B7.2 ELECTZOMAGNETISM Chapter 4: Maxwells equations (part2)

Lecture 12

[4] Maxwell's equations

Last lecture

[4.] Maxwell's equations

 $\nabla \cdot \vec{E} = \underbrace{I}_{e_0} e_{e_0}$ $\nabla \cdot \vec{B} = 0$ $\nabla_{\Lambda} \vec{E} + \underbrace{\partial}_{\partial t} \vec{B} = 0$ $\nabla_{\Lambda} \vec{B} - \underbrace{I}_{\partial t} \vec{E} = \underbrace{\mu_0 J}_{c_1}$

Gauss no magnetic monopolos Favada is bus of induction

Ampire-Maxwell

This lecture

[42] Electromagnetic potentials $(5, \overline{A})$ Manuell', cas in terms of $(\overline{5}, \overline{A})$

Energy of the electromagnetic field and Poynting's theorem

La consurvation at evenso

[4:2] Electromagnetic auticles We now write Maxwell's equations for E & B in trans of electromagnetic sotentials

Let V be a suitable region in space Crimply connected,...

From J.B=0 we write B = D A A for forme rector field A From Forwaday's law

 $O = \nabla A \vec{E} + \frac{\partial \vec{S}}{\partial t} = \nabla A \left(\vec{E} + \frac{\partial \vec{A}}{\partial t} \right) = O \vec{E} + \frac{\partial \vec{A}}{\partial t} \vec{E} + O \vec{\Phi}$

Then there is a simplion $\overline{\phi}$ st: $(\overline{E} = -\overline{V}\overline{\phi} - \frac{\partial}{\partial t}\overline{A})$

The other two egs que equations for \$ \$ \$ A. À 4 à ave mt uniquel, defined let (\$, \$,] & (\$2, \$2) be dectromagnetic potentials which leave E & B invariant $\vec{B}_1 = \vec{B}_1$ $k \vec{E}_1 = \vec{E}_2$ Then $\triangleright \vec{B}_1 = \vec{B}_1 \iff \nabla A (\vec{A}_2 - \vec{A}_1) = 0$ io $\vec{A}_1 = \vec{A}_1 + \nabla K$ for some function K $\mathbf{P} \vec{E}_{i} = \vec{E}_{i} \vec{E}_{i} = - \nabla \hat{\phi}_{i} - \frac{\partial \vec{A}_{i}}{\partial t} = - \nabla \hat{\phi}_{i} - \nabla \hat{\phi}_{i} - \frac{\partial \vec{A}_{i}}{\partial t} = - \nabla \hat{\phi}_{i} - \nabla \hat{\phi}_{i} - \nabla \hat{\phi}_{i} - \frac{\partial \vec{A}_{i}}{\partial t} = - \nabla \hat{\phi}_{i} - \nabla \hat{\phi}_{i}$ $\iff \nabla \left[\overline{\phi}_2 - \overline{\phi}_1 + \frac{\partial}{\partial t} \right] = 0 \quad f(t)$ $\int 0 \quad \oint_{2} = \oint_{1} - \frac{\partial Y}{\partial t} + f(t) \quad ab \text{ is to } K \text{ with out}$ $\int \int_{2} \frac{\partial Y}{\partial t} = \frac{\partial Y}{\partial t} + f(t) \quad ab \text{ is to } X \text{ with out}$ We define a same transformation of $(\overline{\Phi}, \overline{A})$ as a change of $(\overline{\Phi}, \overline{A})$ which leaves the chetromagnetic fields $\overline{E} \not A \overline{B}$ invariant

We use this measure to define $(\overline{\Phi}, \overline{A})$ to implify the equations for $\overline{\Phi} + \overline{A}$. Equations for (Φ, \overline{A}) :

From Gauss lans: $\frac{1}{\epsilon_0} e = \nabla \cdot \vec{E} = \partial \cdot (-\nabla \cdot \vec{D} - \hat{d} \cdot \vec{A})$

$vo \quad \nabla^2 \Phi + \frac{3}{2t} \nabla \cdot \tilde{A} = -\frac{1}{t_0} \varrho$

From Ampère-Markwell: $M_{O}\overline{J} = \overline{V}_{A}\overline{B} - \frac{1}{2}\frac{\partial \overline{E}}{\partial t} = \frac{\overline{V}_{A}(\overline{V}_{A}\overline{A}) - \frac{1}{2}\frac{\partial}{\partial t}(-\overline{V}\overline{\Phi} - \frac{\partial}{\partial t}\overline{A})$ $-\overline{V}^{2}\overline{A} + \overline{V}(\overline{V}\cdot\overline{A})$

 $= -\nabla^{2}\vec{A} + \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\vec{A} + \nabla(\nabla\cdot\vec{A} + \frac{1}{c^{2}}\frac{\partial\vec{\Phi}}{\partial t})$

We have then coupled differential equations $for({\bf F}, {\bf \tilde{A}})$ $-\frac{1}{c^{2}}\frac{\partial^{2}\overline{\phi}}{\partial t^{2}}+\nabla^{2}\overline{\phi}+\frac{\partial}{\partial t}\left(\nabla\cdot\vec{A}+\frac{1}{c^{4}}\frac{\partial\phi}{\partial t}\right)=-\frac{1}{t}e_{0}e_{0}$ $-\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\vec{A} + \vec{\nabla}^{2}\vec{A} - \vec{\nabla}\left(\vec{\nabla}\cdot\vec{A} + \frac{1}{c^{2}}\frac{\partial\vec{\Phi}}{\partial t}\right) = -\mu_{0}\vec{J}$ (Φ, \tilde{A}) st Choosin 3 lorm & zanze $\overline{V} \cdot \overline{A} + \frac{1}{c^{1}} \frac{\partial \overline{\Phi}}{\partial t} = 0$ $\Box \overline{\Phi} = -\underline{1} \underbrace{\partial^{-} \underline{\vartheta}}_{\partial t^{+}} + \nabla^{2} \overline{\Phi} = -\underline{1} \underbrace{\partial}_{\overline{\theta}} \underbrace{\partial}$ inhomogenew => nave an i $\Box \vec{A} = -\frac{1}{C^{2}} \frac{\partial^{2}}{\partial t^{2}} \vec{A} + \vec{J}^{2} \vec{A} - M \cdot \vec{J}$ warns havelling with speed c $\Box = - I \frac{\partial^2}{\partial t^2} + \nabla^2 \frac{\partial^2 A(m hickon or)}{\partial t^2}$ R Yeysfor wave operator 4 unknowns

Of convice a solution of these equations give $\vec{E} \neq \vec{F}$ Nom $\vec{B} = \nabla n \vec{A}$ $\vec{E} = -\nabla \vec{E} - \frac{\partial \vec{A}}{\partial t}$

Nemark: the Lorenz gauge is compistent with the charge consurvation equation

$$O = \frac{\partial}{\partial t} \varrho + \nabla \cdot \tilde{J} = -\epsilon_0 \frac{\partial}{\partial t} \Box = -\frac{1}{10} \frac{\nabla \cdot \nabla \cdot \nabla}{\partial t} = 0$$

$$= -\frac{1}{10} \left(\nabla \cdot \tilde{A} + \frac{1}{2} \frac{\partial \Phi}{\partial t} \right) = 0$$

[4.3] Energy of the electromagnetic field and Poznting's theorem

Consider a single change q maxing with velocity \vec{v} in an electromagnetic field with $\vec{E} \cdot \vec{B}$. The change experiences a force $\vec{F} = q(\vec{E} + \vec{v}_n \vec{B})$

The work done by the electronic netic price in mainz a particle à distance de is

dW = F. dé de - displacement tangent to the particle's trajectory ~ particles trajectory The rate of doing work by the external electromagnetic fields is then

For a volume distribution of changes & currents in a region V we have

dw- J.F. Edv total rate of doing wolk by dt Jv the helds in a finite region v

仁

represents the conversion of electromagnetic energy into mechanical onergy (Kinetic energy) As the electromagnetic field does work on the charge I count distribution, then the electromagnetic energy decreases.

But we expect energy to a connyred

so the rate of doing work must be balanced by the corresponding decrease of energy in the electromagnetic fields in V We have

 $\int_{V} \vec{J} \cdot \vec{E} dV = \int \frac{1}{\mu_0} \left(\nabla_A \vec{B} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \right) \cdot \vec{E} dV$ $\lim_{N \in Ampiri \ law} \int \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \left[\vec{E} \right]^2$ $\lim_{N \in I} \frac{\partial \vec{E}}{\partial t} \left[\vec{E} \right]^2$

Thus

$\frac{dW}{dt} = \int_{V} \vec{J} \cdot \vec{E} \, dV = -\int_{V} \left(\nabla \cdot \vec{P} + \frac{\partial}{\partial t} \vec{E} \right) \, dV$

$= -\int \vec{p} \cdot d\vec{s} + \frac{d}{dt} \int \vec{k} dV$

rate of me and down't a klowing out rate of change of em as stored in V through s= av an mit toke

(Unic bride covers viting matrice matrice)

 $\xi = \frac{1}{2} \left(\varepsilon_0 \left[\vec{E} \right]^2 + \frac{1}{\mu_0} \left[\vec{B} \right]^2 \right)$ fotal electromagnetic energy durity in V

 $\vec{P} = \int_{M_0}^{L} \vec{E} \cdot \vec{B}$ Poynting's vector momentum annity of electromagnetic fields

As this must be true for any autilitiers region V

$$\overline{J} \cdot \widehat{E} = -\left(\nabla \cdot \widetilde{p} + \frac{\partial \xi}{\partial t}\right)$$
Poynting's
theorems

work Ion 50 In Electromognetic field

J.

rate of Dewear of dectrome only muggin V

[Noto J=0: continuitze unation for electromaznetic envoz]

Question: why do you git hot when standing under the sur ?

electromagnetil waves cominz from the

electromagnetic waves which are not reflected are absorbed Absorbed electromagnetic waves transfer their everyge to your skin inwaning temperature (see chapter 5!)

<u>Next</u>: solving the inhomogeneous wave equing Green's suctions and Forming integrals.

[4.4] Time dependent aven's sumptions

rwant skills to solve inhomogenesus wave equations + important examples -- radiation)

Let Ψ st $\Box \Psi = -\frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2} + \overline{\nabla^2 \Psi} = -4\overline{u} f(t, \overline{t})$

We want to find relations uning ancen's functions.

<u>Definition</u>: a Green's Symption $G(t, \vec{r}, t', \vec{r}')$ satisfies $\Box G(t, \vec{r}, t', \vec{r}') = -4\pi \delta(t - t') \delta(\vec{r} - \vec{r}')$

<u>Remark:</u> companing with electrostatics

Recall that in electrostatics we considered Green's functions satisfying

$$\begin{aligned}
 U^2 G^2(\vec{r}, \vec{r}') &= -4\pi 8(\vec{r} - \vec{r}') \\
 ile, i') combine interpreted as the electrostatic potential p_1 interpreted as the electrostatic potential p_1 is the electrostatic potential $\vec{r} - \vec{r}'$. For example, $-\frac{1}{\vec{r} - \vec{r}'}$ is the electrostatic potential p_1 a source $\vec{r} - \vec{r}'$ of the electrostatic $\vec{r} - \vec{r}'$.$$

For time-vonjing fields we have

$$\Box G = 0$$
 when $\overline{v} = \overline{r}^{\prime} R t = t^{\prime}$

wave equation

Hancoer:

 $\int dt' \int dv' DG = -4\pi$ ter zev

Thus we can intropult $G(t, \vec{r}, t', \vec{r}')$ as the electromagnetic potential of a wave caused by a source (of some electromagnetic distortionce) at the point $\vec{r} = \vec{r}'$ when t = t' Consider a configuration where there are no boundaries so G depends only on F-7' & t-t' (solutial sometry) We will find G in terms of orthomsenal functions Recall the integral representation for the Dirac S-function, that is, the Fourier integral of the S-function

$$\delta(t-t')\delta(\overline{r}-\overline{r}') = \frac{1}{(1\pi)^4} \int d\omega \int d^2h e^{-i\omega(t-t')} e^{i\overline{h}\cdot(\overline{r}-\overline{r}')}$$

(completenes)

complete set of orthonormal exponentials

The Fourier integral for G(t-t', F-F') is

 $G(t-t', \vec{r}-\vec{r}') = \int dw \int d^3 t g(wh) e^{-iw(t-t')} e^{ih \cdot l\vec{r} \cdot \vec{r}'}$ $= \int dw \int d^3 t g(wh) e^{-iw(t-t')} e^{ih \cdot l\vec{r} \cdot \vec{r}'}$ $= \int dw \int d^3 t g(wh) e^{-iw(t-t')} e^{ih \cdot l\vec{r} \cdot \vec{r}'}$

Uning the Fourier integrals for the S-function and the arcen's function G into areen's equation we hope to find the Fourier hanglowing of G

$\Box G(t-\epsilon', \vec{r}-\vec{r}')$ $= \int d\omega \int dh g(\omega, \vec{e}) \Box \left(e^{-i\omega(t-\epsilon')}e^{i\vec{h}\cdot(\vec{r}-\vec{r}')}\right)$ $= \left(\frac{\omega^2}{c^2} - |\vec{h}|^2\right) e^{-i\omega(t-t')} e^{i\vec{h}\cdot(\vec{r}-\vec{r}')}$ $= \left(\frac{\omega^{2}}{c^{2}} - |\vec{h}|^{2}\right) e^{i\omega(t-t')} e^{i\vec{h}\cdot t\vec{r}}$ $= \left(\frac{\omega^{2}}{c^{2}} - |\vec{h}|^{2}\right) e^{-i\omega(t-t')} e^{i\vec{h}\cdot t\vec{r}\cdot\vec{r}}$ $- 4\pi\delta(t-t')\delta(\vec{r}-\vec{r}') = -\frac{4\pi}{(2\pi)^{4}} \int d\omega \int d^{2}h e^{-i\omega(t-t')} e^{i\vec{h}\cdot t\vec{r}\cdot\vec{r}'}$

We can now read off the Fourier Name form $g(w, \bar{h}) = \frac{1}{4\pi^3} \frac{1}{h^2 - w^2/c^2}$ b = 1 Therefore the Green's Sunction is

$$G(t-t', \vec{r}-\vec{r}') = \frac{1}{u\vec{n}} \int dw \int dk \frac{1}{k^2 - w'(c')} e^{-iw(t-t')} e^{i\vec{h}\cdot(\vec{r}-\vec{r}')}$$

Ltwo poles: w= ± kc

Jack son'

· circuit with a constant arrent I . sapron glup of B Wough aranit change

```
W = \oint \vec{E} \cdot d\vec{e} = -\frac{d}{dt} \int_{\vec{E}} \vec{B} \cdot d\vec{s}
```

what is the induced current on I? $Recall = \int_{\overline{J}} \overline{J} \cdot d\overline{S}$ $M_{o}T = \int_{\Sigma} \left(\nabla_{\Lambda} \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} \right) \cdot d\vec{S}$ $= \int_{C} \vec{B} \cdot d\vec{\ell} - \frac{1}{c^2}$

$\mathcal{E} = -\frac{d\Phi}{dE} = \oint \vec{E} \cdot d\vec{e} = -\frac{d}{dE} \int_{\Sigma} \vec{B} \cdot d\vec{s}$

