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1. Lecture 1

We consider second order ordinary differential equations (ODEs) involving boundary conditions,
given by

(1)
d2y

dx2
= y′′ = f(x, y, y′) with boundary conditions y(a) = α, y(b) = β

and seek a solution y(x) for x ∈ [a, b]. Boundary value ODEs have a more sophisticated existence
and uniqueness theory as compared to initial value problems. We omit this literature and instead
focus on methods for the approximate solution to boundary value ODEs when the cases where
solutions exist and are unique.

In this course we consider two conceptually different approaches to construct approximate solu-
tions within any prescribed accuracy. The first approach transforms the boundary value problem
into initial value problem(s), allowing approximate solutions to be computed using methods such
as from the class of Runge Kutta and linear-multistep methods; this approach is broadly termed
“shooting methods” and will be the focus of this lecture. The second approach involves explicit
discretisation of the x variable, approximating the difference operators by matrices, and solving the
resulting system of equations. This second approach is more typical of methods used throughout
this course for boundary value partial differential equations (PDEs).

1.1. Shooting method for linear ODEs. Before considering a numerical method for computing
approximate solutions to ODEs we illustrate the principle of the shooting method for linear second
order ODE boundary value problems (BVPs) of the form

(2) y′′ = p(x)y′ + q(x)y + r(x) with boundary conditions y(a) = α, y(b) = β

for x ∈ [a, b]. From this boundary value problem we construct two initial value problems using the
same coefficient functions p(x), q(x), and r(x):

(3) y′′ = p(x)y′ + q(x)y + r(x) with b. c. y(a) = α, y′(a) = 0

and

(4) y′′ = p(x)y′ + q(x)y with b. c. y(a) = 0, y′(a) = 1.

These two IVPs can be solved within arbitrary precision using any of the standard numerical tech-
niques, such as Runge Kutta methods. From these two IVP solutions it is possible to construct an
approximate solution of the BVP (2) by taking a linear combination. Let y1(x) be an approximate
solution to (3), let y2(x) be an approximate solution to (4), and set y(x) = y1(x) + γy2(x). By
construction y(a) = α as required. To satisfy the second boundary value one needs y(b) = β =
y1(b) + γy2(b), which can be satisfied by selecting γ = (β − y1(b))/y2(b). This approach is effective
provided y2(b) is well separated from zero, allowing the BVP to be solved approximately by instead
solving two related IVPs.

1.2. Shooting method for nonlinear ODEs. Nonlinear BVPs cannot typically be transformed
into a pair of linear IVPs. However, a similar approach can be devised. Rather than solving (1),
one can replace the right boundary condition with a user specified slope at the left boundary

(5)
d2y

dx2
= y′′ = f(x, y, y′) with b. c. y(a) = α, y′(a) = s,

giving a parametrised solution, y(x; s), for each s. It then remains to find a value of s, say s∗, such
that its parametrisation matches the right boundary condition y(b; s∗) = β within the specified
accuracy. For BVPs with unique solutions, the IVP satisfying y(b; s∗) = β necessarily has the same
solution as the BVP we seek to approximately solve.
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Solving (1) has been reduced to solving for the s which solves φ(s) := y(b; s)−β = 0, a standard
root finding problem. This root finding problem is particularly tractable for IVPs that can be well
approximated numerically; specifically, φ(s) must be a continuous function. Methods well suited
for computing the root of φ(s) may include: the bisection method (provided φ(s) changes sign) and
the Secant method. These root finding methods simply require function evaluation of φ(s), which
can be well approximated using standard numerical methods for IVPs; however, it is worth noting
that though evaluating φ(s) is straightforward, it may be computationally intensive. For an overall
computationally efficient solution to (1) we need a root finding method that requires few iterates.
Newton’s method is particularly efficient, quadratically convergent, when an initial estimate to the
root is available.

Newton’s method for φ(s) := y(b; s)− β = 0 is given by

(6) sn+1 = sn − y(b; sn)− β
ys(b; sn)

where ys(b; s
n) is the derivative of y(b; s) with respect to s, evaluated at sn. The function ys(b; s)

is not readily available, but can be approximated as follows. Applying ∂
∂s to the ODE in (5) gives

y′′s = fxxs + fyys + fy′y
′
s.

Noting that xs = 0 due to x being independent of s, applying ∂
∂s to the initial conditions in (5),

and setting z(x; s) = ys(x, s) for ease of notation gives an additional second order IVP

d2z

dx2
= z′′ = fy(x, y(x; s), y(x; s)′)z + fy′(x, y(x; s), y′(x; s))z′

with boundary conditions z(a) = 0, z′(a) = 1.(7)

It is important to note that the coefficients fy(x, y, y
′) and fy′(x, y, y

′) require both the user to be
able to compute these derivatives of f(x, y, y′), and require an approximate solution of y(x; s) and
y′(x; s) for each value of x used in computing the approximate solution to (7).
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2. Lecture 2

2.1. Finite difference method for second order linear ODEs. We express the (2) linear
differential equation by

(8) L(y) = −y′′ + p(x)y′ + q(x)y = −r(x) with b. c. y(a) = α, y(b) = β

for x ∈ [a, b]. The finite difference method begins by discretizing x using an equally spaced grid

xj = a+ jh with h =
b− a
n+ 1

, for j = 0, 1, . . . , n+ 1.

Let yj be our approximation to y(xj), we can approximate the differential operator L(y) with
suitable finite difference approximations to the derivatives. For a three point stencil (using just
three points per equation) we approximate

y′′(xj) =
yj+1 − 2yj + yj−1

h2
− 1

12
h2y(4)(ξj)

and

y′(xj) =
yj+1 − yj−1

2h
− 1

6
h2y(3)(ηj).

The resulting approximation to (8) at xj is (after multiplication by 1
2h

2)

(9) Lh(yj) = ajyj−1 + bjyj + cjyj−1 = −r(xj) for j=1,2,. . . n

where

aj := −1

2

[
1 +

1

2
hp(xj)

]
(10)

bj :=

[
1 +

1

2
h2q(xj)

]
cj := −1

2

[
1− 1

2
hp(xj)

]
and boundary conditions y0 = α and yn+1 = β. The n unknowns, yj for j = 1, 2, . . . , n, can then
be cast as a linear system of equation

(11) Ay = −r − a1αe1 − cnβen
where: e` is the unit n vector with value e`(k) = 1 if ` = k and zero otherwise, r is the vector with
entries 1

2h
2r(xj), A is the n×n tridiagonal matrix with values bj on the diagonal for j = 1, 2, . . . , n,

aj on the sub-diagonal for j = 2, 3, . . . , n, and cj on the super-diagonal for j = 1, 2, . . . , n− 1, and
y the vector with entries yj .

Our numerical method for solving for an approximate solution to (8) (on the grid xj) is now
cast as the solution of a linear system. The central questions to resolve for this method are:

• Does the linear system (11) have a unique solution?
• What is the computational cost of solving the system (11)?
• At what rate does the error maxj |y(xj)−yj | converge to zero as h decreases to zero? (This

is referred to as the order of accuracy.)

To address invertibility we impose conditions on the ODE variable coefficient function q(x) to
have

(12) min
x∈[a,b]

q(x) = Q∗ > 0

and that the stepsize is sufficiently small compared to the maximum of the coefficient function p(x)

(13) h <
2

P ∗
where P ∗ = max

x∈[a,b]
p(x).
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The first condition ensure that the diagonal values in A are greater than one, bj ≥ 1 + 1
2h

2Q∗.
The second condition ensures that he sum of the off diagonal entries in A have magnitude 1,
|aj | + |cj | = 1. Gershgorin disc theorem using these two facts tell us that the n eigenvalues of A
are contained in discs of radius 1 centred at bj . As bj are greater than one, the discs do not include
the origin, ensuring that zero is not an eigenvalue of A. Moreover, A is diagonally dominant, and
can be easily solved using Gaussian Elimination without need for pivoting. This later fact tells us
that a stable solution can be computed in order n operations. We have now verified that, with
the conditions imposed, the linear system corresponding to our method to solve an approximate
solution to (8) has a unique solution and can be solved efficiently.

It then remains to establish the order of accuracy for our method. We begin by noting the
truncation error for Lh that results from the finite difference approximations to the differential
operator; simple Taylor series expansions show

(14) Lh(y(xj))− L(y(xj)) =
−h2

12

[
y(4)(ξj)− 2p(xj)y

(3)(ηj)
]
.

This shows that on the mesh xj , the solution to the ODE, y(xj) gives the same answer to differential
operator L and the finite difference operator Lh to withing O(h2). In order to establish that yj is
close to y(xj) we also need to ensure that the finite difference operator Lh is “stable.” We refer to
a finite difference operator Lh as stable with factor M if there exists a finite M such that

(15) max
j
|νj | ≤M

{
max (|ν0|, |νn+1|) + max

j
|Lhνj |

}
.

Noting that

Lhyj − Lhy(xj) = −r(xj)− Lhy(xj)

= Ly(xj)− Lhy(xj)(16)

and using the truncation error bound (14) gives the bound

(17) |Lh(yj − y(xj))| = |Ly(xj)− Lhy(xj)| ≤
h2

12

∣∣∣y(4)(ξj)− 2p(xj)y
(3)(ηj)

∣∣∣ .
Consequently, if Lh is M stable then using νj = yj − y(xj) in (15) gives

max
j
|yj − y(xj)| ≤

Mh2

12

[
max
x∈[a,b]

|y(4)(x)|+ 2P ∗ max
x∈[a,b]

|y(3)(x)|
]
,

proving second order approximation rate for the method.

It then remains to show that Lh is a stable operator. To prove this we recall that the operator
satisfies

bjyj = −ajyj−1 − cjyj+1 +
1

2
h2Lhyj

The right hand side can be bounded from above by using the triangle inequality, noting that under
the conditions (12) and (13), that |aj |+ |cj | = 1, so taking the max over j on the right hand side
gives the upper bound

|bjyj | ≤ max
j
|yj |+

1

2
h2 max

j
|Lhyj |.

The left hand side can be bounded below by (1 + 1
2h

2Q∗)||yj | for each j, and consequently is also
true for the j where the max of |yj | is achieved. The resulting bound

(1 +
1

2
h2Q∗) max

j
|yj | ≤ max

j
|yj |+

1

2
h2 max

j
|Lhyj |,

can be rearranged to

max
j
|yj | ≤

1

Q∗
max
j
|Lhyj |,
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and hence Lh is stable with factor M = Q−1
∗ . Combined with our prior analysis we have proven

that the solution to our finite difference approximation is a second order accurate approximation
to the true solution.
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3. Lecture 3

In this lecture we consider finite difference methods for nonlinear BVPs.

3.1. Finite difference methods for nonlinear BVPs. We return to nonlinear second order
BVPs (5), here written as

(18) L(y) = −y′′ + f(x, y, y′) = 0 with b. c. y(a) = α, y(b) = β.

Nonlinear Truncation Error Let us derive a finite difference method for its approximate
solution. We begin by replacing the differential operators with finite difference approximations,
here keeping to a three point stencil.

(19) Lh(yj) = −yj+1 − 2yj + yj−1

h2
+ f

(
xj , yj ,

yj+1 − yj−1

2h

)
for j = 1, 2, . . . , n

with boundary values y0 = α and yn+1 = β. The finite difference operator acting on the approxi-
mate solution yj is within O(h2) of the finite difference operator acting on the true solution on the
corresponding mesh, y(xj). This truncation error is given by:

Lhy(xj)− Lhyj = Lhy(xj)− Ly(xj)

= −y(xj+1)− 2y(xj) + y(xj−1)

h2
+ y′′(xj)

+ f

(
xj , y(xj),

y(xj+1)− y(xj−1)

2h

)
− f

(
xj , y(xj), y

′(xj)
)

=
−1

12
h2y(4)(ξj) +

1

6
h2fy′(xj , y(xj), y

′(xj))y
(3)(ηj)

=
h2

12

[
−y(4)(ξj) + 2fy′(xj , y(xj), y

′(xj))y
(3)(ηj)

]
(20)

where the fy′ notation indicates partial derivative of f with respect to its third argument, and the
equality is determined by using previous differences of the differential and difference operators. It
now remains to show that a) the operator is stable so that maxj |Lhy(xj)−Lhyj | being proportional
to O(h2) implies that maxj |y(xj) − yj | is similarly second order in h2, and b) to show that the
finite difference system (19) has a solution, which we are able to find using standard root finding
techniques.

Nonlinear Stability We have shown a second order truncation error (20) for the finite difference
scheme (19). In order to show that maxj |yj−y(xj)| is of the same order as the truncation error we
repeat a stability analysis of the finite difference operator Lh(·). When considering linear operators
the notion of stability was given in terms of a single vector (15); here the non-linearity of the
operator requires a slightly more general definition of stability, given in terms of two vectors. We
refer to a finite difference operator Lh as stable with factor M if there exists a finite M such that

(21) max
j
|uj − vj | ≤M

{
max (|u0 − v0|, |un+1 − vn+1|) + max

j
|Lhuj − Lhvj |

}
.

For linear operators Lh, the definition (21) recovers the prior definition (15).

We first establish that if Lh is stable, then the error is bounded by the truncation error. If Lh
is stable with factor M then

max
j
|yj − y(xj)| ≤ M max

j
|Lhyj − Lhy(xj)|

= M max
j
|Ly(xj)− Lhy(xj)|(22)
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where the last equality uses that Lhyj is defined to be equal to Ly(xj). The right hand side of
(22) is simply M times the truncation error for the finite difference operator, which for (19) we
have shown to be second order, O(h2). It then remains to show that Lh is stable, under suitable
conditions on f(·, ·, ·).

In order to show stability of (19) we use vector Taylor series:

Lhuj − Lhvj = −uj+1 − 2uj + uj−1

h2
+
vj+1 − 2vj + vj−1

h2

+f

(
xj , uj ,

uj+1 − uj−1

2h

)
− f

(
xj , vj ,

vj+1 − vj−1

2h

)
= −h−2(uj+1 − vj+1) + 2h−2(uj − vj)− h−2(uj−1 − vj−1)

+∇f
(
xj , uj + θ(vj − uj),

uj+1 − uj−1

2h

+ θ

[
vj+1 − vj−1

2h
− uj+1 − uj−1

2h

])
·
(

0, uj − vj ,
uj+1 − uj−1

2h
− vj+1 − vj−1

2h

)
= −h−2(uj+1 − vj+1) + 2h2(uj − vj)− h−2(uj−1 − vj−1)

fy(xj , ξj , ηj)(uj − vj)
+fz(xj , ξj , ηj)(2h)−1(uj+1 − vj+1 − uj−1 + vj−1)

= aj(uj−1 − vj−1) + bj(uj − vj) + cj(uj+1 − vj+1)(23)

where ξj and ηj are for some θ ∈ (0, 1) and

aj = −h−2 − (2h)−1fz(xj , ξj , ηj)(24)

bj = 2h−2 + fy(xj , ξj , ηj)

cj = −h−2 + (2h)−1fz(xj , ξj , ηj).

To bound |Lhuj − Lhvj | we first rearrange the final equality in (23) to

(25) bj(uj − vj) = −aj(uj−1 − vj−1)− cj(uj+1 − vj+1) + Lhuj − Lhvj .
Before computing the desired bound we impose two conditions on the differential equation, similar
to those used in the stability analysis of (9). Imposing that max |fz| ≤ P ∗ and h ≤ 2

P ∗ gives

|aj |+ |cj | = 2h−2 and imposing that min fy > Q∗ > 0 gives bj > 2h−2 +Q∗. Taking absolute values
of (25), apply the triangle inequality, and maximize over j gives

(26) (2h−2 +Q∗) max
j
|uj − vj | ≤ 2h−2 max

j
|uj − vj |+ max

j
|Lhuj − Lhvj |

which can be simplified to

max
j
|uj − vj | ≤ Q−1

∗ max
j
|Lhuj − Lhvj |

which is our desired stability bound with factor Q−1
∗ . Having established the stability factor and

previously the second order truncation error proves that the error, maxj |yj − y(xj)| for the finite
difference approximation (19) is of order h2.
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4. Lecture 4

In this lecture we continue our analysis of finite difference methods for nonlinear BVPs, showing
that the nonlinear system has a unique solution, and proving a method to solve for the solution
without knowledge of a good initial guess.

4.1. Iterative method for solution of nonlinear systems. At this stage we have a finite
difference method (19) whose solution we have shown is within order h2 of the solution to the
nonlinear differential equation (18). However, we have not shown that a) the nonlinear system
(19) does in fact have a solution, and b) if it does have a solution we have not given a method by
which we can find (approximately) its solution. We address both of these issues simultaneously by
considering the iterative algorithm

(27) ym+1
j = (1 + w)−1

[
1

2
(ymj−1 + ymj+1) + wymj −

h2

2
f

(
xj , yj ,

ymj+1 − ymj−1

2h

)]
where the superscript is an iteration counter, not a power. This iteration is arrived at by solving
(19) for yj from the second order differential operator approximation, then adding wyj (for some
w 6= 1) to both sides of the equation, dividing by (1 + w), and adding iteration counters of one
degree less on the right hand side than on the left hand side. We can further condense this iteration
as

(28) ym+1 = g(ym)

where ym is the vector with entries ymj for j = 0, 1, . . . , n+1. We now wish to show a few properties of
the iterations ym: first that they converge and second that they converge to something that satisfies
y = g(y) which necessarily implies that the limit is a solution to the finite difference method (19).
In order to show these we need to establish that g(·) is a contraction; that is

‖g(u)− g(v)‖∞ ≤ λ‖u− v‖∞
for some 0 ≤ λ < 1. This analysis is similar to the stability analysis for (19). Letting g(u)j denote

the jth entry of g(u), then

g(u)j − g(v)j = (1 + w)−1

[
1

2
((uj−1 − vj−1) + (uj+1 − vj+1)) + w(uj − vj)

− h2

2

(
f

(
xj , uj ,

uj+1 − uj−1

2h

)
+ f

(
xj , vj ,

vj+1 − vj−1

2h

))]
= −(1 + w)−1h

2

2
[aj(uj−1 − vj−1) + cj(uj+1 − vj+1)

+ (bj − 2h−2(1 + w))(uj − vj)
]

(29)

with aj , bj , and cj defined as in (24), though with some other ξj and ηj . As in the stability analysis
we impose that max |fz| ≤ P ∗ and h ≤ 2

P ∗ gives |aj |+ |cj | = 2h−2 and (using a bound from above

instead) impose that Q∗ ≤ min fy ≤ Q∗ gives 2h−2 +Q∗ ≤ bj ≤ 2h−2 +Q∗. Moreover, we impose
that w ≥ 1

2h
2Q∗ so that |bj − 2h−2(1 + w)| = 2h−2(1 + w) − bj ≥ 0. Then, applying the triangle

inequality to the last equality in (29), and taking the max over j we obtain

‖g(u)− g(v)‖∞ ≤

(
1−

1
2h

2Q∗

1 + w

)
‖u− v‖∞

which proves that g(·) is a contraction with factor

λ(w) :=

(
1−

1
2h

2Q∗

1 + w

)
< 1
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for w ≥ 1
2h

2Q∗. Unfortunately λ(w) = 1 − O(h2) causing the contraction to occur impractically
slow for h small. Even so, this is enough to establish the conditions we sought.

Using ym+1 = g(ym) and the contraction principle it is easy to show that ‖yk+1 − yk‖∞ ≤
λk‖y1 − y0‖∞ and consequently that the sequence is a Cauchy sequence. This implies convergence
to a limit point that satisfies y = g(y). Moreover, the limit point must be unique by the counter
examples that if y and ỹ are solutions that |y − ỹ| = |g(y) − g(ỹ)| = λ|y − ỹ| for λ < 1, which
is a contradiction, hence proving that the limit is unique. Lastly, the error satisfy |ym − y| =
|g(ym−1)− g(y)| ≤ λ|ym−1− y|, giving a linear convergence rate, though with the factor λ which is
close to one. Although this iteration is impractically slow, it has the advantage that convergence
is guaranteed to within arbitrary precision for any starting guess.

Remark. In this lecture we have also defined a finite volume method for a linear boundary
value problem in 1D with homogeneous boundary conditions. Lecture notes are not yet available.
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5. Lecture 5

In this lecture we consider the Poisson Equation, a linear boundary value PDE. Proof of con-
vergence for our approximation involves a refined version of the previous stability analysis, with
this approach more adaptable to complex domains.

5.1. Poisson Equation. We define the Poisson Equation as

(30) L(u) = uxx + uyy = f(x, y) for (x, y) ∈ Ω

and, for the moment, with Dirichlet boundary conditions u(x, y) given for (x, y) ∈ δΩ where δΩ
denotes the boundary of Ω. We consider a finite difference approximation of L(u) using a three
point centered difference approximation of the second derivative in both x and y, resulting in a five
point stencil,

(31) Lhuj,k =
uj−1,k + uj+1,k − 4uj,k + uj,k−1 + uj,k+1

h2
= f(xj , yk)

for (xj , yk) ∈ Ω/∂Ω where (xj , yk) is a grid with xj+1−xj = yk+1−yk = h for all j, k. (For instance,
if Ω = [a, b]2 we can use xj = a+ jh and yk = a+ kh for h = 1/(n+ 1) and j, k = 0, 1, . . . , n+ 1;
however, we are primarily interested in being able to compute approximate solutions on more
complex domains.)

Taylor series, as before, is sufficient to show that

τj,k = Lhu(xj , yk)− Lhuj,k = (Lh − L)u(xj , yk)

=
1

12
h2 (uxxxx(ξj , yk) + uyyyy(xj , ηk)) .(32)

The equations (31) can be expressed as a linear system Au = f where rows of A have diagonal
entries −4h−2, the super and sub diagonal entries are typically h−2 and depending on interactions
with boundary conditions a row will may have up to two additional nonzero entries with values
h−2. For (j, k) which correspond to a five point stencil that interacts with the boundary, we use the
boundary conditions and adjust the entries in f accordingly; otherwise the entries in f are simply
given by f(xj , yk). Typically the grid (j, k) is ordered using a Lexicographical ordering, ordering
(j, k) > (p, q) if j > p or if j = p and q > k. The resulting matrix A has only a small fraction of its
entries which are not zero, making it computationally efficient to compute matrix vector products
Az for some z. In later lectures we will use this property to design efficient methods for computing
approximate solutions to Au = f . Invertibility of A will be addressed in a later lecture.

We now introduce the maximum principle, a technique to show that maxj,k |u(xj , yk)− uj,k| ≤
Const.τmax where

τmax = max
j,k
|τj,k|

and Const. is independent of h. The maximum principle uses a comparison function Φ(x, y) de-
signed to allow us to analyse the error

ej,k = u(xj , yk)− uj,k.
We will design the comparison function to have the properties that LΦ(x, y) = LhΦ(xj , yj) = C a
constant, and that Φ(x, y) ≥ 0. We then add a multiple of Φ(x, y) to the error

ψj,k = ej,k + αΦ(xj , yk)

for α > 0. Applying the finite difference operator Lh to ψj,k gives

Lhψj,k = Lej,k + αLΦ(xj , yk) = τj,k + αC.

If we select α = C−1τmax we have that Lhψj,k = τj,k + τmax ≥ 0. As Lh is taking the difference
of ψj,k and the average its four neighbours, Lhψj,k ≥ 0 implies that ψj,k cannot exceed the max of
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the four neighbours used in Lhψj,k. This property is true for each j, k in which (xj , yk) ∈ Ω/∂Ω.
Consequently the max of ψj,k must occur at a boundary point

max
j,k

ψj,k ≤ max
(xj ,yk)∈∂Ω

ψj,k.

For Dirichlet boundary conditions ej,k is zero on the boundary, so maxj,k ψj,k ≤ maxj,k Φ(xj , yk) =
Φ∗, where the last equality is our definition of the max of Φ(·, ·). Moreover, as Φ(xj , yk) ≥ 0, we
have that

max
j,k

ej,k ≤ max
j,k

ψj,k = αΦ∗ = C−1Φ∗τmax.

An example comparison function suitable for this example is Φ(x, y) = (x − xc)
2 + (y − yc)

2

where (xc, yc) is a point such that max(x,y)∈Ω Φ(x, y) is minimized; for this comparison function

LΦ(x, y) = 4 and Φ∗ = (a2 +b2)/4 where Ω ⊂ [xc−a/2, xc+a/2]× [yc−b/2, yc+b/2]. Implementing
these bounds gives

max
j,k

ej,k ≤
a2 + b2

16
τmax.

Repeating the above for φj,k = −ej,k + Φ(xj , yk) establishes that

min
j,k

ej,k = max
j,k
−ej,k ≤ max

j,k
ψj,k ≤ C−1Φ∗τmax

which when combined with our prior bound gives the desired bound on the error

max
j,k
|ej,k| ≤

a2 + b2

16
τmax = O(h2).
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6. Lecture 6

In this lecture we return to the question of invertibility of the matrix associated with the system
of equations (31). We will also consider alternative finite difference approximations and the impact
of domains that do not align perfectly with a regular equispaced grid.

6.1. Poisson Equation: invertibility. For rectangular domains Ω is is straightforward to repeat
the eigen-analysis of the matrix associated with the system (31) and to show that the eigenvalues
are bounded away from zero. Unfortunately this approach does not extend well to more general
domains where the eigen-functions of the Laplacian are typically unknown. Here we show that the
resulting matrix is invertible by employing a refined version of Gershgorin’s Disc Theorem.

Definition 6.1. An m×m matrix A is referred to as reducible if there exist sets I and J with the
properties that I

⋃
J = 1, 2, . . . ,m, and I

⋂
J = ∅, with aij = 0 for all i ∈ I and j ∈ J . If A is not

reducible we refer to it as irreducible. Moreover, A is referred to as irreducible diagonally dominant
(IRDD) if it is weakly row diagonally dominant with at least one row being strictly diagonally
dominant.

Lemma 6.1. If A is irreducible then for each p and q there is a path from ap,j1 6= 0, aj1,j2 6= 0,
. . ., ajr,q 6= 0.

Theorem 6.1. Let A be an m × m matrix with associated eigenvalue and eigenvector Ax = λx
with ‖x‖∞ = 1. Define Di := {z : |z − aii| ≤

∑
j 6=i |aij ]} for i = 1, 2, . . . ,m to be the Gershgorin

Discs. Then λ ∈ D :=
⋃m
i=1Di. Moreover, if A is irreducible then if λ is an eigenvalue of A on

the boundary of D, it must be on the boundary of each Di.

The first portion of Theorem 6.1 is proven as follows. As ‖x‖∞ = 1 there exists an i such that
|xi| = 1. Then expanding the ith row of Ax = λx gives (aii − λ)xi =

∑
j 6=i aijxj . Taking absolute

values and bounding the right hand side of the equality using the triangle inequality gives

|aii − λ| ≤
∑
j 6=i
|aij ||xj |/|xi| ≤

∑
j 6=i
|aij |

with the last inequality following from |xj | ≤ |xi| = 1 for all j. Lacking knowledge about which i
we have this inequality for we can only ensure that λ is in the union of all such discs. The second
portion of Theorem 6.1 follows by noting that if λ is on the border of D then it cannot be on the
interior of a disc Di, so if it is contained in a disc it must be on the boundary of that disc. Once
it is known that λ is on the boundary of the ith disc we know that both |aii − λ| ≤

∑
j 6=i |aij | and

|aii − λ| =
∑

j 6=i |aij | which is only possible if |xj | = 1 for j ∈ {` : ai` 6= 0}. Knowing more entries
in x where it achieves its max in magnitude allows for the discs of more rows of A to be considered.
If A is irreducible this process will continue to all all rows, concluding that |xi| = 1 for all i, and
that λ is on the boundary of each disc. This last property is particularly useful for the matrix
associated with (31) for Dirichlet problems, which are necessarily IRDD. Theorem 6.1 implies that
IRDD matrices are invertible as one of the discs will not contain the origin.

6.2. Rotated five point stencil. Poisson’s equation (30) was previously approximated (31) using
standard symmetric approximations to uxx and uyy. In two dimensions there is greater flexibility
in the structure of the stencil, such as by rotating the stencil. For example, note the Taylor series
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approximation of uj+1,k+1 about the point (xj , yk)

uj+1,k+1 = u+ h(ux + uy) +
1

2
h2(uxx + 2uxy + uyy)

+
1

6
h3(uxxx + 3uxxy + 3uxyy + uyyy)

+
1

24
h4(uxxxx + 4uxxxy + 6uxxyy + 4uxyyy + uyyyy) +O(h5)

and

uj+1,k−1 = u+ h(ux − uy) +
1

2
h2(uxx − 2uxy + uyy)

+
1

6
h3(uxxx − 3uxxy + 3uxyy − uyyy)

+
1

24
h4(uxxxx − 4uxxxy + 6uxxyy − 4uxyyy + uyyyy) +O(h5)

where unless otherwise stated u is taken to be at the point (xj , yk). From these approximations it
is easy to see that

1

2h2
(uj+1,k+1 + uj−1,k−1 + uj+1,k−1 + uj−1,k+1 − 4uj,k) = τ̃j,k

where τ̃j,k = h2

12 (uxxxx + 6uxxyy + uyyyy) + O(h4). Though this finite difference approximation
of uxx + uyy differs from that in (31) and they have the same order, it isn’t possible to make a
combination of them which is of a higher order due to the cross term uxxyy in τ̃j,k which isn’t
involved in the truncation error of the non-rotated five point stencil.

6.3. Domain boundaries which do not align with equispaced grids. In this subsection we
return to the stencil used in (31). For points (xj , yk) which are further than h from the boundary
the stencil contains all five points. If the point (xj , yk) is a distance h from the boundary ∂Ω
then one or more of the stencil values will be on the boundary, which for Dirichlet boundary
conditions will be reflected by the row of the associated matrix having one or more of the non-
diagonal entries missing (represented on the right hand side of the linear system); such a row will be
strictly diagonally dominant accounting for the matrix being IRDD and invertible as shown in the
prior lecture. However, if (xj , yk) is closer to a boundary than h in either the x or y direction the
approximation in (31) will need to be modified accordingly. Consider for instance a point (xj , yk)
for which (xj+1, yk) is not in the interior, but the other stencil values are contained in the interior
of Ω. It is then necessary to compute an approximation of uxx from uj−1,k, uj,k, and uj+θ,k for
some θ ∈ (0, 1) corresponding to an approximation at (xj + θh, yk);

αuj−1,k + βuj,k + γuj+θ,k = (α+ β + γ)uj,k

+ (γθ − α)hux + (γθ2 + α)
1

2
h2uxx

+ (γθ3 − α)
1

6
h3uxxx + (O)(h4).

The highest order approximation of uxx is achieved by setting α + β + γ = 0, γθ − α = 0, and
γθ2 − α = 2h−2; giving

uj,k+1 + uj,k−1 − 2(1 + θ−1)uj,k + 2(1 + θ)−1uj−1,k + 2θ−1(1 + θ)−1uj+θ,k
h2

= uxx + uyy +
1

12
h2uyyyy −

1

3
h(1− θ)uxxx +O(h2).

Note that the prior stencil and second order accuracy is recovered if θ is equal to one, but reduces
to first order in h otherwise; with θ 6= 1 for some point required if the boundary ∂Ω does not align
with the equispaced grid.
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In the associated linear system the weighted point uj+θ,k would be moved to the right hand
side of the equation as a known value, resulting in a system that is strictly diagonally dominant
with the origin being 2θ−1(1+θ)−1h−2 away from the Gershgorin disc for the associated row of the
matrix. This ensures that the system is strictly diagonally dominant for at least one row, and the
connected stencil ensures the matrix is irreducible, ensuring that the linear system is invertible.
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Part II: NUMERICS FOR CONSERVATION LAWS

7. Lecture 7

Strongly suggested reading (to get acquainted or to recall properties of conservation laws and
the nature of their solutions): chapters 1-3 of Leveque’s “green” book.

Consider the Cauchy problem in 1D

∂tu+A∂xu = 0, x ∈ Ω = [0, L], t ∈ (0, T ]

u(x, 0) = u0(x)
(33)

equipped with suitable BCs.

We proceed to discretise the space-time domain:

xj = jh =
L

N
j, j = 0, . . . , N

tn = nk =
T

K
n, n = 0, . . . ,K.

We stick to the case of constant h = ∆x, k = ∆t, but generalisations are not difficult.

Equation (33) has two partial derivatives that can be approximated in many different ways. In
the context of finite differences, one can take forward, backward or centred differences for each
term, yielding a large number of possible methods:

• One-sided explicit

un+1
j = unj −

k

h
A(unj+1 − unj )

• One-sided explicit

un+1
j = unj −

k

h
A(unj − unj−1)

• Two-step, explicit central scheme

un+1
j − un−1

j

2k
+
A

2h
(unj+1 − unj−1) = 0

• Implicit central (backward Euler) scheme

un+1
j − unj

k
+
A

2h
(un+1
j+1 − u

n+1
j−1 ) = 0

• Explicit central (for σ = 0 we recover the so-called formwar Euler) scheme

un+1
j − unj

k
+
A

2h
(unj+1 − unj−1) =

σ

h2
(unj+1 − 2unj + unj−1),

for σ = h2

2k we get a variant of the Lax-Friedrichs method

un+1
j =

1

2
(unj+1 + unj−1)− kA

2h
(unj+1 − unj−1),

and for σ = kA2

2 we get the Lax-Wendroff scheme

un+1
j = unj −

kA

2h
(unj+1 − unj−1) +

k2A2

2h2
(unj+1 − 2unj + unj−1)
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Remark 7.1. Recall that a numerical method is explicit if {un+1
j } can be computed from {unj }

directly, for k ≤ n.

A scheme is implicit if cannot be recast as explicit.

A scheme is of one step (or also two-level) if it involves only {un+1
j } and {unj } (only two time

levels).

Let us now write a “general explicit” scheme for (33) as

(34) un+1
j = Gk(u

n)j = G(unj−1, u
n
j , u

n
j+1), ∀j.

If (33) has a solution u then we must have

u(xj , t
n+1) = Gk(u(tn))j − kτnj ,

where the last term on the RHS is a measure of the difference between the exact and approximate
problems:

For a general two-level method, the local truncation error is

τnj =
1

k
[−u(xj , t

n+1) +Gk(u(·, tn))j ].

The local total error is

εn+1
j := u(xj , t

n+1)− un+1
j = u(xj , t

n+1)−Gk(un)j .

Note that at the first time step

ε1j = u(xj , t
1)− u1

j ,

= −kτ0
j +Gk(u(·, t0))j −Gk(u0)j

= −kτ0
j +Gk(u(·, t0)− u0)j

= −kτ0
j +Gk(ε

0)j .

Applying the same idea for later times, we get

(35) εnj = G
(n)
k (ε0)j − k

n−1∑
i=0

G
(n−i+1)
k (τ i)j ,

where G
(n)
k = Gk(Gk(· · · (·) · · · )) and G0

k = 1. This occurs locally. Taking the norm

‖v‖hp :=

(
h
∑
j

v2
j

)1/2

,

(where for p = ∞ we recover the usual maximum norm), and using triangle inequality in (35) we
get

‖εn‖h,p ≤ ‖G
(n)
k (ε0)‖hp + k

n−1∑
i=0

‖G(n−i−1)(τ i)j‖hp

≤ ‖G(n)
k ‖hp‖ε

0‖hp + knmax
i
‖G(n−i−1)‖hp‖τ ij‖hp,(36)

where

‖G(n)
k ‖hp := sup

vnj 6=0

‖G(n)
k (vn)j‖hp
‖vnj ‖hp

.
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We made precise the concept of consistency: A scheme with truncation error τnj is consistent
if

‖τnj ‖ → 0 as k → 0,

for some norm. Moreover, the consistency is of order (s, `) if ‖τ‖ = O(hs, k`). Also, we will say
that the operator G induces a stable method (aka Lax-Richtmyer stability), if

‖Gnk‖hp ≤ C, for sufficiently small k.

From (36) we see that if (34) is stable, then

(37) ‖εn‖hp ≤ CT max
i
‖τ i‖hp + C‖ε0‖hp.

If the initial datum has no error associated (or if it has an error that decays with rate O(k`)
when k → 0) then

‖εn‖hp ≤ Ck`,
which guarantees convergence of the numerical method.

As we have done for the previous lectures, the convergence properties can be established via
consistency and stability of the scheme. Let us write the matrix system associated to the finite
difference method for (33):

un+1 = Gku
n,

where Gk is an amplification matrix (since G is a linear operator). A sufficient condition for
stability is that

(38) ‖Gk‖hp ≤ 1 + αk.

To see this, we can write

‖G(n)
k ‖hp ≤ ‖Gk‖

n
hp ≤ (1 + αk)n ≤ exp(αnk) = exp(αT ).

But in general, establishing that Gk is power-bounded is not a straightforward taks.
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8. Lecture 8

Theorem 8.1 (Kreiss). Assume that A represents a family of matrices. Then the following condi-
tions are equivalent:

(1) there exists C > 0 such that
‖An‖hp ≤ C.

(2) there exists C > 0 such that

1

‖λI−A‖hp
≤ C

|λ| − 1
, ∀λ ∈ C, |λ| > 1.

(3) there exists a nonsingular S and C > 0 with ‖S‖hp‖S−1‖hp ≤ C, such that T = S−1AS is
upper triangular and
• |Tij | ≤ 1, ∀i,
• |Tij | ≤ C min(1− |Tii|, 1− |Tjj |), i < j.

(4) there exists C > 0 and H with C−1I ≤ H ≤ CI, such that ATHA ≤ H.

Back to our numerical scheme: If Gk is is uniformly diagonalisable1, then the Cayley-Hamilton
theorem gives

‖Gn
k‖hp ≤ 1⇔ max

i
|Λii| ≤ 1.

This indicates the Von-Neumann stability criterion: if Gk is diagonalisable for all k, h, then
stability holds whenever maxi |Λii| ≤ 1.

Example. Let us consider A > 0 in (33) and apply periodic BCs

u(0, t) = u(L, t).

The discretisation of the problem can be carried out with the one-sided explicit scheme, giving

un+1
j = unj −

k

h
A(unj − unj−1),

for all j associated to interior points. In matrix form, the FD method reads

un+1 = Gku
n, with Gk =


1− λ 0 · · · λ
λ 1− λ · · ·
... · · ·
0 · · · λ 1− λ

 ,

and λ = Ak
h .

The matrix Gk is normal (one can readily check that GT
kGk = GkG

T
k ) and therefore is diago-

nalisable. In addition, its eigenvalues are the m roots of

(
1− λ− µ
−λ︸ ︷︷ ︸
=:y

)m = 1.

Then ym = 1 implies that yl = exp(i2π
m l) for l = 0, . . . ,m− 1, and thus µl = 1−λ+λ exp(i2π

m l) for
l = 0, . . . ,m− 1.

Real eigenvalues: µ0 = 1 − 2λ and µm/2 = 1. Their absolute value is bounded by 1 if λ ≤ 1.

Therefore we have stability (in the Von-Neumann sense) if Ak
h ≤ 1.

1There exists S with ‖S‖‖S−1‖ ≤ C such that Λ = S−1AS is diagonal.
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Remark 8.1. If A < 0, then a similar reasoning as above gives that stability is not achieved.

Another way is using the so-called Von-Neumann analysis (cf. any textbook).

Let us consider the problem

∂tu+ a∂xu = 0 a > 0, x ∈ (0, L)

u(x, 0) = u0(x),

u(0, t) = u(L, t),

with L = 2π, and define the explicit central scheme

un+1
j = unj −

ak

2h
(unj+1 − unj−1) +

σk

h2
(unj+1 − 2unj + unj−1).

We proceed to seek solutions of the form

unj = ûnl exp(ilxj).

Inserting this in the scheme will provide an amplification coefficient

Ĝk = 1 + i λ︸︷︷︸
ak/h

sin(lh)− 4 ν︸︷︷︸
σk/h2

β︸︷︷︸
sin2( lh

2
)

,

so that the condition Ĝk ≤ 1 will lead to

(39) (16ν2 − 4λ2)β2 + (4λ2 − 8ν)β ≤ 0.

Inspection of each possible case implies that the worst case scenario occurs when ν = 1/2 and so
the condition for stability is 0 < λ ≤ 1.

Some remarks are in order:

• For the Lax-Friedrichs scheme we had σ = h2/(2k). Therefore ν = 1/2 ≥ λ/2 and stability
holds for λ ≤ 1.
• For Lax-Wendroff: σ = a2k/2 , giving ν ≤ λ/2 provided that λ ≤ 1.
• For systems of p PDEs:

∂tu + Au = 0

+BCs + ICs

with u(u1, . . . , up), the stability condition extends for all eigenvalues of A:

k

h
|µi(A)| ≤ 1, for all real eigenvalues µi of A.

The CFL condition. For the first order PDE above we encountered the condition

(40) a
k

h
≤ 1,

to ensure stability. Notice that a is the velocity of propagation of the wave, and we can define a
numerical speed of propagation

(41) vnum =
h

k
≥ a

that has to be larger than the physical one, to respect stability.

Definition 8.1. The domain of dependence is the set of points for which u0(x) could affect the
solution at (x, t).
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Then, stability can be regarded as a condition on the domain of dependences: that of the
numerical scheme must contain the one of the physical problem. Condition (41) is the so-called CFL
condition (Courant-Friedrichs-Levy, 1928), and we anticipate that it is only a necessary condition
for stability.
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9. Lecture 9

Upwind method. Recall that for (33) with A > 0, the one-sided method

un+1
j = unj −

k

h
A(unj − unj−1),

is stable if 0 ≤ Ak
h ≤ 1. Notice that the stencil points in the upstream or upwind direction.

If A < 0 then

un+1
j = unj −

k

h
A(unj+1 − unj )

is the upwind method.

Conservative methods.

The solution of the linear Riemann problem

(42)


ut +Aux = 0 x ∈ R, t ≥ 0

u0(x) =

{
1, x < 0

0, x ≥ 0
,

is the wave u0(x − At), and the accuracy of its numerical approximation is will definitely be
affected, specially near the disctontinuity. The expressions found for the truncation errors (and
ruling the rate of convergence of finite difference discretisations), will depend on the same regularity
assumptions as Taylor’s expansion.

Note that

• First order methods (LF and upwind) give smeared solutions whereas second order methods
(LW and BW) capture better the location of the discontinuity but produce oscillations.
• Refinement of the mesh does not remove these issues.
• In the nonlinear case we can get nonlinear instability.
• A method converging to the correct solution in the linear case, may not converge to the

correct solution in the nonlinear case.

Burgers’ equation. Let us consider

(43) ut + (
1

2
u2)x = 0, x ∈ [0, 1]

endowed with a) a smooth initial datum or b) a jump discontinuity as in (42). As (1
2u

2)x = uux,
then (43) can be written as

ut + uux = 0,

and the analogy with the linear case indicates that “A = u is the speed of propagation” of the
wave. A first attempt to generalise the ideas above suggests to use upwind methods (under the
assumption that unj ≥ 0 for all j, n):

(44) un+1
j = unj −

k

h
unj (unj − unj−1).

Alternatively, we can approximate the flux function 1
2u

2 with a one-sided difference, giving

(45) un+1
j = unj −

k

2h
((unj )2 − (unj−1)2).

Depending on the initial datum, the solutions generated with either (44) or (45) produce different
results. For instance, for an initial discontinuity, scheme (44) gives a wave moving at incorrect
speed. On the other hand, for smooth initial data both schemes produce the same solution.
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More generally, let us introduce a

Nonlinear conservation law in conservative form.

(46) ut + (f(u))x = 0,

on some domain Ω with given boundary and initial conditions. Let us also define an explicit method
of one-step in conservative form:

(47) Un+1
j = Unj −

k

h
(Fnj+1/2 − F

n
j−1/2),

with {
Fnj+1/2 = F (Unj−p, . . . , U

n
j+q),

Fnj−1/2 = F (Unj−p−1, . . . , U
n
j+q−1)

,

and where F is the numerical flux function (with p+ q + 1 arguments). Here Unj stands for either
the finite difference pointwise approximation

unj ≈ u(xj , t
n),

or a local cell average (to be re-discussed later on).

The numerical flux F should represent the exact flux function f . More precisely, we have the
following

Definition 9.1. A numerical flux F is consistent with the conservation law (46) if

F (u, u, . . . , u) = f(u).

Moreover, F is Lipschitz continuous if there exists M > 0 such that

|F (U0, . . . , Up+q)− f(u)| ≤M max(|U0 − u|, . . . , |Up+q − u|),
provided |Ui − u| is sufficiently small.

The presentation will be restricted to the case p+q = 1, but other cases can be straightforwardly
described.

Theorem 9.1. A scheme designed to solve the conservation law (46), and given in conservation
form with a consistent and Lipschitz continuous numerical flux, is conservative at the discrete level.

Proof. Let us confine to scheme (47) with p = 0, q = 1, and consider the domain Ω = (0, L).
Summing over all j’s we obtain

h
∑
j

Un+1
j − h

∑
j

Unj = −k
∑
j

(Fnj+1/2 − F
n
j−1/2),

and notice that the terms on the RHS telescope and cancel out (except for the terms at the
endpoints). The consistency of F implies that

FnN+1/2 = f(u(L, tn)), Fn−1/2 = f(u(0, tn)),

so

(48) h
∑
j

Un+1
j − h

∑
j

Unj = −k(f(u(L, tn))− f(u(0, tn))).
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If we assume periodic boundary conditions we get

h
∑
j

Un+1
j = h

∑
j

Unj , ∀n,

and therefore

(49) h
∑
j

Un+1
j = h

∑
j

U0
j .

Now, if we suppose that U0
j is such that

(50) h
∑
j

U0
j =

∫
Ω
u0(x) dx,

then (49) indicates that the mass of u is preserved throughout the computation.

For constant values of the solution outside Ω, we can rewrite (48) as: for n = 0, . . . ,K − 1 do

h
∑
j

Un+1
j − h

∑
j

Unj = −k[f(u(L))− f(u(0))],

and summing on n and using (50) gives

(51)

∫
Ω
u(x, T ) dx−

∫
Ω
u(x, 0) dx = −T [f(u(L))− f(u(0))] =

∫ T

0
[f(0, t)− f(L, t)] dt,

which is precisely the integral form of (46). �
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10. Lecture 10

The function u is a weak solution of (46) if

(52)

∫ T

0

∫
Ω

[u∂tφ+ f(u)∂xφ] dx dt = −
∫

Ω
u0(x)φ(x, 0) dx,

holds for all smooth test functions φ(x, t) (compactly supported in Ω).

Definition 10.1. The discrete total variation (TV) of a function v is

TV (v) := sup
N∑
j=1

|v(ξj)− v(ξj−1)|,

where the supremum is taken over all possible subdivisions of R.

Definition 10.2. A function v is total-variation-bounded if TV (v) <∞.

Definition 10.3. The discrete solution generated with a numerical scheme converges to a TV-
bounded function in L1 if

‖U` − u‖1,Ω :=

∫ T

0

∫
Ω
|U`(x, t)− u(x, t)| dx dt→ 0, when `→∞,

where ` denotes refinement of both space and time discretisations h`, k`.

Theorem 10.1 (Lax-Wendroff). Suppose that a numerical scheme is in conservative form and it
has a consistent and Lipschitz continuous numerical flux. If the method converges to a TV-bounded
function, then that function is indeed a weak solution of the continuous conservation law.

Proof. Again, let us focus on p = 0, q = 1 and write a discrete weak form for (47). That is, we
“multiply by a test function and integrate over the domain”, but in a discrete setting:∑

j,n

Un+1
j − Unj

k
φnj = −

∑
j,n

Fnj+1/2 − F
n
j−1/2

h
φnj ,

where we also require φ to be compactly supported in Ω (implying that φ(xj , t
n) = 0 for j →

±∞, n→∞).

Therefore, using the identity (representing the telescope property together with a discrete inte-
gration by parts)

p∑
n=0

an(bn+1 − bn) = −a0b0 −
p∑

n=1

bn(an − an−1) + apbp+1

for a = φ and b = U (in combination with the fact that φ has compact support in Ω) we obtain

(53)
∑
j,n

Unj
φnj − φ

n−1
j

k
− 1

k

∑
j

φ0
jU

0
j =

∑
j,n

Fnj+1/2

φnj+1 − φnj
h

.
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Let us now consider a family of discretisations such that (h`, k`) → 0 as ` → ∞, and multiply
(53) by h`k`. The assumption of L1 convergence for Unj with the smoothness of φ lead to

lim
`→∞

∑
j,n

Unj
φnj − φ

n−1
j

k`
h`k` =

∫ T

0

∫
Ω
u∂tφ dx dt.

Similarly, the second term on the LHS of (53) converges

lim
`→∞

h`
∑
j

φ0
jU

0
j =

∫
Ω
u0(x)φ(x, 0) dx.

For the remainder of (53) we use the TV-boundedness of Un together with the consistency and
Lipschitz continuity of F to arrive at

lim
`→∞

h`k`
∑
j,n

F (Unj , U
n
j+1)

φnj+1 − φnj
h`

=

∫ T

0

∫
Ω
f(u)∂xφ dx dt.

Consequently, if Unj converges then it converges to the solution of the weak form of (52). �

Entropy solutions. (Suggested reading: Section 3.8 of LeVeque’s book). Recall that weak
solutions might not be unique and an additional condition is required to pick the physically relevant
solution. Depending on the properties of the flux function, different characterisations of the entropy
condition are available.

Definition 10.4. A numerical method of the form

Un+1
j = Unj − λ(Fnj+1/2 − F

n
j−1/2) = G(Unj−p−1, . . . , U

n
j+q) = G(U)nj ,

is said monotone if it is monotonically non-decreasing in all its arguments.

For example, restricting again to p = 0, q = 1 we put G(Un)j = Unj − λ(Fnj+1/2 − F
n
j−1/2) =

G(Unj−1, U
n
j , U

n
j+1) and verify that

∂G

∂Unj−1

= λ
∂

∂Unj−1

F (Unj−1, U
n
j ),

∂G

∂Unj
= 1− λ(

∂

∂Unj
F (Unj , U

n
j+1)− ∂

∂Unj
F (Unj−1, U

n
j )),

∂G

∂Unj+1

= −λ ∂

∂Unj+1

F (Unj , U
n
j+1).

Then, if F is increasing in its first argument and decreasing in its second argument, and if also λ
is sufficiently small; then G is monotone.

Theorem 10.2. For a monotone scheme we have that

(1) If Uj ≤ Vj then G(U)j ≤ G(V )j
(2) The produced solution satisfies

min
i∈Sj

Uni ≤ G(Un)j ≤ max
i∈Sj

Uni .

(3) The scheme is L1−contractive

‖G(Un)j −G(V n)j‖1 ≤ ‖Unj − V n
j ‖1.

(4) The method is Total-Variation Diminishing (TVD)

TV (Un+1) ≤ TV (Un).
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11. Lecture 11

Proof. (of theorem 10.2.) Properties (1)-(4) are part of exercises in QS5.

Using the notation c+ = max(c, 0), c− = min(c, 0), we letWn
j = max(Unj , V

n
j ) = V n

j +(Unj −V n
j )+

and suppose that statement (1) is valid. Then

G(Un)j ≤ G(Wn)j , G(V n)j ≤ G(Wn)j ,

and Wn
j − V n

j = (Unj − V n
j )+. These relations imply that

G(Wn)j −G(V n)j ≥ max(0, G(Un)j −G(V n)j) = (G(Un)j −G(V n)j)
+.

Summing over all j’s and using the conservation property together with the previous considerations,
we obtain ∑

j

(G(Un)j −G(V n)j)
+ ≤

∑
j

Wn+1
j − V n+1

j =
∑
j

(Unj − V n
j )+.

Then ∑
j

|G(Un)j −G(V n)j | ≤
∑
j

(Unj − V n
j )+ +

∑
j

(V n
j − Unj )+ =

∑
j

|Unj − V n
j |.

�

These properties indicate that for monotone schemes we can ensure stability, the absence of
oscillations, and essential features of the conservation law will be preserved. Some examples of
monotone methods:

• Extension of the Lax-Friedrichs scheme using the Russanov flux:

FLF (u, v) =
f(u) + f(v)

2
− α

2
(v − u),

with α = maxu |f ′(u)|. It is clearly a consistent numerical flux, and we can check that it is
“FLF (↑, ↓)” (increasing and decreasing in its first and second arguments, respectively).
• Extension of the Lax-Wendroff scheme to the nonlinear case:

FLW (u, v) =
f(u) + f(v)

2
+
λ

2
f ′(

u+ v

2
)(f(v)− f(u)).

It is consistent, but taking as an example the rescaled Burgers flux f(u) = u2 we can
see that the numerical flux is not is not increasing in its first argument and therefore not
monotone.
• The upstream flux:

FU (u, v) =

{
f(u), s ≥ 0

f(v), s < 0
,

where s is the shock speed based on the Rankine-Hugoniot condition at (u, v). It is clearly
consistent, but again, the monotonicity cannot be verified for any values of u, v.

Let us now resume our previous discussion about entropy solutions, and we recall that additional
conditions are required to identify unique weak solutions.

Entropy conditions.

Definition 11.1. A discontinuity propagating with speed s = f(uR)−f(uL)
ur−uL satisfies an entropy

condition if
f ′(uL) > s > f ′(uR).

If f is convex, this condition translates in uL > uR.
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Definition 11.2 (Oleinik). For non-convex fluxes, the previous definition extends to

f(u)− f(uL)

u− uL
≥ s ≥ f(u)− f(uR)

u− uR
,

for all u between uL and uR.

Definition 11.3. For non-shock solutions (e.g. rarefaction waves): u is the entropy solution if
there exists E > 0 such that for all a > 0, t > 0, x ∈ R:

u(x+ a, t)− u(x, t)

a
<
E

t
.

For discontinuous solutions we recover the first definition.

Definition 11.4 (General case). The function u is the entropy solution if for all convex entropy
functions and corresponding entropic fluxes (η, ψ) there holds∫ T

0

∫
Ω
∂tφη(u) + ∂xφψ(u) dx dt ≥ −

∫
Ω
φ(x, 0)η(u(x, 0)) dx,

for all non-negative test functions φ.

This definition requires (η, ψ) to be an entropy pair, that is, the convex function and entropic
flux must satisfy

η(u)t + ψ(u)x = 0, and ψ′(u) = η′(u)f ′(u),

and so ψ(u) =
∫ u

0 η
′(v)f ′(v)dv.

A well-known example is the Kruzkov entropy pair

η(u) = |u− c|, ψ(u) = sgn (u− c)[f(u)− f(c)],

for a real c.

Theorem 11.1. If the entropy inequality for a given conservation law is satisfied for the Kruzkov
pair for all c ∈ R, then it is also satisfied for any entropy pair.

Theorem 11.2. The solution generated by a monotone scheme satisfies all entropy conditions.

Sketch of a proof. (1) Use the Kruzkov entropic pair for a given c ∈ R.
(2) Assume that the entropy inequality holds weakly.
(3) Write a local entropy condition for the discrete solution

η(Un+1
j )− η(Unj )

k
+
ψnj+1/2 − ψ

n
j−1/2

h
≤ 0,
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where ψnj+1/2 = F (max(Un, c))nj+1/2 − F (min(Un, c))nj+1/2.

(4) Rearranging terms one ends up with

G(max(Un, c))j −G(min(Un, c))j = |Unj − c| − λ(ψnj+1/2 − ψ
n
j−1/2).

(5) Applying consistency and monotonicity of the scheme we can show that

max(c, Un+1
j ) ≤ G(max(c, Un))j .

(6) Then we can bound η(Un+1
j ) using the previous step and the entropy condition from step

(3) can be proved locally, implying also a global discrete entropy condition.

�
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12. Lecture 12

Definition 12.1. A numerical scheme is monotonicity-preserving if

Unj+1 ≥ Unj ∀j =⇒ Un+1
j+1 ≥ U

n+1
j ∀j.

Theorem 12.1. A total variation diminishing (TVD) scheme is monotonicity-preserving.

Proof. Let us assume that the TVD property holds and that Unj+1 ≥ Unj ∀j. On the other hand,
suppose that there exists l such that

Un+1
l+1 < Un+1

l .

Consider the situation where the solution is constant on the left and on the right of the interval
[xl, xl+1]. Then the total variation on each side is zero and when passing from time tn to tn+1 the
stencils of Ul and Ul+1 will interact in such a way that the monotonicity will no longer be preserved.
This implies that the TVD property is violated, leading to a contradiction. �

We have the following chain of properties for a numerical scheme:

Monotone ⇒ L1 − contraction ⇒ TVD ⇒ Monotonicity-preserving.

Definition 12.2. A numerical scheme is linear if it is linear in all its arguments when applied to
a linear PDE:

Un+1
j =

q∑
l=−p

cl(λ)Unj+l.

For linear methods to be monotone we require that cl(λ) ≥ 0 for all l. They are commonly
called positive schemes.

Theorem 12.2. If a linear scheme is monotonicity-preserving, then it is monotone.

Proof. For a given m, let

Ui =

{
0 i ≤ m,
1 i > m

,

which clearly satisfies monotonicity. Then, for a linear scheme

Un+1
j+1 =

q∑
l=−p

cl(λ)Unj+l+1, Un+1
j =

q∑
l=−p

cl(λ)Unj+l,

and so

Un+1
j+1 − U

n+1
j =

q∑
l=−p

cl(λ)(Unj+l+1 − Unj+l) =

{
0 i 6= m,

cm(λ) i = m
.
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But the LHS is nonnegative since Ui is monotone, which then gives that cm(λ) ≥ 0. The same
reasoning can be done for other m’s, implying the monotonicity of the scheme. �

We have another chain of properties for a numerical scheme:

Monotonicity-preserving ⇒︸︷︷︸
for linear schemes

Monotone ⇒ TVD ⇒ Monotonicity-preserving.

Theorem 12.3 (Godunov). (1) A linear monotone (TVD) scheme is at most first order accu-
rate.

(2) A general monotone scheme is at most first order accurate.

Proof of (1). Let us suppose the existence of a smooth solution u(x, t) to the conservation law.
Then a Taylor expansion on u at some point of the mesh and at some time instant, allows us to
write

u(xj+l, t
n) =

∞∑
r=0

(lh)r

r!

∂r

∂xr
u(xj , t

n) ≈ Unj+l.

Constructing now an approximation of the solution by a linear numerical method we obtain

(i) Un+1
j :=

q∑
l=−p

cl(λ)
∞∑
r=0

(lh)r

r!

∂r

∂xr
u(xj , t

n).

A Taylor expansion can be also applied to the exact solution in terms of the time derivatives:

u(xj , t
n+1) =

∞∑
r=0

(k)r

r!

∂r

∂tr
u(xj , t

n).

Using now the relation
∂rv

∂tr
= (−1)r

∂rv

∂xr
,

which holds in particular for the linear equation ut + ux = 0, we can combine the two Taylor
expansions above to arrive at

(ii) u(xj , t
n+1) =

∞∑
r=0

(−1)r
(k)r

r!

∂r

∂xr
u(xj , t

n).

For r = 0, (i) and (ii) imply, respectively, that

Un+1
j ≈

q∑
l=−p

cl(λ)u(xj , t
n), u(xj , t

n) ≈ u(xj , t
n+1),

and therefore

(iii)

q∑
l=−p

cl(λ) = 1.

For r = 1, (i) and (ii) imply, respectively, that

Un+1
j ≈

q∑
l=−p

cl(λ)[u(xj , t
n) + lh∂xu(xj , t

n)], u(xj , t
n) ≈ u(xj , t

n+1)− k∂xu(xj , t
n),
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and therefore

(iv)

q∑
l=−p

lcl(λ) = −λ.

For r = 2, (i) and (ii) imply, respectively, that

Un+1
j ≈

q∑
l=−p

cl(λ)[u(xj , t
n) + lh∂xu(xj , t

n) +
l2h2

2
∂xxu(xj , t

n)],

u(xj , t
n) ≈ u(xj , t

n+1)− k∂xu(xj , t
n) +

k2

2
∂xxu(xj , t

n),

and therefore

(v)

q∑
l=−p

l2cl(λ) = λ2.

The last three relations (iii)-(v) can be put together as

1 · λ2 = (−λ)2,

and so ( q∑
l=−p

cl(λ)
)( q∑
l=−p

l2cl(λ)
)

=
( q∑
l=−p

lcl(λ)
)2
.

The monotonicity of the scheme implies that we must have cl(λ) ≥ 0, so we can write d2
l = cl(λ) ≥ 0.

Then

(vi)
( q∑
l=−p

d2
l

)( q∑
l=−p

l2d2
l

)
=
( q∑
l=−p

ld2
l

)2
,

and after defining the vectors a = (d−q, . . . , dp)
T , b = (−qd−q, . . . , pdp)T , relation (vi) is rewritten

as
(a · a)(b · b) = (a · b)2,

which can only occur if a = Cb with C constant, which clearly is not possible. This implies that
we cannot match the first three terms in the two Taylor expansions above, indicating that linear
schemes will produce truncation errors of order at most one.

The proof of statement (2) follows very much in the same way. �
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13. Lecture 13

The proof of the last theorem relies on the regularity of the exact solution. However, as we have
seen during this part of the course, the solutions of conservation laws will often be discontinuous.
The following results address the extension to more general regularity assumptions.

Theorem 13.1 (Tang & Feng). Assume that the finite difference scheme

Un+1
j =

q∑
l=−p

cl(λ)Unj

is has a consistent numerical flux and it is monotone when applied to a linear conservation law

ut +Aux = 0.

Then, for any M > 0

C(p, q)M

q∑
l=−p

√
cl(λ)

√
htn

λ
‖U0‖TV ≤ ‖u(·, tn)− Un‖h,1 ≤M

[
2

√√√√ q∑
l=−p

l2cl(λ)− λ2A2

√
htn

λ
+ h

]
,

where ‖U0‖TV = suph ‖Unj ‖h,1.

Theorem 13.2 (Kuznetsov). The numerical solution to the general conservation law

ut + f(u)x = 0

generated by a scheme being monotone, conservative, and having consistent and Lipschitz continu-
ous numerical flux, converges to the entropy solution, for any initial condition. Moreover, if ‖U0‖TV
is bounded, then

‖u(·, tn)− Un‖h,1 ≤ C(tn)
√
h.

Finite volume schemes. Considering again the generation of meshes used in the finite difference
approximation of one-dimensional problems, let us define cells or control volumes centred at each
point of the mesh, and having a size of h, and occupying a time interval of size k:

[xj−1/2, xj+1/2]× [tn, tn+1],

for all j.

Let us recall the general conservation law written in the form

(60) ut + f(u)x = 0,

endowed with appropriate boundary and initial conditions, for which we can state an integral form
(on the cell centred at xj):

(61)

∫ xj+1/2

xj−1/2

(u(x, tn+1)− u(x, tn)) dx = −
∫ tn+1

tn
(f(u(xj+1/2, t))− f(u(xj−1/2, t))) dt.

Defining cell averages

ūnj =
1

h

∫ xj+1/2

xj−1/2

u(x, tn+1) dx
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and boundary fluxes

(62) Fnj+1/2 = F (ūnj , ū
n
j+1) =

1

k

∫ tn+1

tn
f(u(xj+1/2, t)) dt,

one recovers the explicit numerical method in finite volume (FV) formulation:

ūn+1
j = ūnj −

k

h
[F (ūnj , ū

n
j+1)− F (ū−1j

n, ūnj )].

Godunov’s method.

Notice that a numerical method (finite difference or finite volume) written in conservation form
will capture correctly the wave speed of the discontinuity. However the FV method above is still not
completely defined, as the integral characterising the boundary fluxes (62) has to be approximated.

Evaluating this integral requires the point-wise values of the approximated solution at xj+1/2

and xj−1/2 (which are not points in the initial mesh). Moreover ū by definition is not necessarily
continuous at these points. We then proceed to interpolate:

• Let us assume that u∗ = u(xj+1/2, t) can be reconstructed from the average values

(ūnj−p, . . . , ū
n
j+q)

by some polynomial p(x) sampling u at xj+1/2.
• Ideally p should not violate the conservation property. Therefore∫ xl+1/2

xl−1/2

p(x) dx = ūnl , l ∈ {j − p, . . . , j + p}.

• A straightforward example is u∗ = 1
2(ūnj + ūnj+1), but higher order reconstructions will be

preferable in many situations.
• In general we want to find which value to assign to the approximate solution at a discon-

tinuity. And this will occur at every interface between two cells, that is at xj+1/2. This
accounts to find the solution of a Riemann problem, locally.

uL = lim
ε→0+

pL(xj+1/2 − ε), uR = lim
ε→0+

pR(xj+1/2 + ε).

For sufficiently small k, we observe that u∗ will remain constant over [tn, tn+1], so even the
fastest wave will not reach a neighbouring interface within one time step.

In summary, in (62) we will employ

Fnj+1/2 = f((u∗j+1/2),

with u∗ reconstructed locally from ūnj and ūnj+1 (ie. the exact flux evaluated on the local Riemann

solution). The Godunov numerical flux can be therefore defined as

F (u, v) =



f(u) u ≥ v, f(u) ≥ f(v)

f(v) u ≥ v, f(u) < f(v)

f(u) u < v, f ′(u) ≥ 0

f(v) u < v, f ′(v) < 0

f(f−1(0)) otherwise.

If f happens to be convex, then we recover

F (u, v) =

 min
u≤w≤v

f(w) if u ≤ v

max
v≤w≤u

f(w) if u > v.
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A direct inspection of each case indicates that the Godunov numerical flux is indeed monotone.
But we still have not specified how we actually compute u∗.
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14. Lecture 14

Approximate Riemann solvers. Some examples are provided in what follows.

Local Lax-Friedrichs (Rusanov) numerical flux.

(63) F (ūnj , ū
n
j+1) =

1

2
[f(ūnj ) + f(ūnj+1)− αj+1/2(ūnj+1 − ūnj )],

Taking the viscosity parameter αj+1/2 = maxw |f ′(w)| as the largest local wave speed, the stability
of the scheme is guaranteed. Notice that this additional viscosity is small in regions where the
solution is smooth.

Exercise: check that this flux is monotone.

Roe numerical flux. It is based on a linearisation of the flux around the cell interface, combined
with an upwind approximation. The linear part should approximate the speed suggested by the
exact solution of the Riemann problem. For example, taking the Rankine-Hugoniot condition
(provided that we do have a jump) we can set

(64) a(uL, uR) =
f(uL)− f(uR)

uL − uR
,

otherwise we can use a(uL, uR) = f ′(w) with w = uL or w = uR.

Related to (64), notice that

• If uR ≈ uL then a(uL, uR) is a reasonable approximation for both f ′(uL) and f ′(uR).
• If f ′(uL) and f ′(uR) have the same sign, then a will have this sign as well.
• If f ′(uL) and f ′(uR) have different signs (as in e.g. rarefaction waves), then the solution

generated using a will differ from the one obtained with an exact Riemann solver (and
therefore it might not be the entropy solution).

If uL = uR, the numerical flux is trivial. Let us take uL 6= uR and define

(65) F (uL, uR) =

{
f(uL) a(uL, uR) > 0,

f(uR) a(uL, uR) ≤ 0.

Using (64) and (65) we get that if a(uL, uR) > 0 then

F (uL, uR) = f(uL) =
1

2
[f(uL) + f(uR)− f(uR)− f(uL)

uR − uL
(uR − uL)],

and if a(uL, uR) < 0,

F (uL, uR) = f(uR) =
1

2
[f(uL) + f(uR)− f(uR)− f(uL)

uR − uL
(uR − uL)].

Therefore (65) gives

FRoe(uL, uR) =
1

2
[f(uL) + f(uR)− |a(uL, uR)|(uR − uL)].

Exercise: check that this flux is not monotone.

Harten’s entropy fix. As mentioned above, a drawback of Roe’s numerical flux is that it produces
only shock solutions and will not capture e.g. rarefaction waves. Smoothing the graph of the wave
speed in Roe’s flux remediates this issue:

F fix(uL, uR) =
1

2
[f(uL) + f(uR)− Φ(a(uL, uR))(uR − uL)],
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where

Φ(s) =

{
|s| |s| ≥ ε,
s2+ε2

2ε |s| < ε,

for some ε > 0.

Engquist-Osher numerical flux. Under the assumption that there exists f+, f− such that
f(u) = f+(u) + f−(u) and ∂u(f±(u)) = a±(u), one has that∫ uR

uL

a±(u)du = f±(uR)− f±(uL),

and rearranging terms we end up with

(66) FEO(uL, uR) =
1

2
[f(uL) + f(uR)]− 1

2

∫ uR

uL

|f ′(θ)|dθ.

If f has a single minimum at w and no maximum, we can recast (66) as

FEO(uL, uR) = f(max(uL, w)) + f(min(uR, w))− f(w),

and if f is convex then we can write

FEO(uL, uR) = f+(uL) + f−(uR).

Exercise: check wether this flux is monotone.
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15. Lecture 15

High order methods. High-order methods would achieve higher rates of convergence, provided
that the exact solution is smooth enough. However in the context of hyperbolic conservation laws,
the functions involved are typically discontinuous and the formal order of convergences that one
could derive will be quite low (recall theorems from Lecture 13). Nevertheless, high order methods
(having consistency errors of order at least two) are desirable as for a fixed spatial resolution, they
deliver smaller errors than first-order approximations. In addition, they provide better capturing
of local features.

Let us consider the following semi-discretisation of (60), written in conservation form

(70) ∂tUj +
Fj+1/2 − Fj−1/2

h
= 0,

and recall that in finite difference methods, Uj(t) will represent the point-wise approximation
of u(xj , t) and the numerical flux Fj+1/2 = F (Uj−p, . . . , Uj+q) is a direct approximation of f(u)
evaluated at xj+1/2. On the other hand, in finite volume schemes, Uj(t) represents the cell average
on the interval Ij and the numerical flux Fj+1/2 is obtained in two stages: a) recovering uj+1/2

from the cell averages (ūj−p, . . . , ūj+q), and b) evaluating f(uj+1/2).

Independently of the specific form of the method at hand, we require a conservation property:

(71) f(u(x)) =

∫ x+h/2

x−h/2
F (x) dx.

Taking derivatives we obtain

∂xf =
F (x+ h/2)− F (x− h/2)

h
.

In turn, the definition of cell averages applied in (71) gives

F̄j =
1

h

∫ xj+1/2

xj−1/2

F (x) dx = f(uj),

which implies that, in finite difference methods, the numerical flux Fj+1/2 is recovered (from cell
averages of F ) as the point value of f ; whereas in finite volumes, the solution at the interface uj+1/2

is recovered (from cell averages of u) and the numerical flux is f(uj+1/2).

Let us now consider a numerical method of m−th order accuracy. Then, in particular,

(72)
Fj+1/2 − Fj−1/2

h
= ∂xf |xj +O(hm).

Remark 15.1. Equation (72) implies that the construction of high-order methods will translate in
reconstructing (with high accuracy) the numerical flux at each interface.

In the light of Godunov’s theorem, to achieve a high-order discretisation we will require nonlinear
methods.

Let us construct a general method whose numerical flux is recast in the following form

Fnj±1/2 = Fn,low
j±1/2 + Φj±1/2A

n
j±1/2,

where the first term in the RHS indicates a flux of a low-order method (which will be monotone
and therefore non-oscillatory). We proceed to write the method as

Fnj±1/2 = Fn,low
j±1/2 + Φj±1/2[Fn,high

j±1/2 − F
n,low
j±1/2],

where the term in the RHS having a high superscript denotes the contribution coming from a
high-order method satisfying (72), but being possibly oscillatory; and the function Φ stands for a



39

so-called flux limiter, applied locally at the interfaces. A family of different methods can be defined
depending on how we choose this flux limiter. Some of these are outlined in what follows.

Flux-correction transport schemes.

Here Φ is chosen such that no extrema are created and existing ones are not accentuated. An
example is given by the classical min-mod limiter:

Φj±1/2A
n
j±1/2 = minmod (Anj+1/2, U

n
j+1 − Unj ), Unj − Unj−1),

where the min-mod function is defined as

minmod (a1, . . . , an) :=

{
sign(a1) mini |ai|,

∑
i sign(ai) = n

0, otherwise.

TVD-stable and high-order schemes.

This second class of methods is a generalisation to the case where Φ itself is nonlinear, and the
idea is based on introducing a smoothness monitor r

Φj+1/2 = Φ(rj+1/2), rj+1/2 :=
Uj − Uj−1

Uj+1 − Uj
,

and one notices that Φ(1) = 1 will ensure second order accuracy. The specific form of Φ gives rise
to methods with different properties. For example,

• Φ(r) = max(0,min(r, β)) for some β ≤ 1 (Chakravarty-Osher limiter)
• Φ(r) = max(0,min(2r, 3(2 + r), 2)) (Monotonised centred limiter)
• Φ(r) = max(0,min(rβ, 1),min(r, β)) for some 1 ≤ β ≤ 2. For β = 2 the method is known

as SUPERBEE.
• Φ(r) = 3r(r+1)

2(r2+r+1)
(Ospre)

• Φ(r) = max(0, 2r
1+r ) (Van Leer)

• Φ(r) = minmod, (1, r)

All of these limiters produce methods that are of second order in regions where the solution is
smooth, and boil down to the upwind method (monotone and first order) near the discontinuities.

We can also consider the following class of linear methods

• Φ(r) = 0 (upwind method, TVD)
• Φ(r) = 1 (Lax Wendroff method, not TVD)
• Φ(r) = r (Beam warming)
• Φ(r) = 1+r

2 (Fromm)

Different kinds of waves will require diverse specific properties of the method, which will have to
balance shock capturing capabilities with the smearing of oscillations. The goal will be to choose
a limiter as close to 1 as possible, but still enforcing a TVD property.
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16. Lecture 16

Example. Let us considet the linear conservation law (setting f(u) = au, with a constant; and
let us recall the Lax-Wendroff scheme, here specifically written in finite volume formulation

ūn+1
j = ūnj −

λa

2
(ūnj+1 − ūnj−1) +

λ2a2

2
(ūnj+1 − 2ūnj + ūnj−1).

We can rearrange the terms to obtain

(73) ūn+1
j = ūnj − λa(ūnj − ūnj−1)︸ ︷︷ ︸

1st order upwind method

− 1

2
a(1− λa)(ūnj+1 − 2ūnj + ūnj−1)︸ ︷︷ ︸

“antidiffusive” scheme

.

Focusing on the numerical fluxes, we can recast (73) as

(74) FLW
j+1/2 = aūnj +

a

2
(1− λa)(ūnj+1 − ūnj ).

In order to enforce the TVD property, the antidiffusive part of the numerical flux requires a limiting
procedure:

(75) FTVD
j+1/2 = aūnj +

a

2
(1− λa)Φj+1/2(ūnj+1 − ūnj ),

indicating that the limiter must be applied on the flux itself, in order to preserve the conservation
form of the method:

ūn+1
j = ūnj − λa(ūnj − ūnj−1)− 1

2
a(1− λa)[Φj+1/2(ūnj+1 − ūnj )− Φj−1/2(ūnj − ūnj−1)].

An alternative way of achieving high-order methods consists in concentrating on deriving a more
accurate reconstruction. For instance, let us consider the following conservative scheme written in
semidiscrete form (as (60))

(76) ∂tūj(t) = −1

h
[F (v+

j (t), v−j+1(t))− F (v+
j−1(t), v−j (t))].

The values v±j (t) are obtained by linear reconstruction from the cell averages ūj(t):

v−j = ūj −
1

2
hσj , v+

j = ūj +
1

2
hσj ,

where the σj ’s are suitable slopes depending on the local cell averages ūj .

This reconstructed (discrete) function v is therefore piecewise linear on the cells, but not neces-
sarily continuous. A number of possibilities to select σ are available. An intuitive choice (already
mentioned in the construction of Godunov schemes) is to take a central slope

σj =
1

2
[
ūj+1 − ūj

h
+
ūj − ūj−1

h
] =

ūj+1 − ūj−1

2h
.

In analogy with the central approximation of first order derivatives (which are O(h2)−accurate),
here we can apply a Taylor expansion for a sufficiently regular u to obtain

|v−j (t)− u(xj−1/2, t)| = O(h2), |v+
j (t)− u(xj+1/2, t)| = O(h2).

Other options include one-sided slopes (of order O(h)):

σj =

{
ūj+1−ūj

h or
ūj−ūj−1

h

,

and a class of methods called slope-limiting schemes consisting in forcing a cap for a given slope.
This can be achieved, for example, using the minmod operator

σj = minmod

(
ūj+1 − ūj

h
,
ūj − ūj−1

h

)
.
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