1)
∣∣∣ψ(0)

〉
, 0 =

〈
ϕ(0)

∣∣∣H(1)
∣∣∣ψ(0)

〉
, (8.34)

The first of these amounts to our previous determination of the energy correction, but the second is

a condition that may or may not be satisfied depending on whether we’ve been lucky in our choice

of basis vectors ψ(0) and ϕ(0). Indeed, the issue here is that there is an ambiguity in the basis that

we choose for the degenerrate E(0) eigenspace, but after perturbation there is a preferred choice of

basis. This resolution proceeds as follows.

Theorem 8.3.1. Let ϕ1, . . . , ϕd be an orthonormal basis for the E(0) eigenspace of H(0). Then

(8.12) can be solved if and only if E(1) and ψ(0) are chosen so that E(1) is a solution to

det
(〈
ϕr

∣∣∣H(1)
∣∣∣ϕs〉− E(1)δrs

)
= 0 , (8.35)

and ψ(0) =
∑d
r=1 crϕr is the corresponding eigenvector∑

s

〈
ϕr

∣∣∣H(1)
∣∣∣ϕs〉 cs = E(1)cr . (8.36)

In a slogan, this says that before setting up the first order perturbation problem, one should choose

a basis for the degenerate E(0) eigenspace that diagonalises the action of the restriction of H(1) to

that subspace. In this basis, the rules are the same as in the non-degenerate setting.
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Proof. This follows directly from the requirement that we avoid the potential contradictions arising

as in (8.34). We can also argue more abstractly in terms of the formulation from Remark 8.2.1. We

need to be able to solve (8.12), but again H(0) − E(0) has a (now d-dimensional) kernel and is not

invertible, so the right hand side could fail to be in the range of H(0) − E(0). A useful fact is then

the following:

Proposition 8.3.2. The range of a self-adjoint operator on a Hilbert space H coincides with the

orthogonal complement of its kernel.

Proof. We first establish that Ran(A) ⊆ ker(A)⊥. Let ψ ∈ RanA, so we can write ψ = Aψ′. Then

we have for any ϕ ∈ ker(A),

〈ϕ|ψ〉 = 〈ϕ|Aψ′〉 = 〈Aϕ|ψ′〉 = 0 , (8.37)

which gives our inclusion.

Now we establish that ker(A)⊥ ⊆ Ran(A). First, note that for ϕ ∈ Ran(A)⊥, we have that for all

ψ ∈ H, we have

0 = 〈ϕ|Aψ〉 = 〈Aϕ|ψ〉 , (8.38)

so Aϕ must be the zero vector, and thus ϕ ∈ ker(A) and so Ran(A)⊥ ⊆ ker(A). We will use

without proof a fact from functional analysis, which is that for any self-adjoint operator on a

Hilbert space, (Ran(A)⊥)⊥ = Ran(A).36 Thus taking complements of this second inclusion, we have

ker(A)⊥ ⊆ Ran(A)⊥⊥ = Ran(A). With both inclusions in place, we get the stated identification. �

Thus, to be able to define an inverse action of our operator H(0) − E(0) what we need is that the

the right hand side of (8.12) is orthogonal to the operator’s kernel. Taking the inner product with

any one of the ϕr we find,

0 =
〈
ϕr

∣∣∣(H(1) − E(1)
)∣∣∣ψ(0)

〉
=
∑
s

〈
ϕr

∣∣∣H(1)
∣∣∣ϕs〉 cs − E(1)δrscs , (8.39)

where ψ(0) is expanded in terms of the ϕi as in the statement of the theorem. This is precisely the

condition that E(1) be an eigenvalue of the matrix with matrix elements
〈
ϕr
∣∣H(1)

∣∣ϕs〉 with ψ(0)

(thought of as an element of the d-dimensional E(0) eigenspace) the corresponding eigenvector. �

In practice, what one should usually do is to choose the basis ϕ1, . . . , ϕd to already diagonalise the

restriction to the E(0) eigenspace of the perturbation H(1), and use these as our unperturbed state

vectors when we set up our formal perturbation problem. Suppose we set ψ(0) = ϕ1. Then we have

for the first correction to such an eigenstate,

ψ(1) =
∑

E
(0)
n 6=E(0)


〈
ψ
(0)
n

∣∣∣H(1)
∣∣ψ(0)

〉
E(0) − E(0)

n

∣∣∣ψ(0)
n

〉
+

d∑
j=1
j 6=i

λj |ϕj〉 , (8.40)

where we have introduced parameters λi corresponding to the ambiguity in defining the pre-image of

the right hand side of (8.12) due to the enlarged kernel of H(0)−E(0). At this stage these parameters

are genuinely ambiguous. You will see on the third problem sheet that these parameters can be

fixed upon continuing to higher orders in perturbation theory.

36This is a familiar fact that the iterated orthogonal complement is the identity for finite-dimensional inner product
spaces; the novelty here is that in infinite dimensions it isn’t necessarily true, but it is still true for ranges of self-adjoint
operators on Hilbert spaces.
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Example 8.3.3 (Strong field Zeeman effect). A simple example of degenerate perturbation theory

arises in what is known as the Zeeman effect (or Zeeman splitting) for Hydrogen-like atoms. If we

apply a constant magnetic field B to such an atom, there will be a correction to the Hamiltonian

given by,37

δH =
qe

2mec
B · (L + geS) , (8.41)

where ge ≈ 2 is a numerical constant known as the gyromagnetic ratio of the electron. Without

loss of generality, we will take B to be oriented in the x3-direction.

When considering the effect of this perturbation, we must account for the degeneracy of the Hy-

drogen energy levels, and as we understood in the previous chapter, there are at least two natural

bases for the degenerate energy eigenspaces of the Hydrogen atom, depending on whether we want

to diagonalise the total angular momentum (|n, `, j,mj〉 states) or the x3 component of both orbital

and spin angular momentum (|n, `,m`;ms〉 states). For this perturbation, then, we should use the

latter states since they are actually already simultaneous eigenvectors of L3 and S3.

If we restrict to states with principle quantum number n (so unperturbed energy En), then the first

order corrections are given by

E
(1)
n,`,m`,ms

= 〈n, `,m`;ms|δH|n, `,m`;ms〉 =
qeB

2mec
(m` + gems) . (8.42)

The above example is a bit artificial as an example of perturbation theory, because the |n, `,m`;ms〉
states actually are exact eigenstates of the perturbed Hamiltonian, as they diagonalise the J3 and

S3 operators appearing in δH on the nose. Correspondingly, you should be able to convince yourself

that the correction (8.40) to the energy eigenstates vanishes exactly. Therefore this analysis is valid

for large values of B. In fact, it is only value for sufficiently large values of B, because for small B

there are competing corrections that need to be accounted for.

8.4 Higher order perturbation theory

We will briefly comment on the extension to higher orders in the perturbative expansion. To begin,

let us just proceed directly to second order, where the O(ε2) term in (8.7) amounts to the equation

H(0)ψ(2) +H(1)ψ(1) = E(0)ψ(2) + E(1)ψ(1) + E(2)ψ(0) . (8.43)

We reorganise this suggestively as(
H(0) − E(0)

)
ψ(2) = −

(
H(1) − E(1)

)
ψ(1) + E(2)ψ(0) , (8.44)

which again tells us that to be able to determine ψ(2) we have to find the pre-image under H(0)−E(0)

of the vector on the right hand side. If for now we assume that the unperturbed energy level in

question is non-degenerate, then like above our first task will be to establish a solvability condition

that the right hand side is orthogonal to the kernel of H(0)−E(0), which is to say that it is orthogonal

to ψ(0). This determines E(2):

E(2) =
〈
ψ(0)

∣∣∣(H(1) − E(1)
)∣∣∣ψ1

〉
=
〈
ψ(0)

∣∣∣H(1)
∣∣∣ψ1
〉
, (8.45)

37We won’t worry about how the precise form of this correction comes about.
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which, plugging in our expression for ψ(1), gives

E(2) =
∑

ψ
(0)
n 6=ψ(0)

〈
ψ(0)

∣∣∣H(1)
∣∣∣ψ(0)
n

〉〈
ψ
(0)
n

∣∣∣H(1)
∣∣∣ψ(0)

〉
E

(0) − E(0)
n

=
∑
n

∣∣∣〈ψ(0)
n

∣∣∣H(1)
∣∣∣ψ(0)

〉∣∣∣2
E

(0) − E(0)
n

. (8.46)

Let us make a few comments.

• If ψ0 was the ground state, then the denominator in (8.46) is always negative and so the

second order energy correction is necessarily negative.

• This formula is especially useful if H(1)ψ(0) is itself an energy eigenstate, so that we only get

one nonvanishing term in the sum due to the orthogonality of the different energy eigenstates.

• If energy levels are well separated, then we expect the terms corresponding to mixing with

nearby energy eigenstates to dominate the correction due to suppression in the denominator

by energy difference.

Continuing in the non-degenerate case and considering the second-order correction to the state

(subject to our normalisation condition),

ψ(2) =
∑

ψ
(0)
n 6=ψ(0)

〈
ψ(0)
n

∣∣∣ψ(2)
〉
ψ(0)
n , (8.47)

we can solve for the coefficients using (8.43) and find

ψ(2) =
∑

ψ
(0)
n,m 6=ψ(0)

〈
ψ
(0)
n

∣∣∣H(1)
∣∣∣ψ(0)
m

〉〈
ψ
(0)
m

∣∣∣H(1)
∣∣∣ψ(0)

〉
(
E

(0)
n − E(0)

)(
E

(0)
m − E(0)

) ψ(0)
n −

∑
ψ

(0)
n 6=ψ(0)

〈
ψ
(0)
n

∣∣∣H(1)
∣∣∣ψ(0)

〉〈
ψ(0)

∣∣∣H(1)
∣∣∣ψ(0)

〉
(
E

(0)
n − E(0)

)2 ψ(0)
n .

(8.48)

Clearly, at this point (and even more at higher orders) things get quite cluttered in these general

expressions.

Often it is more important to have expressions for higher order corrections to energy levels than it

is to have the high order expressions for the state vectors. From our general perturbative expension,

this would naively require obtaining ψ(k−1) if we want to compute E(k) because expanding Hεψε =

Eεψε to order k gives from the coefficient of εk

H(0)ψ(k) +H(1)ψ(k−1) = E(0)ψ(k) + E(1)ψ(k−1) + . . .+ E(k)ψ(0) , (8.49)

and taking the inner product with ψ(0) (imposing the solvability condition in the nondegenerate

case), using
〈
ψ(0)

∣∣ψ(l)
〉

= 0 that follows from the normalization condition, we obtain

E(k) =
〈
ψ(0)

∣∣∣H(1)
∣∣∣ψ(k−1)

〉
, (8.50)

In fact, one can avoid calculating all the way up to ψ(k−1) using a clever trick that draws out

relations between the different perturbative corrections.
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Lemma 8.4.1. As a formal expansion in ε1 and ε2, we have〈
ψε1

∣∣∣H(1)
∣∣∣ψε2〉 =

Eε1 − Eε2
ε1 − ε2

〈ψε1 |ψε2〉 . (8.51)

Proof. We have Hε1 −Hε2 = (ε1 − ε2)H(1) so we can compute,

〈ψε1 |Hε1 −Hε2 |ψε2〉 = 〈ψε1 |Hε1 |ψε2〉 − 〈ψε1 |Hε2 |ψε2〉 , (8.52)

(ε1 − ε2)
〈
ψε1

∣∣∣H(1)
∣∣∣ψε2〉 = Eε1 〈ψε1 |ψε2〉 − Eε2 〈ψε1 |ψε2〉 . (8.53)

which leads to the conclusion. �

Note that Eε1 −Eε2 is proportional to ε1 − ε2, so the right hand side can still be taken as a formal

expansion in the two variables.

By expanding both sides of (8.51), and considering each monomial in the ε’s, we generate various

identities for the perturbative corrections. Indeed, our first naive higher order formula (8.50)

represents the coefficient of εk−12 . However, we can be a bit more efficient if we are clever.

Corollary 8.4.2. E(2k+1) can be expressed in terms of only the ψ(r) with r 6 k and and their

matrix elements with respect to H(1).

Proof. The coefficient on the right hand side of (8.51) can be expanded as

Eε1 − Eε2
ε1 − ε2

=

∞∑
n=1

ε1
n − ε2n

ε1 − ε2
E(n) (8.54)

=

∞∑
n=1

E(n)

n−1∑
j=0

ε1
jε2

n−1−j

 , (8.55)

so at order ε1
kε2

k we have E(2k+1). This is then equal to the coefficient of ε1
kε2

k in the expansion

of 〈
ψε1
∣∣H(1)

∣∣ψε2〉
〈ψε1 |ψε2〉

. (8.56)

That term clearly depends only on ψ(r) for r 6 k. �

The simplest example of this gives us an economical expression for the third order energy correction,

E(3) =
〈
ψ(1)

∣∣∣H(1)
∣∣∣ψ(1)

〉
− E(1)

〈
ψ(1)

∣∣∣ψ(1)
〉
, (8.57)

which we could calculate using only the results of first-order computations.

– 66 –



Chapter 9

Variational Methods

It isn’t uncommon to encounter a system that is not particularly close to being solvable, rendering

perturbation theory at least unreliable and at worst completely unhelpful. There are an important

class of techniques that go by the name of variational methods that can be applied quite generally

in these circumstances, though they often require a bit of creativity to exploit well. In this chapter

we present the essential idea behind these methods and study (again!) the Helium atom as a nice

example.

9.1 Rayleigh quotients for observables

The basic tool behind our variational methods will be the so-called Rayleigh quotient.

Definition 9.1.1 (Rayleigh Quotient). The (real) function

fA : H −→ R ,

ψ 7−→ Eψ(A) =
〈ψ|A|ψ〉
〈ψ|ψ〉

.
(9.1)

is known as the Rayleigh quotient for A.

It may seem a bit overwrought to introduce a name for what is already the expectation value as

we have defined it before. For us, the point is to accentuate the fact that this is now being thought

of as a (smooth) function on H, which is not necessarily how we thought about expectation values

previously.

A key property of the Rayleigh quotient is that stationary values/vectors for fA(ψ) are precisely

eigenvalue/vectors for A, as can be seen from the following.

Theorem 9.1.2. Given a subspace K ⊆ H, then

d

dt
fA(ψ + tϕ)

∣∣∣∣
t=0

= 0 , ∀ϕ ∈ K ⇐⇒ 〈ϕ|A− fA(ψ)|ψ〉 = 0 ∀ϕ ∈ K , (9.2)

which in particular, for K = H, implies that

(A− fA(ψ)) |ψ〉 = 0 . (9.3)

This latter statement says that the critical points of fA(ψ) are precisely the eigenvectors of A and

the critical values are the eigenvalues of A.

Proof. For ϕ ∈ K, iϕ ∈ K, so we require both

d

dt
fA(ψ + tϕ) = 0 and

d

dt
fA(ψ + itϕ) = 0 . (9.4)
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The first of these gives

0 =
d

dt

〈ψ + tϕ|A|ψ + tϕ〉
〈ψ + tϕ|ψ + tϕ〉

∣∣∣∣
t=0

,

=
d

dt

〈ψ|A|ψ〉+ t 〈ϕ|A|ψ〉+ t 〈ψ|A|ϕ〉+O(t2)

〈ψ|ψ〉+ t 〈ϕ|ψ〉+ t 〈ψ|ϕ〉+O(t2)

∣∣∣∣
t=0

,

=
〈ϕ|A|ψ〉+ 〈ψ|A|ϕ〉

〈ψ|ψ〉
− 〈ψ|A|ψ〉 (〈ϕ|ψ〉+ 〈ψ|ϕ〉)

〈ψ|ψ〉2
,

= 2<
(
〈ϕ|(H − fA(ψ))|ψ〉

〈ψ|ψ〉

)
.

This implies the real part of the desired equation, and if we repeat the argument with ϕ → iϕ we

get the imaginary part as well, and thus deduce that for states that are stationary against adding

vectors ϕ ∈ K,

〈ϕ|(A− fA(ψ))|ψ〉 = 0 . (9.5)

Thus (A− fA(ψ)) |ψ〉 ∈ K⊥ so if we set K = H, then K⊥ = {0} and so

(A− fA(ψ)) |ψ〉 = 0 (9.6)

as desired. �

Remark 9.1.3. Since fA(ψ) is independent of rescaling ψ → λψ, the Rayleigh quotient is really a

function on the projectivised Hilbert space whose critical points correspond to energy eigenstates.

We could also just as well take variations over, say, the unit sphere in Hilbert space, i.e., the states

with norm one.

9.2 The virial theorem

We can obtain useful, general information about energy eigenstates by considering variations within

one-parameter families of states. An example is the following important theorem.

Theorem 9.2.1 (Virial theorem). Assume the Hamiltonian for a quantum mechanical system whose

Hilbert space is identified with a space of wave functions in d dimensions has the conventional form

H = T + V with

T =
P2

2m
= − ~2

2m
∇2 , V = V (X) . (9.7)

Then for any stationary state ψ with Hψ = Eψ, the following condition holds,

2Eψ(T ) = Eψ(x · ∇V ) . (9.8)

If V is homogeneous of degree N , i.e., V (λx) = λNV (x), then

Eψ(T ) =
N

N + 2
E , Eψ(V ) =

2

N + 2
E . (9.9)

Proof. The idea is to perform a variational analysis of the family of wave functions of the form

ψλ(x) = λd/2ψ(λx) for a given reference wave function ψ(x). The factor of λd/2 is included to

ensure that all of these wave functions are normalised equally; this is only done for convenience so

that in computing Rayleigh quotients we can ignore the denominator.
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Now suppose that ψ(x) is a (normalised) stationary state; then the Rayleigh quotient of ψλ(x) must

be stationary as a function of λ at λ = 1,

d

dλ
fH(ψλ)

∣∣∣∣
λ=1

= 0 . (9.10)

Proceeding by direct computation, we have by the chain rule ∇ψλ(x) = λ
d+2
2 (∇ψ) (λx), which

gives us for the Rayleigh quotient,

fH(ψλ) =

∫
Rd

(
−~2λd+2

2m
|(∇ψ)(λx)|2 + λdV (x)|ψ(λx)|2

)
ddx ,

=

∫
Rd

(
−λ2~2

2m
|∇′ψ(x′)|+ V (λ−1x′)|ψ(x′)|2

)
ddx′ , (9.11)

= λ2Eψ(T ) + Eψ(V (λ−1x)) .

In the passing to the second line we have defined x′ = λx. With this, (9.10) gives the condition

0 = 2Eψ(T ) +
d

dλ
Eψ(V (λ−1x))

∣∣∣∣
λ=1

= 2Eψ(T )− Eψ(x · ∇V (x)) , (9.12)

which reproduces (9.8). For V homogeneous of degree N , x · ∇V = NV and we get the simpler

result

2Eψ(T ) = N Eψ (V (x)) . (9.13)

We also have for an energy eigenstate

E = Eψ(T ) + Eψ(V (x)) , (9.14)

and putting these together gives

Eψ(T ) =
N

N + 2
E , Eψ(V ) =

2

N + 2
E , (9.15)

as required. �

Remark 9.2.2. We offer some additional comments here.

• We see here that the Coulomb potential where N = −1, we must have E < 0 as V < 0 and

Eψ(V ) is twice the size of Eψ(T ).

• For the harmonic oscillator, kinetic and potential energies are equal and balanced Eψ(V ) =

Eψ(T ) = 1
2E.

• This quantum virial theorem has a classical counterpart, which is the original virial theorem.

The classical theorem has to do with time-averages of energies along classical trajectories.

9.3 Approximating the ground state

The flagship application of variational methods in quantum theory is to the study of the ground

state and ground state energy of complicated quantum systems. To this end, one observes the

following.

– 69 –



Proposition 9.3.1. If fH is bounded below and achieves its minimum, E0 := infP(H) fH , then E0

is the ground state energy (minimum eigenvalue) and any state ψ for which fH(ψ) = E0 is indeed

a ground state.

Proof. fH is automatically stationary at its minimum, and this will necessarily correspond to an

eigenstate. Its eigenvalue will be the minimal one because the other eigenvalues are realised as

values of fH as well. �

Conversely, when a system does have a normalisable ground state ψ0, the function fH achieves its

lower bound at ψ0.

Though this is a relatively simple observation, this result is actually very powerful. The idea is that

we can try to find an approximate ground state by finding the minumum E0,approx of fH restricted

to some well-chosen subset of H. We are guaranteed that E0,approx > E0 by the above, so this

procedure produces rigorous upper bounds for E0. If we are lucky and clever, these upper bounds

will also be good approximations (though to estimate errors would be beyond the scope of the

discussion here).

Example 9.3.2 (Helium again). We return to the two-electron Helium atom, with Hamiltonian

H =
P2

1

2m
+

P2
2

2m
− 2q2e

(
1

r1
+

1

r2

)
+

q2e
|x1 − x2|

= T + V + δH , (9.16)

where

T =
P2

1

2m
+

P2
2

2m
, V = −2q2e

(
1

r1
+

1

r2

)
, δH =

q2e
|x1 − x2|

. (9.17)

As we saw previously, we can try to treat δH as a small correction and use first-order perturbation

theory to get decent results for the ground state energy. However, the approximation in that case

seemed quite uncontrolled; δH doesn’t actually seem particularly negligible compared to other

terms in the potential. This is a perfect case in which to attempt a variational estimate, and indeed

we can do quite well.

Proposition 9.3.3. The Helium ground state energy E0 is bounded above according to

E0 6 −
(

27

16

)2
q2e
a0

. (9.18)

This should be compared to our estimate of − 11
4
q2e
a0

from first-order perturbation theory; the varia-

tional upper bound is well below the first order estimate, and indeed is within three percent of the

experimental value.

Proof. We derive this using a one-parameter family of wavefunctions like we did with the virial

theorem. To choose our variational Ansatz, we use a physical argument. The idea is that if we

want to model the dynamics of two electrons in the Helium atom as being non-interacting, we

should adjust the effective value of the nuclear charge to account for screening, i.e., each electron

should on average see less than the full charge of the nucleus since the other electron is producing

an electric field with the opposite sign. In other circumstances, this kind of an approximation is

sometimes called a mean field approximation, and it can be quite effective.
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To put this idea into practice, we adopt trial wave functions of the form

ψZ(x1,x2) =

(
Z3

πa30

)
exp

(
−Z(r1 + r2)

a0

)
, (9.19)

where Z is the parameter we will minimise over. This is the exact ground state for the effective

Hamiltonian

HZ =
P2

1

2m
+

P2
2

2m
− Zq2e

(
1

r1
+

1

r2

)
= T +

Z

2
V , (9.20)

satisfying HZψZ = EZψZ with EZ = −Z2q2e/a0, so indeed these are the ground state wave func-

tions for systems of non-interacting electrons with an adjustable nuclear charge. We then want to

minimise the Rayleigh quotient associated to the true Hamiltonian H evaluated on these states as

a function of Z, so we need to compute

fH(ψZ) = EψZ (T ) +
2

Z
EψZ

(
ZV

2

)
+ EψZ (δH) . (9.21)

The first two terms can be evaluated using the virial theorem with respect to the effective Hamil-

tonian HZ , which gives us

EψZ (T ) = −EZ =
Z2q2e
a0

, EψZ
(
ZV

2

)
= 2EZ = −2Z2q2e

a0
. (9.22)

The last term in (9.21) is precisely what we computed in our first-order perturbation theory calcu-

lation previously, and gives

〈ψZ |δH|ψZ〉 = q2e

〈
ψZ

∣∣∣∣ 1

|x1 − x2|

∣∣∣∣ψZ〉 =
5

8

Zq2e
a0

. (9.23)

Putting everything together, we have

fH (ψZ) =
q2e
a0

(
Z2 − 27

8
Z

)
=
q2e
a0

[(
Z − 27

16

)2

−
(

27

16

)2
]
. (9.24)

As a function of Z, this is minimised at Z = 27
16 , reflecting the extent to which each electron shields

the charge of the nucleus to the other. From this we extract the upper bound

E0 6 fH(ψ 27
16

) = − q
2
e

a0

(
27

16

)2

. (9.25)

�

As we noted above, this is not only an upper bound but turns out to be a very good estimate for the

ground state energy (compare the coefficient (27/16)2 ≈ 2.85 to the experimental value 2.92). The

accuracy can be improved by considering a more general Ansatz for trial wave functions—indeed,

an accuracy to within three parts in 108 has been obtained for this calculation using a family of

393 basis functions.

The above result represents a marked improvement over what we got using elementary perturbation

theory. The fact that we do better is not a coincidence at all. Indeed, we have the following.

Proposition 9.3.4. Let H = H0+δH as before and let the family of states {ψλ} over which we will

minimise be chosen so that ψ
(0)
0 (the ground state of H0) is contained in the family. Let E

(0)
0 +E

(1)
0
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be the first order perturbation theoretic estimate of the ground state energy found before. Then for

Evar = inf{ψλ} fH we have

E
(0)
0 + E

(1)
0 > Evar > Eground . (9.26)

Proof. Recall that E
(1)
0 =

〈
ψ
(0)
0

∣∣∣δH∣∣∣ψ(0)
0

〉
so that

E
(0)
0 + E

(1)
0 =

〈
ψ
(0)
0

∣∣∣H0 + δH
∣∣∣ψ(0)

0

〉
= fH

(
ψ
(0)
0

)
, (9.27)

and since ψ
(0)
0 ∈ {ψλ}, this is an upper bound for the infimum of fH on {ψλ}. �

9.4 Approximating excited states

Though the ground state energy tends to be of particular interest, we may also want to ap-

proximate the energies of excited states. If we were to have perfect knowledge of the first k

eigenstates ψ0, . . . ψk−1, with energies E0, E1, . . . , Ek−1, say, then it would be straightforward

to use the same variational ideas as we did above to approximate the k + 1st state. Letting

Hk = Span{ψ0, . . . , ψk−1}, we would have

Proposition 9.4.1. If infH⊥k fH is attained for some ψk ∈ H⊥k , then this is the k + 1st lowest

energy eigenstate, and fH(ψk) > Ej, j = 0, . . . , k − 1.

Proof. Since H : Hk → Hk, self adjointness implies that H : H⊥k → H⊥k . Applying the main

variational result for fH onH⊥k gives that if fH achieves its infimum at ψk, then (H−fH(ψk)) |ψk〉 =

0 and ψk is the eigenstate with the lowest eigenvalue in H⊥k . Since the lowest k eigenvalues are in

Hk, this must be the k + 1st. �

If we only had this result, we would be in the unfortunate situation of needing to have an exact

result for lower lying states before approximating the higher ones. It turns out that we can proceed

without knowledge of the first k eigenvectors/eigenvalues using the following important theorem.

Theorem 9.4.2 (Min-max). If the infimum

inf {max{fH(ψ) , ψ ∈ K , dimK = k}} (9.28)

is attained, where the infimum is taken over k-dimensional subspaces K ⊂ H, then it is the kth

lowest eigenvalue and the state on which it is attained the corresponding eigenvector.

We will give the proof for the case where H has a basis of normalisable energy eigenstates. In the

general case (involving generalised eigenstates), both the statement of the theorem and the proof

become slightly more technical.

Proof. Let E0 6 E1 6 E2 6 . . . be the ordered energy eigenvalues and let ψ0, ψ1, . . . be the

corresponding energy eigenstates. Let Hk−1 = Span{ψ0, . . . , ψk−2}. Now for any k-dimensional

subspace K ⊂ H, we will have dim
(
K ∩H⊥k−1

)
> 1, so we can find a (normalised) vector ψ ∈ K

that can be expressed in terms of the ψn for n > k − 1.

ψ =

dimH∑
n=k−1

anψn ,

dimH∑
n=k−1

|an|2 = 1 . (9.29)
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For which we have

fH(ψ) =

d∑
n=k−1

|an|2En >
d∑

n=k−1

|an|2Ek−1 = Ek−1 , (9.30)

so maxψ∈K{fH(ψ)} > Ek−1.

On the other hand, for K = span{ψ0, ψ1, . . . , ψk−1} we have that maxψ∈K fH(ψ) = Ek−1, and the

result follows. �

Thus, the maximum value of fH on K is an upper bound for Ek−1, and by varying the possible

choices of K we can try to improve the bound. Indeed, this leads to a nice approximation scheme.

To do so, we choose trial subspaces K (perhaps varying with respect to some parameters), and for

a given trial subspace of dimension k, the maximum of fH will be the largest eigenvalue of the

restriction/projection of H to K. So we can produce bounds (and potentially estimates) for Ek−1
by solving finite-dimensional eigenvalue problems.
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Chapter 10

WKB Approximation

We now come to a much different kind of approximation, the semi-classical approximation for

stationary state wave functions. This is also known as the WKB approximation, in honour of the

physicists Wentzel-Kramers-Brillouin who developed it in the mid 1920’s. Unlike the approximation

methods of the previous chapters, which were formulated in the abstract language of Hilbert spaces

and observables, the semi-classical approximation that we will consider here is very much tailored

to the study of wave functions in particular. Indeed, there is an entire branch of the analysis of

PDEs known as semi-classical analysis that is closely related to the methods presented here.

We begin with a somewhat informal derivation of what we will momentarily come to understand as

the zeroeth order WKB approximation. Recall that the momentum operator acts on wave functions

according to

Pψ(x) = −i~ψ′(x) . (10.1)

Now for a given potential energy function V (x) and a given energy E, the classical momentum of

a particle with that energy at a given x (assuming E > V (x)) would be given by

p(x) =
√

2m(E − V (x)) . (10.2)

One might imagine then that a wave function for a state with energy E would obey something like

an equation of the form

Pψ(x)
?
= p(x)ψ(x) , (10.3)

which is then a first order ODE that can be solved as

ψ(x)
?
= exp

± i
~

x∫
x0

p(s) ds

 . (10.4)

In general, this analysis is obvioiusly flawed; in particular, when we evaluate the kinetic energy

operator P 2/2m on such a wave function, the second action of P will not only bring down another

copy of p(x) but will also differentiate p(x). Consequently, this analysis exactly valid only when p(x)

is a constant, in which case we just have a plane wave solution as a generalised momentum/energy

eigenstate.

Nevertheless, there is some appeal to the idea that the operator P should more or less look like the

classical momentum as a function of x, at least in some kind of limit. Indeed, if there is a limiting

situation in which quantum mechanics starts to systematically reduce to classical mechanics, you

might very well expect such a relation to hold. It turns out there is such a limit, which is known

as the semi-classical limit, and the above ad hoc wave function is just the first approximation in a

systematic expansion.
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10.1 The semi-classical expansion and WKB approximation

The starting point for making the previous procedure more systematic is to rewrite a stationary

state wave function in terms of (the exponential of) its logarithm,

ψ(x) = exp

(
iS(x)

~

)
. (10.5)

In light of the heuristic discussion before, we anticipate that the phase S might be related to the

integral of the classical momentum in some regime. The time-independent Schrödinger equation in

terms of this polar expression takes the form (after dividing through by ψ(x) and rearranging some

terms),38

S′(x)2 − i~S′′(x) = 2m(E − V (x)) = p2(x) . (10.6)

The key assumption that we make at this point is that as an expansion in ~, we have

S(x) = S(0)(x) + ~S(1)(x) + . . . . (10.7)

This is sometimes referred to as a semi-classical expansion, since the parameter ~ can be thought

of as characterising a scale where quantum effects become important, so the ~→ 0 limit should in

some sense be a classical limit.39

Solving order by order in ~, we find that the first two terms in the semi-classical expansion of (10.6)

and are given by

S′0(x)2 = p(x)2 , (10.8)

2S′0(x)S′1(x) = iS′′0 (x) . (10.9)

The first equation (10.8) can be solved to give

S0(x) = ±
x∫

x0

p(s) ds , (10.10)

where, as before, p represents the classical momentum as a function of position (and, implicitly,

energy). This reproduces our heuristic result (10.4), as promised. Continuing to the first correction

(10.9), we compute

iS′1(x) = − p
′(x)

2p(x)
, (10.11)

which we can integrate to find

iS1(x) = − log
(√

p(x)
)
. (10.12)

The WKB approximation refers to the situation where we truncate the series at this order, giving

38This equation is an instance of the so-called Riccati equation for S′(x).
39In a physical context, one must be wary about the notion of taking ~ → 0, since ~ is a dimensionful parameter

with units of angular momentum; one should instead want to take an appropriate collection of other dimensionful
parameters in the problem and form a dimensionless combination involving ~ that can then be taken to zero by
scaling the other variables relative to ~. For our analysis here it won’t be important to keep track of this issue and
we will instead treat ~ as a small parameter; this is what is most often done in the mathematical treatment of this
subject.
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us the approximate WKB wave functions

ψ±(x) =
1√
p(x)

exp

± i
~

x∫
x0

p(s) ds

 . (10.13)

In general, this is a local approximation for the wave function and we need to be careful about what

happens in the various regions of space, as we will see in a bit. However, there is a simple example

where the analysis to this point is entirely sufficient to proceed.

Example 10.1.1. Consider the case of infinite potential barriers at, say, x = a and x = b with

a < b, and assume E > V (x) for x ∈ (a, b). We then have a WKB wave function that should take

the form

ψWKB(x) = C+ψ+(x) + C−ψ−(x) , a 6 x 6 b , (10.14)

and we need to impose the boundary conditions ψ(a) = ψ(b) = 0. Letting x0 = a in our expressions

(10.13), the boundary condition at x = a requires that we set C+ + C− = 0, so we have

ψWKB(x) =
C√
p(x)

sin

1

~

x∫
a

p(s) ds

 . (10.15)

Then the requirement ψ(b) = 0 gives the quantisation condition,

1

~

b∫
a

p(x) dx = nπ , n = 1, 2, 3, . . . . (10.16)

For the case of constant potential V = V0, this gives exactly the correct energy levels,

√
2m(E − V0)(b− a) = nπ~ =⇒ E = V0 +

n2π2~2

2m(b− a)2
. (10.17)

Indeed, the WKB wave functions are exactly the correct stationary state wave functions for the

constant potential case. In the case of a non-constant potential, (10.16) gives an approximation to

the energy levels of the system.

For more general potentials (see Figure 4, for example), for a fixed value of E, E−V (x) will become

negative for some values of x. These regions in space are referred to as the classically forbidden

regions, and as p2/2m = E − V < 0, for these regions the “classical momentum” becomes pure

imaginary. Assume that, as in the figure, E − V (x) > 0 on the interval [a, b] with b > a, and is

negative outside and vanishing at a and b. These two points are referred to as the classical turning

points, since in a classical trajectory these would indeed be the points where the particle turned

from moving right to moving left and vice versa.

In the classically forbidden regions, as the classical momentum becomes pure imaginary, we instead

define the real quantity

q(x) =
√

2m(V (x)− E) , (10.18)

which is a kind of analogue of the classical momentum in the forbidden region. We then solve (10.8)
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Figure 4. Example of a general potential with a single classically allowed region (between x = a and
x = b). A WKB wave function for this type of potential (and energy level as drawn) will be defined in three
separate regions and subjected to connection conditions at the classical turning points x = a and x = b.

with an imaginary S(x),

S(x) = ±i
x∫

x0

√
2m (V (s)− E) ds = ±i

x∫
x0

q(s) ds . (10.19)

The O(~) term then proceeds analogously, and we arrive at the semiclassical WKB wave functions

for classically forbidden regions,

ψforbidden
± (x) =

1√
q(x)

exp

±1

~

x∫
x0

q(s) ds

 , (10.20)

which instead of being oscillatory are exponentially growing or decaying as a function of x. (Note

that in a given classical forbidden region, q(s) is strictly positive, so the integral is monotonically

growing with x.)

10.2 WKB Connection Formulæ

In order for our solution to be normalisable, the solution in the left-most classically forbidden region

must be exponentially growing with x (so decaying as x → −∞), and in the right-most forbidden

region myst be exponentially decaying with x. Therefore, we would aim to have a solution of the
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form40

ψ(x) =



CI√
q(x)

exp
(
− 1

~
∫ a
x
q(s) ds

)
, x < a ,

C+√
p(x)

exp
(
i
~
∫ x
a
p(s) ds

)
+ C−√

p(x)
exp

(
− i

~
∫ x
a
p(s) ds

)
, a < x < b ,

C̃+√
p(x)

exp
(
i
~
∫ b
x
p(s) ds

)
+ C̃−√

p(x)
exp

(
− i

~
∫ b
x
p(s) ds

)
, a < x < b ,

CII√
q(x)

exp
(
− 1

~
∫ x
b
q(s) ds

)
, x > b .

(10.21)

There is an issue in deciding how to connect the exponentially increasing/decreasing solutions across

the classical turning points at a and b to the oscillatory WKB wave functions in the classically

allowed region. Indeed, all of our WKB wave functions actually diverge at a and b due to the

denominator, which vanishes when E = V (x). This is a breakdown in the WKB approximation in

the vicinity of classical turning points.

To illuminate the situation, we perform an additional analysis in a small neighbourhood of the

classical turning point. For x ≈ b, say, we approximate the potential (assuming it is sufficiently

smooth) according to

V (x) ≈ V (b) + (x− b)V ′(b) , (10.22)

where in this case V ′(b) is positive. We then consider the Schrödinger eqaution for this approxima-

tion. Setting y = x− b and ψ̃(y) = ψ(x), we have

− ~2

2m
ψ̃′′(y) = (E − V (b)− yV ′(b)) ψ̃(y) = −yV ′(b)ψ̃(y) . (10.23)

Introducing a further variable z =
(
2mV ′(b)/~2

)1/3
y and defining φ(z) = ψ̃(y), this becomes a

famous ordinary differential equation, the Airy equation,

φ′′(z) = zφ(z) . (10.24)

We will take for granted the following integral expressions for a basis of solutions of the Airy

equation (you can try to confirm for yourself that these solve the Airy equation by differentiating

under the integral).

Ai(z) =
1

π

∞∫
0

cos

(
t3

3
+ zt

)
dt ,

Bi(z) =
1

π

∞∫
0

(
sin
(
t3

3 + zt
)

+ exp
(
− t

3

3 + zt
))

dt ,

(10.25)

What’s important for our purposes is the large |z| asymptotics of these functions, which take the

40Notice the somewhat strategic choice of limits of integration we have adopted. We have also given two versions
of the wave function in the classically allowed region, one adapted for comparing to the left-most forbidden region
and the other adapted for comparing to the right-most forbidden region.
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form (again, feel free to take this for granted),

Ai(z) ∼
exp

(
− 2

3z
3
2

)
2
√
πz

1
4

, Bi(z) ∼
exp

(
2
3z

3
2

)
√
πz

1
4

, z � 1 , (10.26)

Ai(z) ∼
cos
(

2
3 (−z) 3

2 − π
4

)
√
π(−z) 1

4

, Bi(z) ∼
cos
(

2
3 (−z) 3

2 + π
4

)
√
π(−z) 1

4

, z � −1 , (10.27)

We see that it is Ai(z) that behaves like a decaying exponential for large positive z, while Bi(z)

instead behaves like a growing exponential. This suggests that we should want to use the Ai(z)

solution to interpolate between the forbidden and allowed regions.41

Indeed, if we consider the forbidden-region decaying exponential WKB wave function in the right

region and use the same approximation (10.22) for the potential near x = b, then we find

CII√
q(x)

exp

−1

~

x∫
b

q(s) ds

 ≈ CII

(2mV ′(b)y)
1
4

exp

−(2mV ′(b)

~2

) 1
2

x∫
0

s
1
2 ds

 ,

=
CII exp

(
− 2

3z
3
2

)
(2mV ′(b)~)

1
6 z

1
4

,

≈ κCIIAi(z) .

(10.28)

where κ = 2
√
π/(2mV ′(b)~)

1
6 is a numerical constant that we could also have absorbed into our

overall constant. So this matches precisely the asymptotics of the Ai(z) precisely up to a numerical

factor! This allows us to indeed use Ai(z) to interpolate from the forbidden to allowed region, and

then in the allowed region we will have to match to an appropriate combination of oscillatory WKB

wave functions.

To this end, we observe that in the allowed region we have, under the approximation (10.22) for

x ≈ b,

2CII√
p(x)

cos

1

~

b∫
x

p(s) ds− π

4

 ≈ 2CII

(−2mV ′(b)y)
1
4

cos

(2mV ′(b)

~2

) 1
2

0∫
y

(−s) 1
2 ds− π

4


=

2CII cos
(

2
3 (−z) 3

2 − π
4

)
(2mV ′(b)~)

1
6 (−z) 1

4

,

≈ κCIIAi(z) .

(10.29)

We conclude that to interpolate with the Ai(z) Airy function, we should choose C̃± in the allowed

region so that they combine to give the first expression in (10.29). An analogous treatment at the

turning point x = a implies that the allowed-region WKB wave function on the right hand side of

that turning point should be given by

ψ(x) =
2CI√
p(x)

cos

1

~

x∫
a

p(s) ds− π

4

 . (10.30)

41In a careful treatment, we should further subdivide our space to include turning point regions where we use this
Airy approximation, and these should overlap with the regions where the WKB wave functions are valid. This level
of detail is important for an estimation of the size of errors in the WKB approximation, but will not be necessary
for us.
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The resulting connection formulæ are summed up in the following.

Proposition 10.2.1. For continuation to the exponentially decreasing solution past the turning

point at b we must have

C̃+ = CIIe
−πi4 , C̃− = CIIe

πi
4 =⇒ ψ(x) =

2CII√
p(x)

cos

1

~

b∫
x

p(s) ds− π

4

 , (10.31)

Similarly, for continuation to the solution that exponentially decays as x → −∞ past the turning

point at a we must have

C+ = CIe
−πi4 , C− = CIe

πi
4 =⇒ ψ(x) =

2CI√
p(x)

cos

(
1

~

∫ x

a

p(x) ds− π

4

)
, (10.32)

Remark 10.2.2. Though not important in this particular analysis, one does run into situations

where one wants to match onto the exponentially growing solution on the other side of the classical

turning point. In this case, we have by an analogous analysis that if the wave functions in the

forbidden regions are of the form

ψI(x) =
DI exp

(
1
~
∫ a
x
q(s) ds

)√
q(x)

, ψII(x) =
DII exp

(
1
~
∫ x
b
q(s) ds

)√
q(x)

, (10.33)

then the matching must be done with the Bi(z) Airy function and one has in the classically allowed

region

C̃+ =
DII

2
e
πi
4 , C̃− =

DII

2
e−

πi
4 =⇒ ψ(x) =

DII√
p(x)

cos

1

~

b∫
x

p(s) ds+
π

4

 , (10.34)

for matching to the right and

C+ =
DI

2
e
πi
4 , C− =

DI

2
e−

πi
4 =⇒ ψ(x) =

DI√
p(x)

cos

(
1

~

∫ x

a

p(x) ds+
π

4

)
, (10.35)

for matching to the left. Taken together, this full set of connection formulæ allow us to match an

arbitrary solution across turning points.

Remark 10.2.3. An imporant feature of this result is that, when all is said and done, we can forget

about the Airy functions and the interpolation region; the relation between the coefficients in the

allowed and forbidden regions is fixed universally subject to only the assumption that the potential

is smooth at the turning points.

Remark 10.2.4. There is another way of deducing these connection formulæ that is quite elegant,

though the justification is not entirely transparent. The idea is to analytically continue the WKB

wave functions around the classical turning point, avoiding the singularity, and matching on either

side. In other words, for (say) the turning point at x = a, set x− a = ρeiφ, with ρ sufficiently large

that the WKB approximation can plausibly stays reliable. Starting with the exponential solution

in the forbidden region, we continue along the path in the upper half plane (φ ∈ (0, π)) and this

produces the coefficient C− near a; the C+ term is instead obtained by analytic continuation in the

lower half plane (φ ∈ (π, 2π)). In this treatment, the important phase shift by π/4 arises from the

analytic continuation of the 1/
√
p ' (x− a)−

1
4 factor. A similar analysis follows at x = b.
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10.3 Bohr-Sommerfeld quantisation

We produced two expressions for the WKB wave function in the classically allowed region by

matching to the appropriate exponential wave functions in both forbidden regions. The requirement

that these two expressions agree gives the Bohr-Sommerfeld quantisation rule, which generalises the

quantisation condition from our example to the case with finite potential in the classically forbidden

regions.

Corollary 10.3.1 (Bohr-Sommerfeld quantisation rule). Normalisable semiclassical solutions sat-

isfying the connection formulæ at classical turning points exist if and only if

b∫
a

p(x) dx =

(
n+

1

2

)
π~ . (10.36)

Proof. Equating the two expressions for the allowed-region WKB wave function we have

CI√
p

cos

1

~

x∫
a

p(s) ds− π

4

 =
CII√
p

cos

1

~

b∫
x

p ds− π

4

 . (10.37)

Rewriting

1

~

b∫
x

p(s) ds− π

4
=

1

~

b∫
a

p(s) ds− 1

~

x∫
a

p(s) ds− π

4
, (10.38)

and using evenness of cos, we have that one of the following must hold

CI = +CII ,
1

~

b∫
a

p(x) dx =
π

2
+ 2πn , n = 0, 1, 2, . . .

CI = −CII ,
1

~

b∫
a

p(x) dx =
3π

2
+ 2πn , n = 0, 1, 2, . . .

(10.39)

which, allowing for either sign, gives the expected condition

b∫
a

p(x) dx =

(
n+

1

2

)
π~ , n = 0, 1, 2, . . . . (10.40)

The correction factor of 1/2 coming from the connection conditions is known as the Maslov correc-

tion. �

This condition is capable of giving surprisingly good answers. For example, it is exact for the simple

harmonic oscillator.

A frequent interpretation/application of (10.36) arises from expressing the same quantity as an area

integral. Indeed, if we identify the region A(E) ⊂ R2
x,p where p2 6 2m(E−V (x)), then we estimate

the number of quantum states corresponding to the classical states whose trajectories are confined
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to this region in phase space by

# states(E) ≈ n(E) =
1

π~

b(E)∫
a(E)

p dx =
1

2π~

∫∫
A(E)

dp dx , (10.41)

where the final equality involves a factor of two because the area of the region includes both the

area above the x-axis and the area below it. Since wave functions decay exponentially fast outside

the region, this number can also be thought of as an estimate of the number of states whose wave

functions are supported in A(E).

This formula is often summarised by saying that there is, roughly, a quantum state for each 2π~
unit of area in phase space; this can be generalised to systems in higher dimensions, in which case

there is roughly one quantum state for each (2π~)d unit of volume in phase space.

10.4 The radial WKB approximation

The WKB method we’ve been studying is particularly suited to the case of one-dimensional systems.

We can easily extend this to three dimensional problems in the case where spherically symmetry

allows us to restrict to definite angular momentum eigenstates and then solve a one-dimensional

radial problem. Indeed, with central potential V (x) = V (r), we have for ψ(x) = R(r)Y m` (θ, φ) the

radial (time-independent) Schrödinger equation,

− ~2

2m

[
1

r

∂2

∂r2
(rR)

]
+

~2

2m

`(`+ 1)

r2
R(r) = (E − V (r))R(r) , (10.42)

which can be rewritten as a one-dimensional Schrödinger equation for rR(r) (with a modified

potential for nonzero angular momentum),

− ~2

2m

∂2

∂r2
(rR) =

(
E − V (r)− ~2

2m

`(`+ 1)

r2

)
(rR) . (10.43)

Consequently we have radial WKB wave functions given by

R±(r) =
1

rp(r)
1
2

exp

± i
~

r∫
p(r)

 , (10.44)

where

p(r)2 = 2m

(
E − V (r)− ~2

2m

`(`+ 1)

r2

)
. (10.45)

In the case where V (r) is a strictly increasing function of r (such as the harmonic oscillator or

the Hydrogen atom), there is an important distinction between the case where ` = 0 (spherically

symmetric states), for which there is no inner turning point, and the case where ` 6= 0, for which

for any energy there will be an inner turning point as long as the potential diverges less-than-

quadratically with radius at the origin. (See Figure 5.)

The semiclassical wave function must still satisfy the connection condition of 10.2.1 at r = router.

However, there is a new ingredient in the case when ` = 0, which is that for R(r) to be bounded,

rR(r) should vanish at the origin. As a result, we will have the sin combination of R± wave
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Figure 5. Radial potentials (in this case similar to the Coulomb potential) with and without “centrifugal”
term from angular momentum. In the case without, there is a single classical turning point at router, while
for the case with angular momentum there is also an inner turning point at rinner.

functions, and we have

R(r) =
C

rp(r)
1
2

sin

1

~

r∫
0

p(s) ds

 =
C̃

rp(r)
1
2

cos

1

~

router∫
r

p(s) ds− π

4

 , (10.46)

and to match both expressions we need

1

~

router∫
0

p(s) ds =

(
n+

3

4

)
π , n = 0, 1, 2, . . . . (10.47)

For the Hydrogen atom, this yields good estimates for the energies of s-orbitals, as you will see on

Problem Sheet 4.

Remark 10.4.1. For states with nonzero angular momentum, one has an inner turning point so

there is a naive quantisation condition of the usual form,

1

~

router∫
rinner

p(s) ds =

(
n+

1

2

)
π , n = 0, 1, 2, . . . . (10.48)

There is a subtlety here, because the resulting exponentially decaying WKB wave function in the

interior forbidden region won’t actually be bounded at r = 0 due to the enhanced singularity in

the effective potential. There is a curious correction known as the Langer correction that can be

implemented to improve errors arising from this problem at the origin, and you will encounter this

as well in Problem Sheet 4.
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Chapter 11

One Dimensional Scattering

We have spent most of our time in this course discussing normalisable stationary states, their

properties, and the methods used to calculate them. In the application of quantum theory to the

real world, there is another large and important subject that has something of a different flavour:

the theory of scattering.

The basic formulation of the problem is as follows: we imagine that there is some “stuff” that is

localised in space, and we want to predict what will happen if we throw some probe particle at the

stuff. (Alternatively, one might be interested in observing the result of such throwing-a-particle-

at-stuff experiments and reconstructing a microscopic model of the stuff. This is referred to as

an inverse scattering problem.) The scattering problem arises in both classical dynamics and in

quantum mechanics, but of course here we consider the quantum version. In this case one wants to

assess the probability amplitude for various configurations of outgoing scattered particles.

Figure 6. Cartoon representation of a scattering problem.

In the classical setting, we would specify the asymptotic trajectory (say, momentum and impact

parameter) of the incoming probe particle in the far past (as you will recall from your study of

hyperbolic orbits in the Kepler problem in prelims Dynamics) and predict the subsequent trajectory

and, in particular, the late-time trajectory when the particle escapes back to infinity.

In the quantum mechanical setting, there is some subtlety in how we realise this intuitive scattering

question within our mathematical formalism. The general treatment is quite technical. In this

chapter we consider a simplified version of the story, where space is one-dimensional.

11.1 Left-right asymmetric scattering

We consider a situation as depicted in Figure 7, where the potential takes constant values outside

of a bounded interaction region. The idea is then that particles will propagate freely in the L and

R regions, so we can consider particles incident from, say, the left and ask for their amplitude to

be either reflected back to the left or transmitted through the interaction region out to the right.

– 84 –



Figure 7. One-dimensional scattering with a localised interaction region.

To really model the process described above, we would need to perform a time-dependent analysis

in which our initial state is a kind of a wave packet localised in the L region and moving to the

right, and then we would ask for the late time behaviour of that state.

Fortunately, it turns out that we can treat this as a time independent problem. We consider

(generalised) energy eigenstates with energy E > VL,R, which will necessarily look like plane waves

in the L and R regions,

for x ∈ L , ψ(x) = ψL(x) = ALeikLx +BLe−ikLx , ~kL = pL ,
p2L
2m

= E − VL ,

for x ∈ R , ψ(x) = ψR(x) = AReikRx +BRe−ikRx , ~kR = pR ,
p2R
2m

= E − VR .

(11.1)

The AL,R terms correspond to the particle having positive momentum, while the BL,R terms de-

scribe negative momentum. In the “interaction region” the potential is nontrivial, and it may be

difficult to produce an exact expression for the stationary state wave functions there, but on gen-

eral grounds we konw there will be a two-dimensional space of such wave functions at fixed energy

that will interpolate between the plane wave behaviour to the left and the right. Matching onto

the solutions in the L and R regions, the form of these solutions will imply a linear relationship

between the coefficients (AL, BL) and (AR, BR), which we encode in a (energy-dependent) matrix

M , (
AL
BL

)
= M

(
AR
BR

)
. (11.2)

Here we will focus on the case of scattering from the left, which we encode by setting BR = 0, as

this would represent some amplitude for the particle to be arriving from the right. In this case, we

define the following physically important quantities.

Definition 11.1.1. The reflection coefficient R and the transmission coefficient T are defined (as

a function of energy) for one-dimensional scattering as described above by

R =
|BL|2

|AL|2
, T =

kR|AR|2

kL|AL|2
. (11.3)
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These coefficients obey an important conservation condition related to their probabilistic interpre-

tation.

Proposition 11.1.2. The reflection and transmission coefficients are related according to

R+ T = 1 . (11.4)

We interpret R as the probability that a particle incident from the left with energy E will be reflected

off of the potential, and T to be the probability that the particle is transmitted through the potential.

Proof. The simple relation follows from the probability conservation condition for stationary states,

∂xj(x) = 0 , j(x) =
~

2mi

(
ψ(x)∂xψ(x)− ψ(x)∂xψ(x)

)
. (11.5)

You have encountered this rule in your part A course, and it follows as an immediate consequence of

the time-independent Schrödinger equation. Applying this to stationary scattering states as above,

we have

j(x) =

{
pL
m |AL|

2 − pL
m |BL|

2 , x ∈ L ,
pR
m |AR|

2 − pR
m |BR|

2 , x ∈ R .
(11.6)

Conservation of the probability current then equates the value of j(x) on either side of the interaction

region and gives
pL
m
|AL|2 +

pR
m
|BR|2 =

pL
m
|BL|2 +

pR
m
|AR|2 . (11.7)

setting BR = 0 and dividing through by the left hand side gives R+ T = 1. �

Remark 11.1.3. Equation (11.7) is often understood in slightly different terms by making a some-

what different (and non-canonical) interpretation of these generalised energy eigenstates. If we say

that a wave function of the form

ψ(x) = Ae
ipx
~ , (11.8)

describes an ensemble of particles (sometimes people say a beam of particles) travelling with mo-

mentum p and density |A|2, then the flow rate of these particles will be given by p
m |A|

2. In these

terms, our probability current j is reinterpreted as an actual flow rate of particles, and the con-

servation rule becomes a conservation condition for the number of particles in a given region in a

steady state: the rate of particles entering into the interaction region (left hand side) is equal to

the rate of particles exiting (right hand side).

Remark 11.1.4. It is a remarkable (and not all that obvious) fact that the time-independent analysis

given here is sufficient to make predictions about what happens in a more physical scattering setup

when one starts with a wave packet approaching the interaction region from the left. The idea is

that one can decompose a wave packet in, say, the L in term so of the scattering states (rather

than the usual plane waves of Fourier analysis), and then the time evolution of the wave packet

will proceed analogously to what we say in our discussion of the propagator in Chapter 2. Because

the scattering states know about the structure of the interaction region, as the wave packet evolves

the it will arrive from the left at the interaction region, do something in the interaction region, and

ultimately there will be a reflected and a transmitted wave packed emitted to the left and right,

respectively. Importantly, the relative amplitudes will be controlled by R and T (up to the issue

of there being a spread of energies in the wave packet). A careful analysis of this story goes well

beyond our treatment here, but the important conclusion is that this time-independent analysis

capture the real physics of the situation!
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11.2 Local potential scattering and the S matrix

To have a one-dimensional analogue of higher-dimensional scattering off of a localised potential, it

is natural to impose that VL = VR. (In higher dimensions, if the potential is localised in one region

then you can go around the potential and so the asymptotic value of the potential should be the

same in every direction.) In this case, the conservation condition takes the even nicer form

|AL|2 + |BR|2 = |BL|2 + |AR|2 . (11.9)

From a physical point of view (rather than that of solving ODEs), we should be inclined to think

of the problem as being that of determining BR and AL (the amplitudes of the outgoing parts of

the wave function) given AL and BR (the amplitudes of the incident parts of the wave function).

As long as the upper left-hand component M11 of the matrix M , we can find such a relation:(
AR
BL

)
= S

(
AL
BR

)
, S =

(
1

M11
−M12

M11
M21

M11

detM
M11

)
. (11.10)

By virtue of (11.9), the matrix S is a norm-preserving endomorphism of C2 and so a unitary 2× 2

matrix. Indeed, this is a baby version an important object, the unitary S-matrix, which encodes

the relationship between incoming and outgoing scattering wavefunctions. (This is an object of

significant importance in relativistic quantum field theory and high energy particle physics, where

scattering experiments are the main tool of the trade.)

We can then recognise the R and T coefficients in terms of the S matrix coefficients,

T = |S11|2 , R = |S21|2 , (11.11)

and the condition R+ T = 1 is a simple consequence of unitarity of S.

Remark 11.2.1. We specialised to scattering from the left, but we could also consider scattering from

the right, in which case AL = 0. Then the corresponding reflection and transmission coefficients

would be given by Tright = |S22|2 and Rright = |S12|2, which obey an analogous conservation

condition.

11.3 Piecewise constant potentials

A (somewhat contrived) class of examples that can be solved exactly, and consequently form a nice

test environment for our methods, are the piecewise constant potentials (see Figure 8). For these

we have a set of junction points −∞ = a0 < a1 < · · · < an−1 < an =∞ and set

V (x) = Vi , x ∈ (ai−1, ai) , (11.12)

where in these conventions we have VL = V0 and VR = Vn. Then our wave function will be piecewise

a linear combination of plane waves or exponentials,

ψ(x) = ψi(x) = Aje
ikjx +Bje

−ikjx , x ∈ [aj−1, aj ] . (11.13)

(If in some region we have E < Vj , then we will define kj = iµj with µj > 0. Then the plane wave

eikjx becomes a dying exponential e−µjx while e−ikjx becomes a growing exponential eµjx.)
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Figure 8. Scattering off of a piecewise constant potential.

The boundary conditions (continuity of ψ and ψ′) at x = ai require

ψj(aj) = ψj+1(aj) ⇒ Aje
ikjaj +Bje

−ikjaj = Aj+1eikj+1aj +Bj+1e−ikj+1aj ,

ψ′j(aj) = ψ′j+1(aj) ⇒ kj
(
Aje

ikjaj −Bje−ikjaj
)

= kj+1

(
Aj+1eikj+1aj −Bj+1e−ikj+1aj

)
,

(11.14)

and this condition can be solved to express the coefficients (Aj , Bj) in terms of (Aj+1, Bj+1). We

encode the relation in a matrix Mj :

Mj =
1

2kj

(
sje
−idjaj dje

−isjaj

dje
isjaj sje

idjaj

)
, sj = kj + kj+1 , dj = kj − kj+1 . (11.15)

We then have for our total scattering process, M = M1M2 · · ·Mn−1

Example 11.3.1 (Single barrier scattering and tunnelling). The simplest case of a piecewise con-

stant scattering problem is that of scattering off of a rectangular barrier. In this case there are just

two junction points, and as in Figure 9, for ease of notation we will set a1 = 0, a2 = a, VL = VR = 0,

V1 = V . For scattering from the left (in which case BR = 0) we can write(
AL
BL

)
= M1M2

(
AR
0

)
, (11.16)

So ultimately we are interested in the left-hand column of the M matrix. Now specialising our

general expression for the matrices Mj to our case, we have

M1 =
1

2k

(
s d

d s

)
, Mi =

1

2k′

(
seida −de−isa
−deisa se−ida

)
, s = k + k′ , d = k − k′ , (11.17)

which when composed gives us

M =
1

s2 − d2

(
s2eida − d2eisa sd(e−ida − e−isa)

sd(eida − eisa) s2e−ida − d2e−isa

)
. (11.18)
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Figure 9. Scattering from a rectangular barrier.

With some massaging we compute the full S matrix, which is given by

S =
1

d2eias − s2eiad

(
d2 − s2 ds(e−iad − e−ias)

ds(eiad − e−ias) d2 − s2

)
,

=
1

2ikk′ cos(k′a) + (k2 + k′2) sin(k′a)

(
2ikk′e−ika (k2 − k′2) sin(ak′)e−2ika

(k2 − k′2) sin(ak′) 2ikk′e−ika

)
.

(11.19)

From this we extract the reflection and transmission coefficients,

T =
4k2k′2

(k2 + k′2)2 sin2(k′a) + 4k2k′2 cos2(k′a)
,

R =
(k2 − k′2)2 sin2(k′a)

(k2 + k′2)2 sin2(k′a) + 4k2k′2 cos2(k′a)
.

(11.20)

As sanity checks, we can observe that as k′ → k (so no barrier), (T,R) → (1, 0), and as k′ → ∞
(infinite barrier), (T,R)→ (0, 1), and also that the unitarity condition T +R = 1 does indeed hold

here.

To treat the case where E < V transparently, we make the replacement k′ = iµ′ with µ′ > 0. Being

careful with signs coming from imaginary arguments in trigonometric functions, we have

T =
4k2µ′2

(k2 − µ′2)2 sinh2(µ′a) + 4k2µ′2 cosh2(µ′a)
,

R =
(k2 + µ′2)2 sinh2(µ′a)

(k2 − µ′2)2 sinh2(µ′a) + 4k2µ′2 cosh2(µ′a)
.

(11.21)

The most striking result here (though it was clear from the setting up of our problem that this

would be the case) is that T 6= 0 when E < V . This is the phenomenon of quantum tunnelling,

wherein a particle can transmit through a barrier that would classically block it completely; this

behaviour have important technological applications, such as in scanning tunnelling microscopes.

Example 11.3.2 (Bound states and poles). A close relative of our previous example is scattering

from a rectangular potential well, as in Figure 10. In the first instance, we can simply repurpose

our S matrix from the previous example, where now we will have k′ > k, but otherwise everything

will be the same as in (11.19).

The novel feature of this example is that in addition to the scattering states we’ve been studying,

– 89 –



Figure 10. Bound state in a rectangular well.

there are also bound states with V < E < 0; the bound state wave functions will be of the form

ψbound(x) =


BLe

µx , x < 0 ,

A1e
ik′x +B1e

−ik′x , 0 < x < a ,

ARe
−µx , x > a ,

(11.22)

We observe that this is a wave function of precisely the type we considered for scattering states

but with the replacement k = iµ, µ =
√
−2mE just as in the previous example but now for the

wavefunctions in the left and right regions.

Now the bound states correspond to solutions with AL = BR = 0, which by (11.10) requires that

the S matrix become singular. Indeed, upon making the replacement k → iµ the (now somewhat

formal, as there is no scattering) S matrix takes the form

S =
1

2µk′ cos(k′a) + (µ2 − k′2) sin(k′a)

(
2µk′eµa (µ2 + k′2) sin(ak′)e2µa

(µ2 + k′2) sin(ak′) 2µk′eµa

)
, (11.23)

and each term becomes singular precisely when

2µk′ cos(k′a) + (µ2 − k′2) sin(k′a) = 0 . (11.24)

Looking back to (11.2) the condition to be able to find a solution with AL = BR = 0 requires

precisely that M11 = 0, and it is the M11 denominator in each entry of the S-matrix that is being

set to zero by the condition above. For your own entertainment, you may wish to observe that if

instead we take k → −iµ, then the same bound states are responsible for the S matrix developing

a kernel.

Remark 11.3.3. What we’ve observed here is a shadow of a much more general phenomenon in

quantum mechanical scattering, where information about bound states can be extracted from the

analytic structure (zeroes and poles) of the continuation of scattering data to complex kinematical

variables (in this case the asymptotic momentum).
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Chapter 12

Epilogue

In this final chapter (with no corresponding lecture), we gesture towards some of the topics that,

unfortunately, can’t be made to fit into an eight week course but are equally deserving of discussion.

I hope you might look into them independently if you have some interest.

Time dependent phenomena and methods

In almost the entirety of this course (with the exception of the discussion of the propagator early

on) we have aggressively maintained a focus on aspects of the quantum theory that could be studied

through time-independent methods. Of course, the world is dynamical and it is often useful to have

more intrinsically time-dependent tools at one’s disposal. Some key words in these areas are:

• Pictures of time evolution. Using the unitary time evolution operator U(t1; t0), one

can recast the subject of time evolution as applying to the operators of quantum theory

rather than the states (this is called the Heisenberg picture of time evolution). One can go

further and evolve states and operators using different time evolution operators (one involving

interactions and one corresponding to free propagation). This leads to the interaction picture.

This formalism is especially important in perturbative scattering theory.

• Time-dependent perturbation theory. A realistic, and therefore important, situation to

deal with is when a system is perturbed in a manner that is explicitly time-dependent. This

could mean that the “underlying” Hamiltonian is time-dependent (say, because you are on the

surface of the Earth which is exposed to electromagnetic radiation from the sun periodically),

or that we have an underlying time-independent system which we momentarily disturb in a

dynamical way (say, by momentarily hitting a Hydrogen atom with a laser beam). This gives

rise to slightly different questions than those we addressed in our analysis of perturbation

theory. For example, at what rate will the time-dependent perturbation mediate transitions

between some given eigenstates of the original system? If you shine a laser at a gas of Hydrogen

atoms, how frequently do you expect to ionise the atoms (knock electrons out of bound states

into scattering states)? In the case where the time-dependent effect is small, these problems

can be treated by a generalisation of perturbation theory to a time-dependent context.

Remark 12.0.4. Please observe that aspects of these subjects are present on the course

synopsis, but as they did not fall within the material covered in the lectures this year

you will not be responsible for them in exams.

Higher-dimensional scattering

In more than one spatial dimension, the particulars of scattering gets quite a bit more complicated.

In particular, the issue of angular dependence takes center stage: given particles incident on a local

potential with a fixed momentum, how likely are they to be scattered in any particular direction?

This is encoded in something called a differential cross section, and higher-dimensional scattering

theory is largely tied up with calculating these cross sections.
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The Feynman path integral

An influential “third way” of thinking about quantum theory (in contrast to the algebraic approach

of Heisenberg or the differential equation approach of Schrödinger) was supplied by Richard Feyn-

man in a 1948 paper (building on earlier work by himself and others, including Dirac). The idea,

roughly, is if we want to compute the propagator,

U(xf , tf ;xi, ti) = 〈xf |U(tf ; ti)|xi〉 . (12.1)

then by repeated insertions of resolutions of the identity separated by very short time evolutions,

one arrives at a picture where one should sum over all possible trajectories of the particle between

the initial and final position. This sum over histories is encoded in the Feynman path integral, which

is denoted as follows

U(xf , tf ;xi, ti) =

x(tf )=xf∫
x(ti)=xi

[Dx]e
i
~S[x(t)] . (12.2)

The beautiful result of Feynman’s derivation is that the weight with which each trajectory con-

tributes is the (imaginary exponential of) the classical action of that trajectory. The integration

measure (denoted by [Dx]) is a subtle thing to make rigorous sense out of, nevertheless the in-

tuition gained from this formulation has proven invaluable for quantum physicists. Indeed, from

this perspective, the WKB approximation that we studied in Chapter 9.4 amounts to performing a

stationary-phase approximation for the path integral!

You can learn all about path integrals in, for example, C7.1 Theoretical Physics.

Entanglement and quantum information theory

We only touched ever-so-briefly upon the issue of quantum entanglement. A more detailed study

of the manipulation of finite quantum systems leads to the subject of quantum computing and

quantum information theory, in which entanglement is leveraged to perform computational tasks

that would seem impossible using conventional classical methods. You can learn all about this in

C7.4 Introduction to Quantum Information.
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