
B7.3 Further Quantum Theory

Sheet 2 — HT21

[Last update: 20:16 on Friday 29th January, 2021]

2.1 Angular momentum and spherical harmonics (revision, unmarked)

Recall the angular momentum commutation relations

[Ji, Jj ] = i~
3
∑

k=1

ǫijkJk .

Define J2 = J2
1 + J2

2 + J2
3 and J± = J1 ± iJ2.

1. Check that [J2, Ji] = 0 and [J3, J±] = ±~J±.

Deduce that in an irreducible representation of the angular momentum operators, one

can find a basis of joint eigenstates of J and J3 for which J takes a constant value and

if J3|ψ〉 = ~m|ψ〉 then J3|J±ψ〉) = ~(m± 1)|J±ψ〉.

2. Compute 〈J±ψ|J±ψ〉 in terms of 〈ψ|ψ〉.

Use this to prove that if we write the J2 eigenvalue as ~
2j(j + 1), then j must be a

non-negative half-integer and the possible J3 eigenvalues can only be of the form ~m

where m takes values in −j,−j + 1, . . . , j − 1, j.

3. Explain why in an irreducible representation, each state with a given choice of quantum

numbers |j,m〉 is the unique such state (up to rescaling). Deduce the general structure

of the spin-j angular momentum representation.

Now consider the orbital angular momentum operators Li acting on wave functions in R
3.

Define x± = x1 ± ix2 = r sin θe±iφ and x3 = r cos θ. The corresponding derivatives are

∂± =
1

2

(

∂

∂x1
∓ i

∂

∂x2

)

, ∂3 =
∂

∂x3
,

so ∂±x± = 1 and ∂±x∓ = 0.

4. Show that with respect to this basis, the components of the orbital angular momentum

operators L = X ∧P = −i~x ∧∇ are given by

L± := L1 ± iL2 = ±~(2x3∂∓ − x±∂3) , L3 = ~ (x+∂+ − x−∂−) .
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5. Use the defining relations for spherical harmonics L2 Y m
ℓ (φ, θ) = ~

2ℓ(ℓ+1)Y m
ℓ (φ, θ) and

L3Y
m
ℓ (φ, θ) = ~mY m

ℓ (φ, θ) to show that L−Y
−ℓ
ℓ = 0. Therefore, deduce that rℓY ±ℓ

ℓ can

be identified with a constant multiple of xℓ±.

Use the raising and lowering operators to find expressions for the normalised Y m
ℓ for

ℓ = 0, 1, 2.

6. Determine the action of the Laplacian on the functions rℓ Y m
ℓ (φ, θ). Don’t use spherical

coordinates.

Thus infer that the spherical harmonics are, up to normalisation, simply the restriction

to the unit sphere of homogeneous, harmonic polynomials of degree ℓ in three variables,

with m measuring the power of x+ minus the power of x−.

2.2 Spin 1/2 and SU(2) (unmarked)

Here you should work through for yourself some of the discussion of the spin 1/2 projective

representation of the rotation group. The Pauli spin matrices are defined by

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

.

For a vector a, we define σ · a = σ1a1 + σ2a2 + σ3a3. This is the observable associated with

measuring spin alon gthe a axis.

1. Derive the following relation:

(σ · a)(σ · b) = a · b I2×2 + iσ · (a ∧ b)

and thus deduce that the eigenvalues of σ · a are ±|a|.

2. Check by direct computation that the matrix representing a rotation by angle θ about

the axis designated by a unit vector n takes the form

exp

(

−
iθ

2
σ · n

)

= cos

(

θ

2

)

− i sin

(

θ

2

)

σ · n .

3. Argue that a two-by-two matrix of this form is the most general two-by-two unitary

matrix with determinant one, and so this representation gives a two-to-one identification

of elements of SU(2) with those of SO(3).

(If you are interested, you might try to visualise that this presentation of SU(2) allows

us to identify it topologically with the three-sphere S3, while the rotation group is realised

as a quotient SO(3) ∼= S3/Z2.)
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2.3 Lattice translations and Bloch waves

Consider a particle moving in one dimension with potential given by a periodic function

V (x) = V (x+ ℓ) for some real ℓ > 0.

1. Using the (discrete) translational symmetry of the potential, show that there will be a

basis of (generalised) energy eigenstates for the problem of the form

ψθ(x) = exp

(

iθx

ℓ

)

ϕ(x) ,

where ϕ(x) has the same periodicity properties as the potential. Explain why without

loss of generality you can take θ ∈ [−π, π].

2. For an (generalised) eigenstate with energy E, show that ϕ(x) obeys the second order

ODE,

−
~
2

2m
ϕ′′(x)−

i~2

m

θ

ℓ
ϕ′(x) +

~
2θ2

2mℓ2
ϕ(x) = (E − V (x))ϕ(x) .

For what range of x should you solve this equation, and with what boundary conditions?

3. Now suppose that the potential is a lattice of delta functions,

V (x) = −λ
∑

n

δ(x− nℓ) , λ > 0 .

This can be thought of as a model for a one-dimensional crystal, where at the locations

of the atoms in the crystal a particle experiences an ultralocal attractive interaction.

Solve the ODE from the previous part of the question in this case for E > 0. You should

leave the expression in terms of the energy E (or better, k where k2 = 2mE/~2), where

k is implicitly determined by θ according to (show this!)

cos(θ) = cos(kℓ)−
α

k
sin(kℓ) ,

for a constant α that you determine.

[You may want to consider your freedom to choose an appropriate range of values of

x for which to write your solution. You can make a choice, for example, so the delta

function appears in the middle of your interval.]

4. Give a qualitative description of the allowed energy levels of the crystal. It will be useful

to do some investigations in a computational environment like Matlab or Mathematica.

You will discover the phenomenon of “electronic band structure”.

5. [Unmarked] For your own entertainment, think about how you would generalise this

story to the case of a three-dimensional lattice of delta functions. The generalisation of

the choice of θ ∈ [0, 2π) is now the choice of a point in what’s called the first Brillouin

zone of the lattice.
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2.4 Anti-unitarity

For a symmetry represented by a unitary operator U to be a dynamical symmetry, we require

the condition

U exp

(

−
iHt

~

)

= exp

(

−
iHt

~

)

U ,

which implies UHU∗ = H.

1. If instead U is an anti-unitary operator, show that the above equation would imply that

UHU∗ = −H.

Explain why this means that a system with such a dynamical, anti-unitary symmetry

would have negative energy states with energy −E for every positive energy state with

energy E.

2. Consider now the anti-unitary operator T that acts on wave functions in L2(R) by

complex conjugation:

T (ψ(x)) = ψ(x) .

Explain how this evades the above issue in the case of, say, the harmonic oscillator

Hamiltonian, for which T is a true symmetry (sending energy eigenstates to energy

eigenstates).

3. Consider a single particle in R
3 subject to the Hamiltonian

H =
P2

2m
+ L ·V ,

where L is the orbital angular momentum operator and V is a fixed (constant) vector.

Is this system T -symmetric?

Formulate a general condition for a Hamiltonian of a single-particle system (written in

terms of X and P operators) to respect T symmetry.

Can you explain why this condition should hold intuitively?
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2.5 Threefold addition of angular momentum

Consider three (distinguishable) spin-1/2 systems with angular momentum operators J
(1)
i ,

J
(2)
i , J

(3)
i , respectively, all with the usual commutation relations. The total angular momen-

tum operators J
(tot)
i = J

(1)
i + J

(2)
i + J

(3)
i act on the tensor product of the Hilbert spaces.

1. Work out the decomposition of the composite Hilbert space into irreducible representa-

tions of the total angular momentum operators in terms of what irreducible representa-

tions appear.

2. Consider the state
∣

∣

1
2
, 1
2

〉

⊗
∣

∣

1
2
, 1
2

〉

⊗
∣

∣

1
2
,−1

2

〉

. (Here the convention is as in lectures

that (normalised) basis states are written |j,m〉.) You can determine how this state is

expressed in terms of representations of the total angular momentum operators in two

different ways.

• First, combining the first two spins gives the state |1, 1〉, and then combining with

the third spin gives α
∣

∣

3
2
, 1
2

〉

+ β
∣

∣

1
2
, 1
2

〉

, for some numbers α and β.

• On the other hand, combining the second and third spin in the first instance gives

γ|0, 0〉 + δ|1, 0〉, whereupon taking the further tensor product with the first spin

gives ǫ
∣

∣

3
2
, 1
2

〉

+ ζ
∣

∣

1
2
, 1
2

〉

.

Compute α, β, γ, δ, ǫ, ζ (you may use values of Clebsch-Gordan coefficients given in text-

books if you wish).

If you’ve followed the instructions, you have probably most likely β 6= ζ. Explain what

went wrong, and identify the true answer for the resultant state.

3. Show that
(

J(1) + J(2)
)2

and
(

J(2) + J(3)
)2

each separately commute with
(

J(tot)
)2

and

J
(tot)
3 , but do not commute with one another.

Use this insight to rephrase the resolution of part two of this question in terms of two

inequivalent choices of basis for the triple tensor product of the spin-1
2
representation.
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