
ELECTROMAGNETISM (PART B)

Chowder 1 : Electrostatics (A)

Lecture 2



① IckcwostatTf

electric phenomena involving timeinndmt
distributions of charges and fields

11.11 Gubmhisl.AT

Coulomb in a series of experiments was able
to determine the fsvce between small changed
bodies at with respect to each other .



bnvidw two point changes of & of q
9

at positions F and I ' p
r

f - P '

with respect to a

coordinate system .
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The electric bra on the charge q due to the

change q
'
is given by

⇒⇐ u¥ 99
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-

Coulomb 's oomstomt = 8.9879×10-9 Ntnmt'

to : permittivity of free space
(Gulf
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Remarks :

• I EI is inversely proportional to the square of
the distance between the particles

. F is a central ( it depends only
on the distance between the changes and it
is directed along the line joining the particles)

. I EI is proportional to the product of the changes
qqko → attractive force apposite changes attract

qq
' so → repulsive force Leila changes repel )



Examiner : Hydrogen atom
compare the gravitational a electrostatic force
between the electron e- and the proton p

Mei - 9×10
"

kg Mp ~ 1.7×10
-27

kg
-

qe = qp
= 1 . G X 10-19 Gal

on average : e- a p are separated by a distance
of n 5×10" m t

Then : Fgrau ~ 3.6410
"'
Nt

Einen ox we
/ III. nails!
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The electric field

Although what gets measured in practice is
the force E ,

we think instead in terms of
an elejmk.EE due to a given .

distribution of charge .

A point change q
' at a position I

'

generation an electric field E
'

IN at

all other points it in space given by
ECM = 4¥

.
q
' F-
IF - F ' I '

Then
,
a test ) particle with change q at F

"

fates
"
a bra IETQEI when placed in the field

E' generated} .



using the superposition principle , we can
generalise Coulomb's law to more gmwqe
distributions of charges .

The electric field TILT ) at a point F
'

due to a system of point charges
4 , -

- iqw located at Fi , - ,
Th is the

vector sum
n

E IM Eir7=u¥
.

9i
= 1

Then a test particle with change q at
it is subject to a force

EIFI = q ECT)



We can generalise this further a voting
distribution of a continuous change
density p tr ) in a region V. We have :

EH ;¥;f ,
Idxldg'dt ' ar

is the electric field due
o

."r→,I¥
to PCF) v /
Again : ELF)=qE7F )
i , the bra on a test particle PIT

'

)dx'dg'dz
'

with change q at F.



Example Comvidw a plane circular

wire of radius a and suppose

it has a total charge of uniformly
distributed around the wire

.

←-
a

P1-
- - .- - - - -- - →- - - -

d-b-1

Find E at a point P on
the axis of

the circle at a distance b from the centre



We will do this directly from tsulomb's law

by cutting the wire into small elements
and then use the superposition principle
to add up all the contributions .

wire on 4.b) Plane

¥197ado
coordinate

a systems
0 X a

6¥- - -0.- - - - - - →- -→ It
- y

>Fp at F- 10,9 b)
cut wire into segments each of length ado
each segment contains a change dq= Q ¥



+ upper
ado with dq=ad¥ coordinate

a
L systems

@ p > × a

6¥- -

-0.- - - - - - →- -→ is It
4- b-4 y

%
A

contribution to E at P of dq
= ate 9¥ Is the ) ,

E- a'tb'

Note that the components pwmndionlow to the
G- axis of diametrically opposite wire segments
cancel each other !



Then
, adding all contributions around the circle

£ = E to by symmetry !
-
-

ie E
'

is along A- axes .

So
,
we only need to compute the E- component of E

HT

F- = u¥o I ¥u Eli do =n'⇒%¥→.
°

te.io = b-
-

L

al
.

. 4
>
to

b

sei



¥7theeeeitrostaticscalowpotmtialtlecallt.tn
formula for the electrostatic field EIF)

due to a discrete distribution of point changes
£ IN = Her

.

%

Note that EIJI = - T Elp )

where oIlrT= 4¥ ¥
,
ftp.T ,

THE

ie ECT) is the gradient of a function a

we call Elf) the electric or scalar potential .



EIJI = - T ⑤ IN

The potential is divined up to a constant : we
can add a romstant to It without changing E

→Not moreover : / In E = 0
-

This is one of Maxwell 's equations for time

independent distribution, of changes .

Given E st ONE = 0 then one can conclude

that E = -0$ as long as the region of space
VCIR

'

being considered is simply connected .

(Weibo mt need to worry about this for the time being



Physical interpretation
mm

:

csmidw a point particle with charge of
placed in the electric field E

'

EM =a¥e
.

%

grimaced by a discrete distribution of
changes .

The particle then experiences a force

F- tr) = q ECT )
- -

q DIE

⑧ E is a conservative force .

-



comiaw the wore aginst the
electrostatic force in moving the charge of
along a path 6 from the point p ,

at position ri to the point that I :B
→

µW= - { E. dF= - q { E.ir
•→•

= of feet II. dF p
,

W = q C EIN - Eth )

This is independent of the path (as the bra is
-

an much've)



W = q CE1H-8TM )

work done in potential energy pnrmnit
moving charge = mmmm

Wom p
,
top of change

Recall that the mhintial is olimd up to
a constant : it is only the difference
in the values of § that are physical

f.
-

(This difference is called voltage .)



surfaces of constant oI are called
eqvipotentials
-

>

The electric field is always mvmal
to eovnipstentiaes .

]Consider a vector Eat the mint

;]P with miitionr , which is ↳ E
tangent to aneqmpstush.at •

surface for ECJ ) .

Then E- constant

E. T§=o at P

⇒ E = -TE is normal to the equi potential



Gmswuation of energy :-

Carmi der Newton 's equations of motion
for a particle with mass m & charge q
placed in an electrostatic field E1F )

The particle then experiences a force

ECT) = q ECT )
= -

q DIE = M of

The kinetic energy of the particle is

1- = Im T - T
,
I = IT (velocity)



Then

¥, T
= Im off II. E) = m F. I = J . I

= - a T.it#-aIdIII---qdaE
ie : ¥ ( Tt g E) = o

Hma ETTY is a constant in time

E-
potential energy of the particle
in the electric field I



11.3J The Dirac delta function

Recall

£ IF )=ao f ,
pity dx'dy

' da
'

is the electrostatic field FN a continuous
distribution of charge with change density pity
Qn. com one reduce this expression to that

corresponding to a discrete distribution
of change ?



In order to answer this question we

need to understand which change dmhitig
girl corresponds to a point change
with change of at a pint F.

This function pity should be such that

• it vanishes " outside " the mint Po
, ft

and

•

-

fvpiridxdyd.tt - oh
I UC1R

' (regions V in space it
'

)
which canteen To life V )



D4: the one - dimensional Dirac delta function

18TH by the following properties
-

41 81×-4=0 t Xt a

② f 84- a) DX = f f
if a e ID

otherwise
RC1R

Remark . mathematically this is an example-

of an impropwfnn-tiohcdistributi.sn ) .

For this lecture osuvn we only need an intuitive
notion (see Jackson : We can think of the f- function as
" the limit of a peaked curve as it becomes narrow A
narrow but higher 4 higher st the area under the
curve is always constant . " )



From the definition, one can derive useful
properties

③ ↳ fcxlslx-a) DX
= flat if ae Ra IR

[ evaluates f at a !

L41 8CHxD =

, ,
84 -Xi )

where fail ⇒ are simple twos at × - Xi
( f is a continuously differentiable function)

Noto then that 81ft) 1=0 if f is nowhere Zero.



In higher dimensions 81T - T '

) is just the
product of the Cartesian f- functions

f) SIT -T 't = 84- d) fly-y
') 812- ti)

vanishes everywhere except at F= J
'

④

§ 81T -TY diddy
' dat = {

t if FE Valid
0 otherwise

[ As we will see later : the f- function will help
to make sense of the differentiation of " functions "
whose derivatives do not exist eg

£lH I



Return to our question : which change dmhitig
µ F) corresponds to a discrete distribution
of charges q ,

-

→ qn at Fi
, i
-

,
Fi ?

Answer :
pity =

,
qi 81T

- Fi )

• it vanishes " outside " the mints Fi , htt
•

§m%I dxdyd a-

=

, qif HE dxdyd a

= If qi = Q - total charge in V



Moray: recall

Etr ) = ate f ,
pity dx'dy

' da
'

V.is the electrostatic field FN a continuous
distribution of charge with change density girl
substituting pity =

,
qi 81T

- Fi ) into E :

EW ' II { HE rildx
'
dy

' da'

n property
= T 9in F-Fi I N
< -
ja UI Eo IF - Tip

so for PIFI =
i
qi 81T-I) , Eli) above reduces to

the electric field of a discrete collection of charges .



11.4J Gauss ' law and Poisson's equation
so far we have seen that for a collection

of n point charges with charge oh , →9h

at Fi we have

⇒⇐u¥o
.

a

We can check explicitly that

• ⇐⇒ =u¥
,

% I ii.
- Y

=o trI



Consider first the case of any particle
at the origin F=o with Chong q
let s be a snface bounding a region V
( s =2V ) which contains the charge

¥ntIBaEIhema!fEhm
"

(thus confining the charge)
a ]bounding a ball B V

Them on ^V = U1B2BJ
.

= 0 as F=o off



Hence :

• = fat .EDU = §E. off output
/ theorem

DJ = rids
in unit outward normal
vector to 5 = of

= ↳
⇒
uE - D8 - f E. d5

"

:



F2B
⇒

⇒

↳ E. d5= f E. dj
•

q

213 [ electric field dueto
sphere → the change q at F- oof radius r

= { It. Ids .

E- E font ;rmd
ds= Rhino dildo
area element in spherical
coordinates
OE0 - IT

,
0 CUT

= § Effort r' iinododo - a,¥o - 4T -I



so

§ E. dj =
/ If if the change is

contained in V bounded

\ by S = av

0 otherwise



We can mw extend this result to a
collection of n point particles with Montes
qii-n.am at Ti

,
-

,
In contained in

a region VC I bounded by a surface
5=2V.

For each charge, let \

:÷:*:* :
"

which contains the change
ai I

+
I }Consider the region

I = VII. Bi [
j SF2B

.

.



On I = VIII Bi we have

J . I = o t F t Fi

By the driversonce theorem we have

• = { T.EDU = GE - D8

= Is :* - E.
thingsat ri

9J , jti , do mt am tribute as

they are outside the region
bounded by Si )



⇒ Is E. d5 ; {E. D8 = ¥ ,
9i

We then obtain

-

i. Is E. d5 = ¥ Q
n

Q = I qi = total charge enclosed by S .

i ⇒



We assumed ( by the superposition principle
that this is also true for a continuous
change density girl

↳ E. d5 = ¥ Q = pcr7dV
to

Q=fpdV=total charge enclosed by SF2V

(Integral form of ) Gauss ' law

→ flux of E out of V = ¥ Hotat change insideV)



Differential form of Gauss
'

law :

By the divergence theorem on the LH5 1EN)

↳ E. d5 = I T.EDU

⇒ fµE
'
- to PIN )dV=o

As this must be true for all marine

regions V we obtain

Maxwell Eq ftp.#gcrTfdrfferhalversion of¥1
- Gauss ' law

(true even if p depends on t : chapter 4)



thmowkni For a particle with change q
at F. : plrT=q self- Fo )

⇒ T.EE#q8lF-To)
which expresses the fact that

F. E=o when I + I

and f E. D8 =L ofC-o

(£x out of s enclosing the
change = to 4)



Given a torn figuration of changes
Gauss

' law is mt enough to determine E ,
because Gauss

'
law is one scalar equation

for 3 components of ET
.

Awww avatar field is" cormrsktehy
"

determined

if its divergence and its awe are

given for all FE1R
'
Cup to a Of

st Ff=o , f a function) Hdmottt theorem

We have shown that for a discrete distribution
→ for

of point changes at ri JnE=0 p ⇒ I



It is mt too hard to show that this

is true for a continuous distribution
of charge with change density PCF)
in a region Vo IR?
Note that in this case we have

It ) = - T OIIF )
where E1F)=u¥oo ! PITY ,pdV

'

because
= - of,r ) Rtr

'

If PCFI is differentiable , then b is E .

Hence /onEirf MEQ #2 for electrostatics



1- Theorems : (Calculus in 3- dims
,
Prelims )

let fir) be a bounded oomtinnous function
with support { FE IR3 I fit) + of - V
in a bounded region UC1R?
let FIFI = f ¥I dv

'

Then FIT) is differentiable in IR
' with

TF1N = - fu fit ' ) du '

Both F d TF are continuous and tend
to two as r→o . Moreover

, if f is differentiable ,

then jF is differentiable and FF= -4¥



-I :

J - E = fo p Gans,

JnE=o ⇒ I §
. (simply connected

region )

combining these into a single eq :

/FEefY Poisson's eq
-

her ⑤

Any solution gives E? by E- - TOI



Romania : we expect that the expression

E1B tattoo ! PITY ,p du
'

for the putvostatic potential due to a
change dimity girl satisfies Poisson 's eq .

This is in fact true :

FE1N ;¥ I put oY,p ) dv
'

because
it
'

( t( T-py ) = - 44 81 F- F ' )
.

So

VIII) =¥f
.

C- " I ' felt
'
) 81T- TY du'= - fop IN



771¥11 ) = - 41THF- f) Precisely captors

⑨ T
'

(y) - o t FI F
'

can easily
prove this )

④ on the other hand integrating on both sides

/ T
'

fifty ) du
'
= -4T

FEV

It requires a little work to prove this
as we need to be careful where I =p

'



Noting first that

¥04 ,r,)d + f t '
'

Ii 1) du
'

FEV

we simplify our computations WLOG by
translating the origin to F

.
We then

integrate over a small ball ee Be

{ JI dv - {t.tk/dV--fvTfy.nds---ffTETinOdddo=-4jst--0BoSG



I

4 '
II÷

.
.

Thin as

as

fi T
'

ftp.hpg/dV--opej
We find

*
! " hrId" %rdvk -45



so indeed
.

V-Tip.tt/)=-4iTtlF-TY Precisely captors

" T'ty) - o t ftp.

④

f r 't ,p)dV'= -4T
FEV

and OIITT ;¥oof PITT ,f du
'

satisfies ohE= - ⑤ plf ) i /


