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1 Linear Systems

1.1 Fundamental theorems

Consider the linear, autonomous, first-order system of differential equations:

ẋ = Ax (1.1)

x(0) = x0, (1.2)

where a dot represents d/dt, x ∈ Rn, and A ∈ Mn(R), the set of n × n matrices with
coefficients in R. Questions we are typically interested in:

(i) Find the solution

(ii) Describe the behaviour of the solution close to the fixed point x = 0.

When n = 1 the equation is easy to solve:

ẋ = ax ⇒ x(t) = eatx0.

In general we might expect to be able to write something like x = etAx0. But what is etA?

Definition 1.1. Let A ∈Mn(R), t ∈ R. Then the matrix exponential is

etA =
∞∑

k=0

tkAk

k!
. (1.3)

For a given T this series is absolutely, uniformly convergent for all t < T .

Theorem 1.2. The initial value problem (1.1)-(1.2) has the unique solution

x(t) = etAx0. (1.4)

Lemma 1.3. If A = BCB−1, then etA = BetCB−1.

Proof.
A2 = BCB−1BCB−1 = BC2B−1.

Iterating (more properly induction) gives Ak = BCkB−1 for all k. The result then follows
from Definition 1.1 and uniform convergence. �

If A is semi-simple (i.e. A can be diagonalised), then there exists B such that

A = BCB−1, where C = diag(λ1, . . . , λn). (1.5)

Then
etA = B diag(eλ1t, . . . , eλnt)B−1 (1.6)
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1.2 Normal forms in two dimensions (Recap from Part A)

If A ∈M2(R), say A = (aij) with aij ∈ R and x = (x1, x2)
T the system is

ẋ1 = a11x1 + a12x2, (1.7)

ẋ2 = a21x1 + a22x2. (1.8)

For B ∈GL(2,R) (the group of n× n invertible matrices with real coefficients)

ẋ = Ax ⇒ Bẋ = BAx = BAB−1Bx = CBx,

where C = BAB−1. Thus y = Bx transforms the system ẋ = Ax into

ẏ = Cy. (1.9)

Depending on the eigenvalues λ1, λ2 ∈ Spec(A) (the spectrum of A) , we can choose B such
that C has one of the following forms:

1. λ1, λ2 ∈ R.

1.1 Saddle: λ1λ2 < 0

C =

[
λ1 0
0 λ2

]
⇒ ẏ1 = λ1y1

ẏ2 = λ2y2
⇒ y1 = y10e

λ1t

y2 = y20e
λ2t WLOG λ1 < 0 < λ2

1.2 Node: λ1λ2 > 0 with A semi-simple (i.e. with 2 different eigenvectors).

C =

[
λ1 0
0 λ2

]
⇒ y1 = y10e

λ1t

y2 = y20e
λ2t ⇒ y2 = Cyα1 where α =

λ2
λ1

> 0.

α > 1 α = 1 α < 1
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1.3 Degenerate node: λ1 = λ2 withA not semi-simple (i.e. the eigenspace is 1-dimensional).

C =

[
λ 1
0 λ

]
⇒ y1 = y10e

λt + y20te
λt

y2 = y20e
λt .

2. λ1, λ2 ∈ C. Then λ1 = a+ ib, λ2 = a− ib (a, b real).

2.1 Centre: a = 0

C =

[
0 −b
b 0

]
⇒ ẏ1 = −by2

ẏ2 = by1
⇒ y1 = y10 cos(bt)− y20 sin(bt)

y2 = y20 cos(bt) + y10 sin(bt)

a = 0, b > 0 a = 0, b < 0

2.1 Focus: a 6= 0

C =

[
a −b
b a

]
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a < 0, b > 0 a > 0, b > 0

1.3 Linear flows

Consider

ẋ = Ax, x(0) = x0 x ∈ Rn, A ∈Mn(R), n ≥ 1.

The general solution is x(t) = etAx0.
Geometrically, etA is a map, the linear flow. Let ϕt = etA. Then

ϕt : Rn → Rn with ϕt(x0) = etAx0 = x(t). (1.10)
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x0

etA

x(t)

Properties:

• ϕ0 = 1 (the identity map)

• ϕt+s(x) = ϕt(ϕs(x)) = ϕs(ϕt(x)), ∀x ∈ Rn

x0

x(s)

esA

etA
x(t+ s)

ϕs(x0)

ϕt(x(s))

x0

ϕt+s(x0)

e(t+s)A

x(t+ s)

Consider the set of eigenvalues of A:

Spec(A) = {λ1, . . . , λn} (1.11)

Definition 1.4. If A is such that Re(λ) 6= 0, ∀λ ∈ Spec(A), then the linear flow etA is
hyperbolic. By extension, the system ẋ = Ax is a hyperbolic system.

NB: Since the real part of all the eigenvalues are all different from zero, hyperbolic flows
are controlled by exponential contraction or expansion close to the fixed point.

Definition 1.5. Let E ⊂ Rn. Then E is an invariant set of ϕ if ϕt(E) ⊆ E ∀t ∈ R.

Example 1.1. Let v be an eigenvector of A with eigenvalue λ, then E = Span(v) is an
invariant set.

Proof.
E = Span(v) = {cv : c ∈ R}.

But
ϕt(cv) = etAcv = cetAv = ceλtv = c̃v ∈ E ∀c

�

We can now construct three subspaces depending on the real part of the eigenvalues.
First, consider the case where A is semi-simple and Spec(A) = {λ1, . . . , λn}. We write the
eigenvalues and eigenvectors of A as Awj = λjwj (for j = 1, . . . , n) where

λj = aj + ibj , aj , bj ∈ R, wj = uj + ivj , uj , vj ∈ Rn.
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Definition 1.6. The stable, center, unstable linear subspaces are defined, respectively, as

• Es = Span(uj ,vj | aj < 0) (stable linear subspace)

• Ec = Span(uj ,vj | aj = 0) (centre linear subspace)

• Eu = Span(uj ,vj | aj > 0) (unstable linear subspace)

Define the dimensions of the stable (s), centre (c) and unstable (u) linear subspaces :

ns = dim(Es), nc = dim(Ec), nu = dim(Eu).

Then n = ns + nc + nu. By construction Es, Ec, and En are invariant sets.

In the case where the unstable and centre subspaces are empty, we have:

Lemma 1.7. If all the eigenvalues have negative real part, then ∀x0 ∈ Rn, the origin is
stable. That is, we have

lim
t→∞

etAx0 = 0, (1.12)

and ∀x0 6= 0

lim
t→−∞

|etAx0| =∞. (1.13)

NB: For a general system the same result holds for all x0 ∈ Es.
If A is not semi-simple, then we take wj to be the generalised eigenvectors (See Perko,

p.33). For a degenerate eigenvalue λ with multiplicity m, the generalised eigenvectors of A
given by m linearly independent solutions of

(A− λ1)kw = 0, k = 1, . . . ,m. (1.14)

These generalised eigenvectors form a basis of the eigenspace of eigenvalue λ.

Example 1.2.

A =



−2 −1 0
1 −2 0
0 0 2




w1 =




0
1
0


+ i




1
0
0


 , w2 =




0
1
0


− i




1
0
0


 , w3 =




0
0
1


 ,

λ1 = −2 + i, λ2 = −2− i, λ3 = 3.
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Es

Eu

Example 1.3.

A =




0 −1 0
1 0 0
0 0 −2




w1 =




i
1
0


 =




0
1
0


+ i




1
0
0


 , w2 =



−i
1
0


 =




0
1
0


− i




1
0
0


 , w3 =




0
0
1


 ,

λ1 = i, λ2 = −i, λ3 = −2.

Ec

Es

Example 1.4.

A =

[
0 0
1 0

]
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w1 =

[
0
1

]
, w2 =

[
1
0

]
,

λ1 = 0, λ2 = 0.

NB w2 is a generalised eigenvector: it satisfies A2w2 = 0 but not Aw2 = 0. Ec = R2. The
typical way to find w2 is to solve (A− λI)w2 = w1. In this case since nc = 2 and the system
is two-dimensional there is nothing else w2 could be.
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2 Nonlinear systems

2.1 Existence and uniqueness

Consider the nonlinear, autonomous, first-order system of differential equations:

ẋ = f(x), x(0) = x0 (2.1)

where f : E ⊆ Rn → Rn is the vector field. NB autonomous means ∂tf = 0, i.e. f does not
depend explicitly on t. In general, this equation cannot be solved explicitly.
Questions we might be interested in:
What are the possible solutions (from a geometric point of view)?
What is the stability of such solutions (how do nearby solutions behave?)?

Theorem 2.1. Let E be an open subset of Rn containing x0 and let f ∈ C1(E). Then there
exists c > 0 such that

ẋ = f(x), x(0) = x0

has one and only one solution x(t) on [−c, c].

Remark 2.2. The proof is by Picard’s method, after showing that f ∈ C1(E) implies that f
is locally Lipschitz on E.

Remark 2.3. This is a local result. It guarantees the existence of a unique solution but only
for a short time.

Remark 2.4. If x(t) is a solution of the equation [not the initial condition] then so is x(t+σ)
for any σ ∈ R. This is a consequence of ∂tf = 0. Thus we also have existence and uniqueness
on an interval t ∈ [t0 − c, t0 + c] when the initial condition is replaced by x(t0) = x0.

Remark 2.5. For the rest of this course, unless otherwise specified, we will assume that the
maximum interval of existence is R (we are interested in global behaviour).

Remark 2.6. The general conditions guaranteeing the existence of global solutions are not
obvious.

We will find it useful to highlight the parametric dependence of the solution on the initial
condition by writing x = x(t; x0).

2.2 Flows, asymptotic sets, and invariant sets

We assume that the maximum interval of existence is R (i.e. solutions are defined for all time
for all initial conditions).
Let E be an open subset of Rn, and f ∈ C1(E). For x0 ∈ E, let x(t; x0) be the solution to
(2.1). Then
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Definition 2.7. An orbit or trajectory based on x0 is the curve Γx0 ⊂ E defined by

Γx0 = {x(t; x0) | t ∈ R} (2.2)

Definition 2.8. The flow of the differential equation (2.1) is the map ϕt : E → E such that

ϕt(x0) = x(t; x0). (2.3)

The space E ⊆ Rn on which the solutions live is called the phase space.

x0

x(t; x0) ∈ Γx0

Properties of flows:

• ϕ0 = 1 (the identity map)

• ϕt+s(x) = ϕt(ϕs(x)) = ϕs(ϕt(x)), ∀ x ∈ Rn

• Let U be a neighborhood of x0 and V = ϕt(U), then

ϕ−t(ϕt(x)) = x, ∀ x ∈ U (2.4)

ϕt(ϕ−t(y)) = y, ∀ y ∈ V (2.5)

x0

ϕt(x0)

E
K

ϕt(K)

x

ϕt(x)

y

ϕ−t(y)
E

U

V
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2.2.1 Invariant sets

Definition 2.9. Consider a vector field f ∈ C1(E), defining a flow ϕt : E → E.
Then S ⊆ E is an invariant set of ϕt if

ϕt(S) ⊆ S ∀ t ∈ R. (2.6)

Example 2.1.

ẋ = −x
ẏ = y + x2

ϕt(x0) =




x0e
−t

y0e
t +

x20
3

(et − e−2t)




Then the sets
S1 = {x ∈ R2 | y = −x2/3}, S2 = {x ∈ R2 | x = 0}

are both invariant.

Proof. S2 is invariant because x0 = 0⇒ x = x0e
t = 0. If x0 ∈ S1 then y0 = −x20/3. Then

ϕt(x0) =




x0e
−t

−x
2
0

3
et +

x20
3

(et − e−2t)


 =




x0e
−t

−x
2
0

3
e−2t


 ∈ S1.

�

2.2.2 Attracting sets

Definition 2.10. A point p ∈ E is an ω-limit point of ϕt(x) if there exists a sequence of
times t1 < t2 < . . . < tn, with ti →∞ as i→∞ such that

lim
i→∞

ϕti(x) = p. (2.7)

Similarly, a point p ∈ E is an α-limit point of ϕt(x) if there exists a sequence of time
t1 > t2 > . . . > tn, with ti → −∞ as i→∞ such that

lim
i→∞

ϕti(x) = p. (2.8)

Example 2.2.

ẋ = −y + x(1− x2 − y2)
ẏ = x+ y(1− x2 − y2)
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Write x = r cos θ, y = r sin θ to give

ṙ = r(1− r2)
θ̇ = 1

The circle r = 1 is an ω-limit set, i.e. each point on the circle is an ω-limit point. The point
r = 0 is an α-limit point.

Remark 2.11. Note that no point on the circle r = 1 is a limit point of the flow.

t1 t2 t3 t4

Definition 2.12. An closed invariant set A ⊆ E is called an attracting set of (2.1) if there is
some neighbourhood U of A such that

ϕt(U) ⊆ U ∀ t ≥ 0 and A =
⋂

t>0

ϕt(U).

Here a neighbourhood of A is any open set containing A.

U
A

not allowed

The domain of attraction is the set of all initial conditions that have A as ω-limit set.
That is

D(A) =
⋃

t≤0
ϕt(U) (2.9)

Example 2.3.

ẋ = −y + x

(
1− 5

4
x2 − 5

4
y2 +

1

4
x4 +

1

2
x2y2 +

1

4
y4
)

ẏ = x+ y

(
1− 5

4
x2 − 5

4
y2 +

1

4
x4 +

1

2
x2y2 +

1

4
y4
)

ṙ = r

(
1− 5

4
r2 +

1

4
r4
)

= r(1− r2)
(

1− r2

4

)

θ̇ = 1
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The circle r = 1 is an attracting set. The domain of attraction is {x | 0 < r < 2}.

Example 2.3 Example 2.4

Example 2.4.

ẋ = −y + x(1− 2x2 − 2y2 + x4 + 2x2y2 + y4)

ẏ = x+ y(1− 2x2 − 2y2 + x4 + 2x2y2 + y4)

ṙ = r(1− 2r2 + r4)

θ̇ = 1

The circle r = 1 is an invariant set, but not an attracting set.

2.2.3 Attractors

Definition 2.13. An attracting set with a dense orbit is called an attractor.

Definition 2.14. A orbit Γ ∈ A is dense if for all ε > 0 and all points x ∈ A there exists
some point x̃ ∈ Γ such that |x − x̃| < ε. A dense orbit goes as close as wanted to any point
of A.

Example 2.5.

ẋ = x− x3,
ẏ = −y

The interval I1 = {(x, 0) | − 1 ≤ x ≤ 1} is an attracting set. But it is not an attractor,
since it does not have a dense orbit. The interval I2 = {(x, 0) | − 1 ≤ x ≤ 0} is an invariant
set, has a dense orbit, but it is not an attracting set. The only attractors are the two points
(−1, 0) and (1, 0).
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Example 2.6.

ẋ =

{
−x4 sin(π/x) x 6= 0

0 x = 0
(2.10)

Fixed points at x = 0, x = ±1/n. The set A = [−1, 1] is an attracting set, because the
neighbourhood U = [−1 − ε, 1 + ε] for ε > 0 is such that ϕt(U) ⊆ U ∀t ≥ 0 and ϕt(U) → A
as t→∞. The set A itself is not an attractor (there is no dense orbit). But each fixed point
x = ±1/(2n− 1) is an attractor. The point x = 0 is not an attracting set.

In two dimensions attracting sets are well characterised:

Theorem 2.15 (Poincaré-Bendixson theorem). Suppose E ⊂ R2 is an open subset of the
plane and f ∈ C1(E). If D ⊂ E is compact (i.e. closed and bounded) such that x(t) ∈ D for
all t ≥ 0 where ẋ = f(x), then the orbit either is a limit cycle, approaches a limit cycle as
t→∞, or approaches an equilibrium point.

Another way to say this is that either ω(ϕt(x0)) contains a critical point or ω(ϕt(x0)) is a
periodic orbit. In three or more dimensions attractors can be much more exotic. The Lorenz
system has a strange attractor. An attractor is called strange if it has fractal dimension.

2.3 Stability

As usual we consider a system ẋ = f(x) with x ∈ E ⊆ Rn, f ∈ C1(E).
The simplest solutions are fixed points.

Definition 2.16. A fixed point x0 is a constant solution of the system, that is f(x0) = 0.

We want a definition of the intuitive idea of stability: “solutions close to a given invariant
set remain close to that set for all time.”

Let Bδ(x) denote the open ball of radius δ around x, i.e.

Bδ(x0) = {x ∈ Rn | |x− x0| < δ}.

Definition 2.17. The fixed point x0 is (Lyapunov) stable if ∀ ε > 0, ∃ δ > 0 such that
∀ x ∈ Bδ(x0) and t ≥ 0, we have ϕt(x) ∈ Bε(x0). If x0 is not stable it is (Lyapunov) unstable.
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Bδ(x0)

Bε(x0)

x0

Stable: trajectories starting within
Bδ(x0) stay within Bε(x0)

This trajectory leaves Bε(x0). Either
the point x0 is unstable, or we need
to choose a smaller δ.

Example 2.7.

ẋ = y

ẏ = −4x
⇒ 4x2 + y2 = c

Then
x20 + y20 < δ2 ⇒ c < 4δ2 ⇒ x2 + y2 < 4δ2.

Thus points starting in in Bδ(0) stay inside B2δ(0) so choose δ = ε/2.

We also have the following stronger notion of stability:

Definition 2.18. The fixed point x0 is asymptotically stable if (i) it is Lyapunov stable and
(ii) ∃ δ > 0 such that ϕt(x)→ x0 as t→∞ for all x ∈ Bδ(x0).

At first sight it might seem that we do not need (i) above, but to see that we do consider
the following example.

Example 2.8.

ṙ = r(1− r)

θ̇ = sin2 θ

2

All trajectories starting from x0 6= 0 tend to (1, 0). But (1, 0) is not stable (because trajec-
tories starting at θ = ε do a full loop and settle down at θ = 2π—they do not stay close to
(1,0)).
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locally near x = 1, y = 0

For linear systems ẋ = Ax the origin x0 = 0 is always a fixed point. If A is a semi-simple
matrix, we have

• x = 0 is asymptotically stable if Re(λ) < 0, ∀ λ ∈ Spec(A).

• x = 0 is stable if Re(λ) ≤ 0, ∀ λ ∈ Spec(A).

Remark 2.19. The first property remains true for non semi-simple A, but not the second
one (can you find a counter-example?).

2.4 Lyapunov functions

Example 2.9. Consider the system

ẋ = −x− y,
ẏ = x− y.

Define

V (x) =
1

2
(x2 + y2).

Then, by the chain rule,

V̇ =
∂V

∂x
ẋ+

∂V

∂y
ẏ = x(−x− y) + y(x− y) = −x2 − y2 = −2V ≤ 0

with equality only if x = y = 0. Therefore

V (x(t)) = V (x(0))e−2t → 0 as t→∞

for all x0. Therefore

x→ 0 as t→∞
i.e. the origin is a globally asymptotically stable equilibrium point.

More generally consider the usual system

ẋ = f(x)
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with x ∈ E ⊆ Rn, f ∈ C1(E). Assume that this system has a fixed point x0 (so that
f(x0) = 0). Now consider a function V (x) defined for x ∈ E. The derivative of V along the
solution trajectory ϕt(x) at x is

V̇ (x) =
d

dt
V (ϕt(x))

∣∣∣∣
t=0

= ∇V (x) · ẋ = ∇V (x) · f(x).

Theorem 2.20. Let W be an open subset of E and x0 ∈W . Suppose there exists a function
V : W → R, V ∈ C1(W ) satisfying V (x0) = 0 and V (x) > 0 ∀ x ∈W \ {x0}. Then,

(i) if V̇ (x) ≤ 0 ∀ x ∈W \ {x0} then x0 is stable;

(ii) if V̇ (x) < 0 ∀ x ∈W \ {x0}, then x0 is asymptotically stable;

(iii) if V̇ (x) > 0 ∀ x ∈W \ {x0}, then x0 is unstable.

The function V is known as a Lyapunov function.

Proof. (Perko, p.131) (i) Given ε > 0 sufficiently small that Bε(x0) ⊂ W , let mε be the
minimum of the continuous function V on the compact set

Sε = ∂Bε(x0) = {x ∈ Rn | |x− x0| = ε}.

Since V (x) > 0 for x 6= x0 we have mε > 0. Since V is continuous and V (x0) = 0 it follows
that there exists δ > 0 such that |x− x0| < δ implies V (x) < mε.

Now V̇ (x) ≤ 0 means that V is decreasing along trajectories of (2.1). Thus for all
ξ0 ∈ Bδ(x0) and t ≥ 0 we have

V (ϕt(ξ0)) ≤ V (ξ0) < mε.

This implies that φt(ξ0) ∈ Bε(x0) ∀t. Indeed, suppose for a contradiction that ∃t1 ∈ R and
ξ0 ∈ Bδ(x0) such that ϕt1(ξ0) ∈ Sε. Then, since mε is the minimum of V on Sε we must have
V (ϕt1(ξ0)) ≥ mε, contradicting the inequality above. Thus we have found the required δ > 0
such that |ϕt(ξ0)− x0| < ε for all ξ0 ∈ Bδ(x0) and t ≥ 0.

Bδ(x0) Bε(x0)

m

V (x)
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(ii) Now suppose that V̇ (x) < 0 for all x ∈ W \ {x0}, so that V is strictly decreasing
along trajectories. Let {tk} be any sequence with tk → ∞ as k → ∞. We first show that if
ϕtk(ξ0)→ y0 as k →∞ then y0 = x0. Since V is continuous V (φtk(ξ0))→ V (y0) as tk →∞.
Since V is strictly decreasing along trajectories, for any t,

V (φt(ξ0)) > V (y0).

But it y0 6= x0 then for s > 0 we have V (ϕs(y0)) < V (y0) and by continuity it follows that
for fixed s and all y sufficiently close to y0 we have V (ϕs(y)) < V (y0). Since ϕtk(ξ0) → y0

we can choose y = ϕtk(ξ0) for tk sufficiently large to give

V (ϕs(y)) = V (ϕs+tk(ξ0)) < V (y0),

contradicting the inequality above.
Now consider the sequence ϕtk(ξ0). Since ϕtk(ξ0) ∈ Bε(x0) ∀k and Bε(x0) is compact

there is a subsequence ϕtkn (ξ0) which converges to some point in Bε(x0). We have just shown
that any convergent subsequence must converge to x0. It follows that the sequence ϕtk(ξ0)
itself must converge to x0, and therefore ϕt(ξ0)→ x0 as t→∞.

(iii) Let M be the maximum of V (x) on the compact set Bε(x0). Since V is now strictly
increasing along trajectories, given any δ > 0 and ξ0 ∈ Bδ(x0),

V (ϕt(ξ0)) > V (ξ0) > 0

for all t. Thus
inf
t≥0

V̇ (ϕt(ξ0)) = m > 0.

Then
V (ϕt(ξ0))− V (ξ0) ≥ mt.

Therefore for t > M/m
V (ϕt(ξ0)) > mt > M,

i.e. ϕt(ξ0) lies outside Bε(x0).
�

Example 2.10. The damped nonlinear spring

mẍ+k(x+x3)+αẋ = 0, α > 0,
ẋ = y,

mẏ = −k(x+ x3)− αy
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(a) If α = 0 [no damping] then the energy

E =
mẋ2

2
+ k

(
x2

2
+
x4

4

)

is conserved. Take

V =
my2

2
+ k

(
x2

2
+
x4

4

)
.

Then
(i) V (0) = 0; (ii) V (x) > 0 ∀ x 6= 0; (iii) V̇ (x) = 0 ∀ x.
Thus V is a Lyapunov function and (0, 0) is stable (but not asymptotically stable).

Note that any system in the form

ẍ = −∂W
∂x

for some potential W (x) can be treated in a similar way. Such systems are said to be conser-
vative.
(b) When α 6= 0 we might try E again. However, we find

Ė = −αy2.

Thus E is enough to prove stability but not asymptotic stability, because Ė 6< 0 ∀y. Try
perturbing E as follows:

V = E + axy + bx2.

Then

V̇ = Ė +
d

dt

(
axy + bx2

)
= −αy2 + aẋy + axẏ + 2bxẋ

= −αy2 + ay2 − a k
m

(x2 + x4)− aα

m
xy + 2bxy.

Choose
b =

aα

2m

to eliminate the xy term, giving

V̇ = −(α− a)y2 − a k
m

(x2 + x4).

If a > 0 is small enough then both coefficients are negative so that V̇ < 0 for all (x, y) 6= (0, 0).
Also if a is small enough then we still have V > 0 for all (x, y) 6= (0, 0). Thus (0, 0) is
asymptotically stable.
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3 Local analysis

As usual, consider the nonlinear, autonomous, first-order system of differential equations

ẋ = f(x) (3.1)

with vector field f : E ⊆ Rn → Rn, f ∈ C1(E). Suppose that x0 is a fixed point of the system,
that is f(x0) = 0. How can we determine the stability of this fixed point algorithmically?

The basic idea is to look at nearby solutions by expanding x close to x0, that is, we write

x = x0 + ξ, (3.2)

where ξ is small. Inserting (3.2) into (3.1) and Taylor expanding, remembering that f(x0) = 0
because x0 is a fixed point, we have for each component i,

ξ̇i = fi(x0 + ξ) = fi(x0) +
∑

j

∂fi
∂xj

(x0)ξj + · · · =
∑

j

∂fi
∂xj

(x0)ξj + · · · .

We can write this succinctly as

ξ̇ = Df(x0)ξ +O(|ξ|2) (3.3)

where Df(x0) is the Jacobian matrix associated with a vector field f :

[Df(x0)]ij =

[
∂fi
∂xj

]∣∣∣∣
x=x0

. (3.4)

Remark 3.1. Since x0 is constant Df(x0) is a constant matrix.

The variational equations or linearised equations are given by the linear system obtained
by dropping the nonlinear terms in (3.3):

ξ̇ = Df(x0)ξ (3.5)

Equation (3.5) is a linear equation with a constant matrix. We know we can solve it and that
the stability of ξ = 0 is determined by Spec(Df(x0)). The central problem of local analysis
is to relate the stability of ξ = 0 for (3.5) to the stability of ξ = 0 for (3.1).

3.1 Stable manifold theorem

Before we talk about stable and unstable manifolds, we had better be clear about what we
mean by manifold.

Definition 3.2. Let X be a metric space and let A and B be subsets of X. A homeomorphism
of A onto B is a continuous one-to-one map h : A → B of A onto B such that h−1 : B → A
is continuous. The sets A and B are called homeomorphic or topologically equivalent if there
is a homeomorphism of A onto B.
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Definition 3.3. An n-dimensional differentiable manifold, M, is a connected metric space
with an open covering {Uα} (i.e. M = ∪αUα) such that

(1) for all α, Uα is homeomorphic B1(0), the open unit ball in Rn, i.e. for all α there exists
a homeomorphism hα : U → B1(0) of U onto B1(0);

(2) if Uα ∩ Uβ 6= ∅ and hα : Uα → B1(0), hβ : Uβ → B1(0) are homeomorphisms, then
hα(Uα ∩ Uβ) and hβ(Uα ∩ Uβ) are subsets of Rn and the map

h = hα ◦ h−1β : hβ(Uα ∩ Uβ)→ hα(Uα ∩ Uβ)

is differentiable and for all x ∈ hβ(Uα ∩ Uβ), the Jacobian determinant detDh(x) 6= 0.
The pair (Uα,hα) is called a chart for the manifoldM, and the set of all charts is called
an atlas for M.

B1(0) B1(0)

Uα Uβ

hα hβ

h = hα ◦ h−1β

3.1.1 Basic idea in R2

Consider the system

ẋ = f(x, y)

ẏ = g(x, y)
(3.6)

and assume without loss of generality that x = y = 0 is a fixed point.
The linearised system is

ξ̇ = ∂xf(0, 0)ξ + ∂yf(0, 0)η

η̇ = ∂xg(0, 0)ξ + ∂yg(0, 0)η
(3.7)

Suppose that the eigenvalues of the Jacobian matrix

Df(0) =

[
∂xf(0, 0) ∂yf(0, 0)
∂xg(0, 0) ∂yg(0, 0)

]
(3.8)
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are real (but non-vanishing) with opposite sign. Then the linear system has a one-dimensional
stable linear subspace, and a one-dimensional unstable linear subspace.

The nonlinear system has two trajectories which converge to the fixed point for large
positive time, and these curves are tangent to the stable linear subspace at the origin. They
form the stable manifold. It also has two trajectories which converge to the fixed point for
large negative time, and these curves are tangent to the unstable linear subspace at the origin.
These form the unstable manifold.

Explicitly, for this system, we define the stable and unstable manifolds as

W s(0) = {(x, y) ∈ R2 | ϕt(x, y)→ 0 as t→∞} (3.9)

W u(0) = {(x, y) ∈ R2 | ϕt(x, y)→ 0 as t→ −∞} (3.10)

More generally we have

Theorem 3.4 (Stable manifold). Let E be an open subset of Rn containing x0 and let ϕt :
E → E be the flow of ẋ = f(x). Suppose that the spectrum of Df(x0) is composed of k
eigenvalues with positive real parts and (n− k) eigenvalues with negative real parts.
Then,

• there exists, in a neighbourhood of x0, a (n−k)-dimensional manifold W s
loc(x0) tangent

to Es such that ∀t ≥ 0, ϕt(W
s
loc) ⊆W s

loc and ∀x ∈W s
loc, ϕt(x)→ x0 as t→∞.

• there exists, in a neighbourhood of x0, a k-dimensional manifold W u
loc(x0) tangent to

Eu such that ∀t ≤ 0, ϕt(W
u
loc) ⊆W u

loc and ∀x ∈W u
loc, ϕt(x)→ x0 as t→ −∞.

Moreover, W s
loc and W u

loc are as smooth as f .

The existence of local stable and and unstable manifolds allows us to define global stable
and unstable manifolds as follows:

W s(x0) =
⋃

t≤0
ϕt (W s

loc(x0)) W u(x0) =
⋃

t≥0
ϕt (W u

loc(x0))

Example 3.1.

ẋ = −x− y2

ẏ = y + x2
(0, 0) fixed point, Df(0) =

[
−1 0
0 1

]
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W s
loc is analytic (since f is analytic) and tangent to Es so is of the form

y =

∞∑

i=0

aix
i with a0 = a1 = 0.

Locally y = a2x
2 +O(x3). Can we find a2? Differentiating gives

ẏ = 2a2xẋ+O(ẋx2)

⇒ y + x2 = 2a2x(−x− y2) +O(x3)

⇒ a2x
2 + x2 = 2a2x(−x) +O(x3)

⇒ a2 + 1 = −2a2 ⇒ a2 = −1/3

Thus

y = −x
2

3
+O(x3).

A similar calculation for W u
loc gives

x = −y
2

3
+O(y3).

What about the global manifold? Here we are in luck because we observe that J = 3xy+y3+x3

is conserved:

J̇ = 3ẋy + 3xẏ + 3y2ẏ + 3x2ẋ

= −3y(x+ y2) + 3x(y + x2) + 3y2(y + x2)− 3x2(x+ y2)

= −3yx− 3y3 + 3xy + 3x3 + 3y3 + 3x2y2 − 3x3 − 3x2y2

= 0.

Thus the stable and unstable manifolds must both have J = 0. Maclaurin trisectrix (1742).
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Remark 3.5. W s and W u are not solution curves (they are unions of curves).

Remark 3.6. If f is analytic, it follows that W s and W u are also analytic.

Remark 3.7. If W s ∩W u 6= ∅, then W s ∩W u is a homoclinic manifold. The property of the
homoclinic manifold is that any initial condition on the manifold ends up asymptotically for
negative and positive time on the same fixed point.

3.1.2 Hyperbolicity and stability

Definition 3.8. If Re(λ) 6= 0 for all λ ∈ Spec(Df(x0)), then x0 is an hyperbolic fixed point.

The stability of hyperbolic fixed points is fully determined by the linearisation of the
vector field around the fixed point:

Theorem 3.9. If Re(λ) < 0 for all λ ∈ Spec(Df(x0)), then x0 is asymptotically stable.
If there exists λ ∈ Spec(Df(x0)) such that Re(λ) > 0, then x0 is unstable.

To illustrate the necessity of hyperbolicity consider the following example

Example 3.2. The nonlinearly damped harmonic oscillator

ẍ+εx2ẋ+x = 0 ⇒
ẋ = y,

ẏ = −x− εx2y
⇒ Df(0) =

[
0 1
−1 0

]

ε = 0 ε > 0

The linearised system is stable, but gives no information on the stability of the nonlinear
system. We try the Lyapunov function (the energy of the linear system)

E =
y2

2
+
x2

2

which gives
Ė = −εx2y2

which as a Lyapunov function is enough for stability but not asymptotic stability. If we try

L =
y2

2
+
x2

2
+ αx3y − βxy3
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we find

L̇ = −αx4 − βy4 − (ε− 3α− 3β)x2y2 − αεx5y + 3βεx3y3.

The first three terms are of the right sign if α and β are small enough and ε > 0. We need to
group the remaining terms with terms that dominate them. We see

L̇ = −αx4(1 + εxy)− βy4 − (ε− 3α− 3β)x2y2
(

1− 3βεxy

ε− 3α− 3β

)
< 0

for small enough (x, y) 6= (0, 0). Thus the origin is asymptotically stable for ε > 0.

3.2 The centre manifold

Recall the construction of the stable and unstable manifolds: they are defined locally as
the unique manifolds tangent to the stable and unstable linear subspaces of the linearised
equations. Then the global stable and unstable manifolds are defined as the evolution in
(negative and positive respectively) time of these local manifolds.

W s,u defined as the set of points such that x→ x0 as t→ ±∞.
What happens if one of the eigenvalues of Df(x0) has zero real part? In this case, the
linearised equations have a non-empty centre subspace.

Theorem 3.10 (Centre manifold). Let ϕt : E ⊆ Rn → E be the flow of ẋ = f(x) with fixed
point x0 where f ∈ Cr(E). Suppose that the spectrum of Df(x0) has k eigenvalues with zero
real part and (n−k) eigenvalues with non-zero real part. Then there exists, in a neighbourhood
of x0 a k-dimensional manifold W c

loc(x0) that is

(i) tangent to Ec at x0;

(ii) of class Cr;

(iii) invariant under the flow.

The problem is that the centre manifold may not be unique, as shown by the following
example.

Example 3.3 (Perko p.116).

ẋ = x2

ẏ = −y ⇒
x =

1

1/x0 − t
y = y0e

−t
⇒ y = y0e

−1/x0e1/x

Linearised system is

ẋ = 0

ẏ = −y
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Every single curve y = Ce1/x, with x ≤ 0, is tangent to Ec at (0, 0). Any solution
curve to the left of the origin, patched with the positive x-axis at the origin, would give a
one-dimensional centre manifold of class C∞. However, there is only one curve for which the
centre manifold would be analytic (the same smoothness as f). This is the curve corresponding
to C = 0, which gives the x-axis. Often we are interested in the smoothest centre manifold.

We can combine the two manifold theorems.

Theorem 3.11. Given an open subset E ⊆ R, a vector field f ∈ Cr(E), r ≥ 1, with a fixed
point x0, and a set of eigenvalues Λ = Spec (Df(x0)), we have

• ks eigenvalues λ ∈ Λ with Re(λ) < 0, with linear subspace Es,

• ku eigenvalues λ ∈ Λ with Re(λ) > 0, with linear subspace Eu,

• kc eigenvalues λ ∈ Λ with Re(λ) = 0, with linear subspace Ec,

with ks + ku + kc = n. Then there exist

• a unique ks-dimensional manifold W s of class Cr tangent to Es at x0,

• a unique ku-dimensional manifold W u of class Cr tangent to Eu at x0,

• a kc-dimensional manifold W c of class Cr tangent to Ec at x0.

Furthermore W s, W u and W c are invariant under the flow of ẋ = f(x). Note that W s and
W u are unique, but W c need not be.

3.3 Reduction to the centre manifold

Consider again a fixed point x0. If the unstable manifold is non-empty, the fixed point is
unstable. Suppose the unstable manifold is empty and the system has both a non-empty
stable and centre manifold. What is the stability of a fixed point in this case?
Basic idea: The stability is governed by the dynamics on the centre manifold.

Without loss of generality we assume that the original system has been brought, by a
linear transformation, to the canonical form:

ẋ = Ax + f(x,y), x ∈ RdimW c

ẏ = By + g(x,y) y ∈ RdimW s (3.11)

where (x0,y0) = (0,0) is a fixed point (i.e. f(0,0) = 0 and g(0,0) = 0) and

Re(λ) = 0 ∀ λ ∈ Spec(A),

Re(λ) < 0 ∀ λ ∈ Spec(B).
(3.12)

Note that we also assume that f and g are nonlinear at the origin (the Jacobian ∂(f ,g)/∂(x,y)
vanishes at (0,0)).

The variables x define the centre linear subspace. The main idea is to obtain a description
of the centre manifold in terms of the variables x. We posit that the centre manifold may be
described by

y = h(x), (3.13)
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Figure 3.1: Trajectories are attracted exponentially to W c ⇒ dynamics on W c determines
the stability.

and we look for a suitable function h(x). Differentiating gives

ẏ = Dh(x)ẋ. (3.14)

Hence

ẋ = Ax + f(x,h(x)),

ẏ = Dh(x)ẋ = Bh(x) + g(x,h(x)).
(3.15)

Substituting for ẋ from the first equation into the second equation gives an equation for h(x):

Dh(x) (Ax + f(x,h(x))) = Bh(x) + g(x,h(x)). (3.16)

Close to the origin we can solve it by expanding h in a Taylor series:

h =

||m||1=d∑

m, ||m||1=2

hmxm +O(|x|d+1), (3.17)

and solving for the coefficients hm.

Remark 3.12. The Taylor series starts at ||m||1 = 2 because we know the centre manifold
is tangent to the centre linear subspace, which is given by y = 0. Thus the derivatives of h
must all be zero at x = 0.

Remark 3.13. In (3.17) we are using the multinomial formalism for a vector x = (x1, . . . , xn)
and postive integer vector m = (m1, . . . ,mn):

xm =

n∏

i=1

xmi
i (3.18)

Once h is known, the first of equations (3.15) gives the dynamics on the centre manifold:

Theorem 3.14. The dynamics of (3.11) on its centre manifold W c at the origin is, for (x,y)
close enough to the origin, given by the dynamics of

ẋ = Ax + f(x,h(x)).
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Example 3.4.

ẋ = x2y − x5

ẏ = −y + x2
⇒

[
ẋ
ẏ

]
=

[
0 0
0 −1

] [
x
y

]
+

[
x2y − x5

x2

]
.

Eigenvalues and linear subspaces:

λ = −1, Xs =

〈[
0
1

]〉
, λ = 0, Xc =

〈[
1
0

]〉
.

On the centre linear subspace y = 0. Putting y = 0 gives ẋ = −x5. Does this mean that the
origin is stable?

Denote the centre manifold by

y = h(x) = h2x
2 + h3x

3 + · · · ⇒ Dh(x) = 2h2x
2 + 3h3x

2 + · · · .

Then (3.16) is

(2h2x
2 + 3h3x

2 + · · · )
(
x2(h2x

2 + h3x
3 + · · · )− x5

)
= −(h2x

2 + h3x
3 + · · · ) + x2.

Equating coefficients of powers of x gives

h2 = 1, h3 = 0, · · · ⇒ h = x2 +O(x4).

On the centre manifold the dynamics is given by

ẋ = x2h(x)− x5 = x4 − x5 +O(x6).

Thus the origin is unstable (the dominant term x4 is positive for positive x).

Close enough to the origin, the dynamics in the full space is well approximated by the
dynamics on the centre manifold:
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Theorem 3.15 (Shadowing). Let (x0,y0) be close enough to the origin, and (x(t),y(t)) be
the solution of (3.15) starting at (x0,y0). Then there exists a solution x̃(t) on the centre
manifold such that

{
x(t) = x̃(t) +O(e−γt),

y(t) = h(x̃(t)) +O(e−γt),
(3.19)

for some constant γ > 0.

x(t)

e−γt

x̃(t)

3.3.1 The step-by-step method

We start with a system
ż = F(z), z ∈ Rp. (3.20)

Assume that it has a fixed point at z0 (i.e. F(z0) = 0), and that M = DF(z0) has n ≥ 1
eigenvalues with zero real parts and m ≥ 1 eigenvalues with negative real parts (n+m = p),
and no eigenvalue with positive real part (otherwise the fixed point is unstable).

Step 1: Reduction to a canonical form: Introduce the new variables

z = z0 + Cz̃, (3.21)

where C is chosen such that

C−1MC =

[
A 0

0 B

]
. (3.22)

where the matrices A and B of respective dimension n and m are such that

Re(λ) = 0 ∀ λ ∈ Spec(A),

Re(λ) < 0 ∀ λ ∈ Spec(B).
(3.23)

After the change of variable, the new system in the variable z̃ = (x,y) is

ẋ = Ax + f(x,y), x ∈ Rn

ẏ = By + g(x,y) y ∈ Rm
(3.24)

and (0,0) is a fixed point.
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Step 2: Reduction to the centre manifold: We want to solve

Dh(x) (Ax + f(x,h(x))) = Bh(x) + g(x,h(x)). (3.25)

Close to the origin we expand h in Taylor series:

h =

||m||1=d∑

m, ||m||1=2

hmxm +O(|x|d+1), (3.26)

We first choose d = 2. Inserting this expansion into (3.25) and expanding g in power series,
we obtain a linear set of equations for hm. If there is a non-trivial solution to this set of linear
equations, we have the first nonlinear approximation of the centre-manifold. Otherwise, we
increase the value of d until we find a non-trivial solution.

Step 3: Dynamics on the centre manifold: We insert the first non-zero approximation

h =

||m||1=d∑

m, ||m||1=2

hmxm, (3.27)

into
ẋ = Ax + f(x,h(x)). (3.28)

and we obtain the polynomial system:

ẋ = Ax +

||m||1=d∑

m, ||m||1=2

fmxm +O(|x|d+1). (3.29)

This is still a nonlinear system but of reduced dimension n < p. The hope is that it is
sufficiently simple to be analysed by elementary means (direct integration, Lyapunov func-
tions,...).

Example 3.5.

ż1 =
1

2
(−z1 − z2 + z3 + z21 − z22 − z23 − 4z1z3),

ż2 = z1 + z3 + z1z2 − z2z3,

ż3 =
1

2
(z1 − z2 − z3 + z21 + z22 − z23 + 4z1z3)

⇒ M =



−1

2 −1
2

1
2

1 0 1
1
2 −1

2 −1
2




det(M − λ) = 0 ⇒ −λ3 − λ2 − λ− 1 = −(1 + λ)(1 + λ2) = 0 ⇒ λ = −1,±i.

λ1 = −1, w1 =




1/2
0
−1/2


 , λ2 = i, w2 =




1/2
−i
1/2


 , λ3 = −i, w3 =




1/2
i

1/2


 ,

So

P =




1/2 0 1/2
0 1 0

1/2 0 −1/2


 ⇒



x1
x2
y


 = P−1



z1
z2
z3


 =




1 0 1
0 1 0
1 0 −1





z1
z2
z3


 .
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Then

ẋ1 = ż1 + ż3 = −z2 + z21 − z23 = −x2 + x1y,

ẋ2 = ż2 = z1 + z3 + z1z2 − z2z3 = x1 + x2y,

ẏ = ż1 − ż3 = −z1 + z3 − z22 − 4z1z3 = −y − x22 − x21 + y2.

So system in canonical form is

ẋ1 = −x2 + x1y,

ẋ2 = x1 + x2y,

ẏ = −y − x21 − x22 + y2
⇒



ẋ1
ẋ2
ẏ


 =




0 −1 0
1 0 0

0 0 −1





x1
x2
y


+




x1y
x2y

−x21 − x22 + y2


 .

Writing h = h20x
2
1 + h11x1x2 + h02x

2
2 + · · · gives

Dh = [2h20x1 + h11x2, h11x1 + 2h02x2] + · · · .

Dh(x) (Ax + f(x,h(x))) = [2h20x1 + h11x2, h11x1 + 2h02x2]

[
−x2 + x1(h20x

2
1 + h11x1x2 + h02x

2
2)

x1 + x2(h20x
2
1 + h11x1x2 + h02x

2
2)

]
+ · · ·

= −2h20x1x2 − h11x22 + h11x
2
1 + 2h02x1x2 + · · ·

Bh(x) + g(x,h(x)) = −(h20x
2
1 + h11x1x2 + h02x

2
2)− x21 − x22 + (h20x

2
1 + h11x1x2 + h02x

2
2)

2 + · · ·
= −(h20 + 1)x21 − h11x1x2 − (h02 + 1)x22 + · · ·

Equating powers of x21, x1x2 and x22 gives

h11 = −h20 − 1, 2h02 − 2h20 = −h11, −h11 = −h20 − 1.

Solving gives

h20 = −1, h11 = 0, h02 = −1 ⇒ h(x1, x2) = −x21 − x22 +O(|x|3)
The dynamics on the centre manifold is then given by

ẋ1 = −x2 − x31 − x1x22 +O(|x|4),
ẋ2 = x1 − x2x21 − x32 +O(|x|4)

Writing x1 = r cos θ, x2 = r sin θ gives

ṙ = −r3 +O(r4)

so that the origin is stable.

Remark 3.16. We could do this without switching to canonical variables, so long as we made
sure the Taylor expansion of the centre manifold agreed with the centre subspace at leading
order, i.e. we could set

z3 = h(z1, z2) = z1 + h20z
2
1 + h11z1z2 + h02z

2
2 + · · · ,

or
z1 = h(z2, z3) = z3 + a20z

2
2 + a11z2z3 + a02z

2
3 + · · · .

However, we would need to expand h to O({z1, z2}3) to capture the dynamics. In canoni-
cal variables we only needed to expand to O({x1, x2}2) because the right-hand side of the
equations for x1 and x2 involve y multiplied by a linear term in x1 or x2.
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4 Bifurcations

4.1 Local bifurcations for vector fields

Consider the nonlinear, autonomous, first-order system of differential equations

ẋ = f(x,µ) where x ∈ E ⊆ Rn, µ ∈ Rp (4.1)

where µ = (µ1, · · · , µp) is a vector of parameters.

Questions we might be interested in include:
How does the dynamics change when the parameters are varied?
What are the special values where qualitative changes occur?
Can the possible changes be classified?
Can they be obtained algorithmically?

What do we mean by “special values”? We are interested in parameter values for which
the system is not structurally stable.

Definition 4.1 (Topological equivalence). Two vector fields f and g and associated flows
ϕt(x) and ψt(x) are topologically equivalent if ∃ a homeomorphism (1-1, continuous, with
continuous inverse) h : Rn → Rn , and a map τ(t,x)→ R, strictly increasing on t, such that,

τ(t+ s,x) = τ(s,x) + τ(t, ϕs(x)), and ψτ(t,x)(h(x)) = h(ϕt(x)).

Definition 4.2 (Structural stability). The vector field f is structurally stable if for all contin-
uously differentiable vector fields v there exists εv > 0 such that f is topologically equivalent
to f + εv for all 0 < ε < εv.

If we change parameters for a given f(x,µ) then we will have structural stability in general
except for certain special values of µ (i.e. certain surfaces in µ-space).

Definition 4.3. We define a bifurcation point µc as a point in parameter space where f is
not structurally stable. A bifurcation (change in structure of the solution) will occur when
the parameters are varied to pass through these points. The bifurcation set is the locus in
µ-space of bifurcation values. If we plot, for example, the amplitude of the fixed points and
periodic orbits as the parameters are varied this is called a bifurcation diagram.

Example 4.1 (Transcritical bifurcation). Take p = n = 1 and consider the system

ẋ = µx− x2 (4.2)

Equilibrium points are x = 0 and x = µ.
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The “Jacobian” is Df = µ − 2x with eigenvalue λ = µ − 2x. Thus x = 0 is stable for
µ < 0 but unstable for µ > 0. Similarly x = µ is unstable for µ < 0 but stable for µ > 0.
There is a switch in stability as the two solution branches cross.

Remark 4.4. Loss of structural stability at the bifurcation point µ = 0 here is indicated by
the change in stability of the fixed points. Bifurcation points for fixed points can be identified
as places where the number or stability of fixed points changes.

We consider the problem of determining bifurcations at fixed points. Take µ ∈ R (p = 1).
Then the fixed points are given by the solution of

f(x, µ) = 0.

For values of µ for which a solution can be found, the solution defines a branch of equilibria
x = x(µ). Along this branch, define the matrix

D(µ) = Dxf |(x(µ),µ) .

Suppose that there is a value µ0 for which D(µ) has only eigenvalues with non-zero real parts
(i.e. the fixed point is hyperbolic for that value). Then, D(µ) is invertible and the local
branch of equilibria can be continued locally. We increase (or decrease) µ up to a critical
bifurcation value µc where D(µ) is not invertible. At this point, the branch of equilibria is
non-smooth.

Example 4.2 (Saddle-node or fold bifurcation). Consider the system

ẋ = µ− x2

Here the equilibrium points are x = ±µ1/2 which exist only for µ > 0. The Jacobian Df =
−2x. At the critical point Df = ∓2µ1/2, and this vanishes when µ = 0, which is therefore
the bifurcation point. For a one dimensional system there is just one eigenvalue λ and it is
equal to Df . Thus x = +µ1/2 is stable and x = −µ1/2 is unstable.
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Example 4.3 (Supercritical pitchfork bifurcation). Consider the system

ẋ = µx− x3

The equilibrium points are x = 0 and x = ±µ1/2. For µ > 0 there are three equilibrium
points, while for µ < 0 there is only one. The Jacobian Df = µ − 3x2. For the equilibrium
value x = 0, Df = µ. This is zero when µ = 0 which is the bifurcation point. For x = 0,
λ < 0 when µ < 0 and λ > 0 when µ > 0. Thus the equilibrium point x = 0 is stable for
µ < 0 and unstable for µ > 0.

For x = ±µ1/2, λ = Df = −2µ. Since these branches only exist for µ > 0 they have λ < 0
and are therefore stable.

Example 4.4 (Subcritical pitchfork bifurcation). Consider the system

ẋ = −µx+ x3

The equilibrium points are x = 0 and x = ±µ1/2. For µ > 0 there are three equilibrium
points, while for µ < 0 there is only one. The Jacobian Df = −µ+ 3x2. For the equilibrium
value x = 0, Df = −µ. This is zero when µ = 0 which is the bifurcation point. For x = 0,
λ > 0 when µ < 0 and λ < 0 when µ > 0. Thus the equilibrium point x = 0 is unstable for
µ < 0 and stable for µ > 0.

For x = ±µ1/2, λ = Df = 2µ. Since these branches only exist for µ > 0 they have λ > 0
and are therefore unstable.

supercritical pitchfork subcritical pitchfork
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Let us first introduce the notion of the co-dimension of a bifurcation. As an example
consider the case m = 1, p = 3:

ẋ = f(x,µ) where x ∈ R, µ ∈ R3 (4.3)

Let Σ be the bifurcation set, i.e.

Σ = {µ ∈ R3 | Dxf(x) = 0 for some x with f(x,µ) = 0}.

Since Σ is defined by one constraint on µ generically it will be a two-dimensional manifold in
three dimensional µ-space. A generic line in µ-space will therefore intersect Σ in a point.

Thus, following this line, we have a system

ẏ = g(y, λ), λ ∈ R (4.4)

which has the same bifurcation behaviour as (4.3) but a single parameter. We say the bifur-
cation has co-dimension 1 and the equation (4.4) is its normal form.

Example 4.5 (Two parameter family). Consider the system

ẋ = µ1 + µ2x− x2. (4.5)

If we set µ2 = 0 we see there is a saddle-node bifurcation at µ1 = 0. If we set µ1 = 0 then we
see there is a transcritical bifurcation at µ2 = 0. In general the fixed points are

x =
µ2 ±

√
µ22 + 4µ1
2

provided µ22 + 4µ1 > 0.

There is a single (non-hyperbolic) fixedpoint when µ22 + 4µ1 = 0, and no fixed points if
µ22 + 4µ1 < 0. Thus the bifurcation set is the parabola µ22 + 4µ1 = 0. Along a curve passing
through any point on the parabola we will see a saddle-node bifurcation. To see a transcritical
bifurcation we need to follow a curve in parameter space which is tangential to the parabola.

Example 4.6 (General co-dimension 1 problem in 1 dimension). Consider the system

ẋ = f(x, µ).
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Suppose that x = 0 is an equilibrium point and that there is a bifurcation at µ = 0. This
implies

f(0, 0) = fx(0, 0) = 0.

Thus, Taylor expanding f about (0, 0) gives

ẋ = µfµ +
x2

2
fxx + xµfxµ +

µ2

2
fµµ + · · ·

where all derivatives are evaluated at (0, 0). Thus, locally near (0, 0),

ẋ =
(
µfµ +O(µ2)

)
+ xµfxµ +

x2

2
fxx +O(|(x, µ)|3).

Generically this is of the form (4.5) and can therefore be reduced to the standard saddle-node
bifurcation. However, there are some important special cases:

1. If the system is such that f(0, µ) = 0 then ∂kµf(0, 0) = 0 for all k and we have instead

ẋ = xµfxµ +
x2

2
fxx +O(|(x, µ)|3),

which is in the standard form for a transcritical bifurcation.

2. If the system has reflectional symmetry (i.e. the trajectories are invariant under the
transformation x → −x) then simple bifurcations are pitchforks. For the equations to have
this symmetry f must be odd in x, and therefore the Taylor expansion instead gives

ẋ = x
(
µfxµ +O(µ2)

)
+ x3

(
1

6
fxxx +O(µ)

)
+O(x5),

which is the general form for a pitchfork bifurcation.

The saddle-node bifurcation is robust under small changes of parameters as shown above,
but transcritical and pitchfork bifurcations depend on the vanishing of terms, and therefore
change under small perturbations.

ẋ = ε+ µx− x2

ε < 0 ε = 0 ε > 0
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ẋ = ε+ µx− x3

ε < 0 ε = 0 ε > 0

ẋ = µx+ εx2 − x3

ε < 0 ε = 0 ε > 0

Consider now the situation where ẋ = f(x, µ) has a non-hyperbolic fixed point at the
origin for some value µ0 of µ. Let λ1, . . . , λn be the eigenvalues of Dxf at the bifurcation
point (x(µ0), µ0). There are two generic cases:

(i)

Dxf =

[
0 0

0 A

]

λ1 = 0, Re(λj) 6= 0, j > 1. This is a simple or steady-state bifurcation, and is essentially
the same as the one dimensional examples we have seen. We will show this shortly when
we discuss the extended centre manifold.

(ii)

Dxf =




0 −ω 0
ω 0 0

0 0 A




λ1,2 = ±iω, Re(λj) 6= 0, j > 2. This is a Hopf or oscillatory bifurcation, and it leads to
the growth of oscillations. We will see an example later.
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It is possible to have two or more zero eigenvalues:

Dxf =




0 0 0
0 0 0

0 0 A




(double-zero bifurcation)

Dxf =




0 1 0
0 0 0

0 0 A




(Takens-Bogdanov bifurcation)

but these are non seen generically as they need two parameters to take one special values.
Note that there are extra technical requirements on the way the eigenvalues change with µ
(e.g. for (i) we need dλ1/dµ 6= 0 at µ = µ0).

4.2 The extended centre manifold

Consider the general one-parameter system (we are looking at co-dimension 1 bifurcations)

ż = F(z, µ̃), z ∈ Rn, µ̃ ∈ R (4.6)

Assume that for µ̃ = µ̃c, there is a non-hyperbolic fixed point zc so that the matrixM = DF(zc)
has eigenvalues with zero real part. We use the change of variables

z = zc + Cz̃, µ = µ̃− µ̃c
where C is chosen such that

C−1MC =

[
A 0

0 B

]
. (4.7)

where the matrices A and B of respective dimension nc and ns + nu are such that

Re(λ) = 0 ∀ λ ∈ Spec(A), Re(λ) 6= 0 ∀ λ ∈ Spec(B). (4.8)

After the change of variables, the new system in the variable z̃ = (x,y) is

ẋ = Ax + f(x,y, µ), x ∈ Rnc

ẏ = By + g(x,y, µ) y ∈ Rns+nu
(4.9)

and (x,y) = (0,0) is a fixed point for µ = 0. The main idea now is to extend the centre
manifold to include the parameter.

ẋ = Ax + f(x,y, µ), x ∈ Rnc

ẏ = By + g(x,y, µ) y ∈ Rns+nu

µ̇ = 0

(4.10)
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We can view this system as a dynamical system in the extended phase space in m = ns +
nu + nc + 1 dimensions.

Remark 4.5. When we first considered centre manifolds we were only interested in fixed
points without unstable manifolds. This time the unstable manifold is not empty and the
vector y denotes variables both in the stable and the unstable manifolds.

Remark 4.6. The centre manifold has now dimension nc + 1 and is parameterised by the
vector (x, µ).

We can now proceed as before and look for a center manifold of the form

y = h(x, µ). (4.11)

Once this is known, we can write the dynamics on the extended centre manifold as:

ẋ = Ax + f(x,h(x, µ), µ), µ̇ = 0. (4.12)

This equation captures the relevant part of the bifurcation. In the case (i) above nc = 1 and
equation (4.12) is one-dimensional as promised. In the case (ii) nc = 2 and two-dimensional.

Example 4.7. Consider the system

ẋ = µ(x+ y)− (x+ y)2

ẏ = −y − µ(x+ y) + (x+ y)2

The fixed points are (µ, 0) and (0, 0). At the origin

M =

[
µ µ
−µ −1− µ

]
⇒ λ1 =

−1 +
√

1 + 4µ

2
, λ2 =

−1−√1 + 4µ

2
.

As expected (because the two fixed points coincide) λ1 = 0 when µ = 0. The eigenvector w1

when (x, y, µ) = (0, 0, 0) is 


1
0
0




so that the system is already in the form (4.7) (phew!) if we write the generalised vector in
the order (x, µ, y) (there is a second zero eigenvalue associated with µ̇ = 0). Thus



ẋ
µ̇
ẏ


 =




0 0 0
0 0 0
0 0 −1





x
µ
y


+




µ(x+ y)− (x+ y)2

0
−µ(x+ y) + (x+ y)2




The centre manifold is given by y = h(x, µ). Writing h = h20x
2 + h11xµ+ h02µ

2 + · · · gives

Dh = [2h20x+ h11µ, h11x+ 2h02µ] + · · · .

Dh(x) (Ax + f(x,h(x))) = [2h20x+ h11µ, h11x+ 2h02µ]

[
µ(x+ y)− (x+ y)2

0

]
+ · · ·

= (2h20x+ h11µ)
(
µ(x+ y)− (x+ y)2

)
+ · · ·
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MATH64041/44041: Applied Dynamical Systems

From the ẏ equation

ẏ = −(ax2 + bxµ + cµ2 + . . . ) − µ(x + . . . ) + x2 + · · · = (1 − a)x2 − (b + 1)xµ + · · ·

From the definition of the extended centre manifold

ẏ =
∂h

∂x
ẋ +

∂h

∂µ
µ̇ = (2ax + bµ)ẋ = · · · ,

where all the terms are at least cubic. So equating coefficients of the quadratic terms (of
which there are none in the second equation!) gives a = 1, b = −1, and the extended centre
manifold is

y = x2 − xµ + . . . .

(c). Dynamics on the centre manifold. Locally on the extended Centre Manifold µ̇ = 0
is trivial so it is the ẋ equation that is interesting:

ẋ = µ(x + x2 − µx + . . . ) − (x2 + 2x(x2 − µx) + . . . )

= µx − x2 + O(3)

Substituting back into the equation for ẋ we get (to leading order)

ẋ = µx − x2

︸ ︷︷ ︸
Standard Form for transcritical

+O(x3).

The phase portrait for the reduced dynamics for x is shown in Figure 5.6 and the phase
portrait for the original system is in Figure 5.7.

µ < 0

µ < 0

µ < 0

µ

x

Figure 5.6: Phase portraits on the (one-dimensional) centre manifold and the bifurcation
diagram.

Remark. If the stable manifold is of higher dimension, then y1 = h1(x, µ), y2 = h2(x, µ) and
we need to find h1, h2 using the same method. For example, for the system

ẋ = µx − yz, ẏ = −y + x2, ż = −z + x3.

Add µ̇ = 0 to this system, then the stable manifold expanded by y and z is parameterised
by x and µ, that is

y = h1(x, µ) = a1x
2 + a2xµ + a3µ

2 + · · · , z = h2(x, µ) = b1x
2 + b2xµ + b3µ

2 + · · · .

71

Figure 4.1: The dynamics on the centre manifold
MATH64041/44041: Applied Dynamical Systems

x

y

Figure 5.7: Full phase portraits of the dynamics in µ < 0 and µ > 0.

Then a1 = 1, a2 = a3 = b1 = b2 = b3 = 0. That is y = x2 + · · · , but we have to go to
cubic polynomials to find the stable manifold for z, which gives z = x3 + · · · . Therefore, the
reduced dynamics on the stable manifold is

ẋ = fµ(x) = µx − x5.

If µ < 0, x = 0 is the only stable fixed point. If µ > 0, there are three fixed point 0, µ1/4

and −µ1/4. Since

f ′
µ(0) = µ > 0, f ′

µ(±µ1/4) = µ − 5(±µ1/4)4 = −4µ < 0,

the fixed point 0 is unstable, and the fixed points ±µ1/4 are stable.

5.4 Classifications of bifurcations

Suppose x = 0 ∈ Rn is a stationary point of the system of ODEs ẋ = f(x, µ) if µ = 0,
and Dxf(0, 0) has a single zero eigenvalue. (If the stationary point is x∗ at µ∗, then we
simply work in shifted coordinates x−x∗ and µ−µ∗). Now we consider the extended centre
manifold for the system governed by (x ∈ R)

ẋ = f(x, µ), µ̇ = 0

where f satisfies f(0, 0) = 0 and fx(0, 0) = 0. Consider the Taylor series expansion of f for
|x|, |µ| small:

ẋ = f(0, 0) + fx(0, 0)x + fµ(0, 0)µ +
1

2!
(fxxx

2 + fµµµ2 + 2fxµxµ) + O(|x|3, |µ|3)

where all partial derivatives are evaluated at (0, 0).

By the assumption that f(0, 0) = 0 (x = 0 is the stationary point on the centre manifold
for µ = 0) and fx(0, 0) = 0 (there is a zero eigenvalue), the above Taylor series is simply

ẋ = fµ(0, 0)µ +
1

2

(
fxx(0, 0)x2 + fµµ(0, 0)µ2 + 2fxµ(0, 0)xµ

)
+ · · · .

Different bifurcations could occur, depending on whether the partial derivatives vanish or
not.

72

Figure 4.2: The dynamics in the full space (x, y) for µ < 0 (left) and µ > 0 (right).

Bh(x) + g(x,h(x)) = −
(
h20x

2 + h11xµ+ h02µ
2
)

− µ(x+
(
h20x

2 + h11xµ+ h02µ
2 + · · ·

)
) + (x+

(
h20x

2 + h11xµ+ h02µ
2 + · · ·

)
)2

= −h20x2 − h11xµ− h02µ2 − µx+ x2 + · · ·

Equating powers of x2, xµ and µ2 gives

h20 = 1, h11 = −1, h02 = 0.

Thus the cenre manifold is given locally by

y = x2 − xµ+O(x3, x2µ, xµ2, µ3).

The dynamics on the centre manifold is then given by

ẋ = µx− x2 +O(xµ2, x2µ, x3, µ3).

Thus the bifurcation is transcritical.

Remark 4.7. Note that if the equilibrium point depends on the bifurcation parameter µ it
may be necessary to include a term linear in the µ in the centre manifold:

h = h01µ+ h20x
2 + h11xµ+ h02µ

2 + · · · .

If you are not sure it is best to include this term. If it was not needed the coefficient h01 will
turn out to be zero.

Example 4.8. Consider the system

ẋ = µx− xy
ẏ = −y + x2

(4.13)
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Clearly (x, y) = (0, 0) is an equilibrium point. At this point

Dxf =

[
µ 0
0 −1

]
⇒ det(Dxf) = 0 when µ = 0.

Thus there is a bifurcation when µ = 0. The eigenvalues and eigenvectors are

λ1 = 0, w1 =

[
1
0

]
, λ2 = −1, w2 =

[
0
1

]
.

Thus the centre subspace is y = 0. Expanding the extended centre manifold as

y = h01µ+ h20x
2 + h11µx+ h02µ

2 + · · ·

gives

ẏ = −h+ x2 = −(h01µ+ h20x
2 + h11µx+ h02µ

2 + · · · ) + x2

= h′(x)ẋ = (2h20x+ h11µ+ · · · )(µx− x(h01µ+ h20x
2 + h11µx+ h02µ

2 + · · · )).

Equating coefficients of powers of x and µ gives

h01 = 0, −h20 + 1 = 0, h11 = 0, h02 = 0.

Thus the centre manifold is
y = x2 + · · ·

and the dynamics on the centre manifold is given by

ẋ = µx− x3 + · · · .

Thus the bifurcation is a pitchfork bifurcation.
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5 Local analysis of maps

5.1 Mappings

We are interested in iterative maps, characterised by discrete iterations of the form

xn+1 = G(xn), (5.1)

where x ∈ E ⊆ Rm. Equivalently, we write

x 7→ G(x), (5.2)

We note that

x1 = G(x0), x2 = G(x1) = G(2)(x0), . . . , xn = G(n)(x0). (5.3)

where G(n)(x0) = G(G(. . .G(x0))). If G−1 exists then the orbits are unique (i.e. no two
different starting points can give the same finishing point) and we can go either forwards
or backwards. Otherwise, more generally, we can look at systems for which only forward
dynamics is defined. A point x0 is a fixed point for the system if it is mapped onto itself:

x0 = G(x0). (5.4)

5.1.1 Linear maps

In the linear case:

xn+1 = Bxn, B ∈Mn(R), n ∈ Z+, x0 ∈ Rn. (5.5)

The map sends points to points. If 0 6∈ Spec(B), then B can be inverted and orbits are unique
(i.e. no two different starting points can give the same finishing point).

x0

x1 = Bx0

x2 = Bx1
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The origin is always a fixed point. The stability of the origin is determined by the spectral
properties of B. We write the eigenvalues and eigenvectors of B as Bwj = λjwj (for j =
1, . . . , n) where

λj = aj + ibj , aj , bj ∈ R, wj = uj + ivj , uj , vj ∈ Rn.

Definition 5.1. The stable, unstable, centre linear subspaces are defined respectively as

• Es = Span(uj ,vj such that |λj | < 1) (stable linear subspace)

• Ec = Span(uj ,vj such that |λj | = 1) (centre linear subspace)

• Eu = Span(uj ,vj such that |λj | > 1) (unstable linear subspace)

The stable linear subspace defines contraction mappings: Let x0 ∈ Es. Then there exists
α < 1, c > 0 such that

|xn| ≤ cαn|x0| (5.6)

There is a natural correspondence between linear flows and linear maps.
Every linear flow defines a linear map. Consider a linear flow with matrix A. Fix t and define
B = etA, then

ϕt : xn → Bxn. (5.7)

However, the converse is not true (can you give a counter-example?).

5.1.2 Stability of maps

A fixed point for a mapping is a point x0 ∈ Rm, such that G(x0) = x0.

Definition 5.2. A fixed point x0 ∈ Rn is stable if ∀ε > 0, ∃ δ > 0 such that ∀x ∈ Bδ(x0),
G(n)(x) ∈ Bε(x0) for all n ∈ Z+.

Definition 5.3. A fixed point x0 ∈ Rm is asymptotically stable if it is stable and ∃ δ > 0
such that ∀x ∈ Bδ(x0)

G(n)(x)→ x0 as n→∞.

5.1.3 Stable and unstable manifolds

Theorem 5.4 (Stable and unstable manifold). For E be an open subset of Rm containing
x0 consider the iterative map xn+1 = G(xn) with fixed point x0, where G : E → E and
G−1 exists on E. Suppose the linear stable subspace has dimension ns and the linear unstable
subspace has dimension nu. Then

• there exists, in a neighbourhood of x0, an ns-dimensional manifold W s
loc(x0) tangent to

Es such that G(W s
loc) ⊆W s

loc and ∀x ∈W s
loc, G(n)(x)→ x0 as n→∞.

• there exists, in a neighbourhood of x0, a nu-dimensional manifold W u
loc(x0) tangent to

Eu such that W u
loc ⊆ G(W u

loc) and ∀x ∈W u
loc, G(n)(x)→ x0 as n→ −∞.

Moreover, W s
loc and W u

loc are as smooth as G.
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By extension, we define the stable and unstable manifold :

W s(x0) =
⋃

n≤0
G(n) (W s

loc(x0)) (5.8)

W u(x0) =
⋃

n≥0
G(n) (W u

loc(x0)) (5.9)

Remark 5.5. Stable and unstable manifolds are not trajectories but union of trajectories.

Example 5.1 (Cat map). Let T 2 = R2/Z2 be the two-dimensional torus (i.e. a point in T 2 is
an equivalence class of points (x, y) ∈ R2 under the equivalence relation (x, y) ∼ (x+n, y+m)
for n, m ∈ Z). Any matrix B with integer entries and unit determinant (i.e. in SL(2,Z))
preserves equivalence classes in R2, so induces a map B : T 2 → T 2. Consider the induced
map given by

B =

[
1 1
1 2

]
.

unit square image under B
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arrangement of pieces after modulo operation is performed

→

Eigenvalues and eigenvectors:

λ1 =
1

2
(3 +

√
5) > 1

w1 =

[
−1+

√
5

2
1

]
λ2 =

1

2
(3−

√
5) < 1

w2 =

[
−1−

√
5

2
1

]

Thus there is a one-dimensional stable manifold and a one-dimensional unstable manifold.
The stable and unstable manifolds densely fill the torus (rational points are sent to rational
points, while the slope eigenfunction is irrational, so the curve can never close).
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What happens to rational points?

x0 =




1/2
1/2
0


 ⇒ x1 =




0
1/2
0


 ⇒ x2 =




1/2
0
0


 ⇒ x3 =




1/2
1/2
0


 .

A periodic orbit of period 3.

number of orbits of period 2 : 4
number of orbits of period 3 : 15
number of orbits of period 4 : 44
number of orbits of period 5 : 120
number of orbits of period 6 : 319
number of orbits of period 7 : 840

· · ·
There are infinitely many periodic orbits. The set of such points also dense in T 2.

stable manifold unstable manifold

5.1.4 Stability of periodic orbits

For a continuous dynamical system ẋ = f(x), a periodic orbit Γ is a closed trajectory in phase
space E ⊆ Rm.

Let d(x,Γ) be the distance between a point x and Γ. Given a closed curve we can define
a neighbourhood of size δ as the set of points

Uδ(Γ) = {x ∈ E | d(x,Γ) < δ} (5.10)

Definition 5.6. A periodic orbit Γ is Lyapunov stable if ∀ε > 0, ∃δ > 0 such that ϕt(x) ∈
Uε(Γ) for all t ≥ 0 and x ∈ Uδ .

Definition 5.7. A periodic orbit Γ is asymptotically stable if it is Lyapunov stable and ∃δ > 0
such that d(ϕt(x),Γ)→ 0 as t→∞ for all x ∈ Uδ .
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5.1.5 Poincaré map

One way to study periodic orbits is via the so-called Poincaré map, which replaces the con-
tinuous flow by a lower-dimensional discrete map. The idea is quite simple: if Γ is a periodic
orbit of the system

ẋ = f(x) (5.11)

through the point x0 and Σ is a hyperplane perpendicular to Γ at x0 then for any point x
sufficiently close to x0 the solution φt(x) of (5.11) through x at t = 0 will cross Σ again at a
point P(x) near x0. The map

x 7→ P(x), (5.12)

is called the Poincaré map.

Σ

Γ

x0x P(x)

The idea can be generalised to an (m− 1)-dimensional manifold Σ [where x ∈ Rm] which
does not need to be perpendicular to Γ but it must not be tangential, i.e. it must be transver-
sal, so that

n · f(x0) > 0.

Remark 5.8. This intersection point always exists because if x0 lies on a perioric orbit and
the transversality condition is satisfied then it can be shown that

∃δ > 0 such that ∀x ∈ Bδ(x0) ∃T (x) such that ϕT (x)(x) ∈ Σ.

Example 5.2.

ṙ = r(1− r2)
θ̇ = 1

⇒ r =

[
1 +

(
1

r20
− 1

)
e−2t

]−1/2

θ = t+ θ0

Choose Σ to be the line θ = θ0. Then p0 = (r0, θ0) ∈ Σ. Transversality is satisfied because
n · f = 1 for all r, θ (the normal is in the θ-direction, and θ̇ = 1). We see that for any initial
condition (r, θ0) the next intersection occurs at t = 2π. Thus

P (r) =

[
1 +

(
1

r2
− 1

)
e−4π

]−1/2
.
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There is a fixed point at r = 1 because P (1) = 1. This corresponds to the periodic orbit.
We can study the stability of the periodic orbit by studying the stability of this fixed point.
Since

P ′(1) = e−4π < 1

the fixed point (and hence the periodic orbit) is stable.
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6 Limit cycles and Hopf
bifurcations

6.1 The Poincaré-Lindstedt method

The Poincaré-Lindstedt method is an asymptotic method to find the approximate behaviour
of weakly nonlinear oscillations.

A canonical equation for oscillations of a conservative system is

ẍ+ x = εf(x), (6.1)

where f is continuously differentiable with f(0) = f ′(0) = 0 and ε is a parameter. When
ε = 0 equation (6.1) describes simple harmonic motion with period 2π (independent of the
amplitude of the oscillation). When 0 < ε� 1 we anticipate that there are periodic solutions
whose period depend on both ε and the amplitude of oscillation.

We might näıvely try an asymptotic expansion in powers of ε by expanding the solution
as

x(t, ε) = x0(t) + εx1(t) + ε2x2(t) + · · · as ε→ 0, (6.2)

substituting this expansion into (6.1), equating coefficients of powers of ε and solving the
resulting equations for x0, x1, etc. However, such an approach may give a solution which is
not uniformly valid for all time as ε → 0. To see the difficulty we consider a simple linear
example.

Example 6.1. Consider the equation

ẍ+ (1 + ε)2x = 0, with x(0) = 1, ẋ(0) = 0. (6.3)

Substituting the expansion (6.2) into (6.3) and equating coefficients of ε0 gives

ẍ0 + x0 = 0, with x0(0) = 1, ẋ0(0) = 0.

Thus
x0(t) = cos t.

Next, equating coefficients of ε, we find

ẍ1 + x1 = −2x0 = −2 cos t, with x1(0) = 0, ẋ1(0) = 0.

Therefore
x1(t) = −t sin t.

Thus
x(t) = cos t− εt sin t+O(ε2) as ε→ 0. (6.4)



6–2 OCIAM Mathematical Institute University of Oxford

We see that no matter how small ε is, εx1(t) is as large as x0(t) after along enough time
(when εt ≈ 1). So the expansion (6.4) may converge uniformly to the exact solution x(t, ε)
on a given finite interval, but not if t belongs to an infinite interval.

In this simple linear example we can see exactly what is happening, because we can write
down the exact solution explicitly:

x(t, ε) = cos((1 + ε)t) = cos(εt) cos t− sin(εt) sin t.

Expanding cos εt and sin εt in a power series gives the solution (6.4). The small mismatch
in frequency between the approximate solution and the exact solution means that eventually
they get out of phase.

Poincaré recognised that the nonuniformity could be resolved by expanding the frequency
of the periodic solution as well as the solution itself (and acknowledged Lindstedt’s earlier
use of the idea).

We introduce the method by means of an example.

Example 6.2 (A nonlinear spring). Consider the equation

ẍ+ x− εx3 = 0. (6.5)

The energy

E =
ẋ2

2
+
x2

2
− εx4

4

is conserved during the motion. The point x = ẋ = 0 is a centre, while the points ẋ = 0,
x = ±1/

√
ε are saddle points.

Motions of small enough amplitude correspond to closed curves, and so are periodic. We now
describe these orbits using the Poincaré-Lindstedt method.

Define ω (which may depend on ε) to be the unknown frequency of a solution, so that
the period is 2π/ω. Then define a new timescale τ = ωt. Then, in terms of τ , without
approximation, we have

ω2d2x

dτ2
+ x− εx3 = 0. (6.6)

Because of our definition of τ , the chosen periodic solution must have period 2π, i.e.

x(τ + 2π, ε) = x(τ, ε) for all τ. (6.7)
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By translation of time we may assume

dx

dτ
= 0 at t = 0. (6.8)

We define the amplitude of the oscillation to be

a = x(0, ε). (6.9)

We now expand both the solution and the frequency ω in powers of ε as

ω = ω0 + εω1 + ε2ω2 + · · · , (6.10)

x(τ, ε) = x0(τ) + εx1(τ) + ε2x2(τ) + · · · as ε→ 0, (6.11)

Substituting the expansions (6.10)-(6.11) into (6.6)-(6.9) and equating coefficients of ε0 gives

ω2
0

d2x0
dτ2

+ x0 = 0, (6.12)

with

x0(τ + 2π) = x0(τ), x0(0) = a,
dx0
dτ

(0) = 0. (6.13)

The general solution of (6.12) is

x0 = A0 cos(τ/ω0) +B0 sin(τ/ω0),

for some constants A0 and B0. Conditions (6.13) then give

ω0 = 1, A0 = a, B0 = 0.

Equating coefficients of ε we find that

d2x1
dτ2

+ x1 = −2ω1
d2x0
dτ2

+ x30 =

(
2ω1a+

3a3

4

)
cos τ +

a3

4
cos 3τ, (6.14)

with

x1(τ + 2π) = x1(τ), x1(0) = 0,
dx1
dτ

(0) = 0, (6.15)

where we have used the identity

cos3 τ =
3 cos τ + cos 3τ

4
.

If the term proportional to cos τ on the right-hand side of (6.14) did not vanish, then there
would be a secular term

1

2

(
2ω1a+

3a3

4

)
τ sin τ

in the particular integral of x1, so x1 could not satisfy the periodicity condition. Thus we
must have

ω1 = −3a2

8
.
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Then

x1 = A1 cos τ +B1 sin τ − a3

32
cos 3τ,

for some constants A1 and B1. The initial conditions give

A1 =
a3

32
, B1 = 0.

This gives the uniformly valid approximation

x(t, ε) = a cosωt+
εa3

32
(cosωt− cos 3ωt) +O(ε2a5),

ω = 1− 3εa2

8
+O(ε2a4) as ε→ 0.

We may continue and find higher-order approximations in a similar way, giving ω2, x2, etc.,
but already we have found the leading-order correction to simple harmoic motion. We see
that the period of oscillation does indeed depend on both ε and a.

The vanishing of the coefficient of cos τ on the right-hand side of (6.14) is an example
of the Fredholm Alternative. The (self-adjoint) homogeneous periodic problem has the non-
trivial solutions cos τ and sin τ , so there will be a solution to the non-homogeneous problem
if and only if the right-hand side is orthogonal to both these functions. This can be seen
directly by multiplying (6.14) by cos τ and integrating over (0, 2π) to give, after integrating
twice by parts

∫ 2π

0

(
d2x1
dτ2

+ x1

)
cos τ dτ =

∫ 2π

0
(−x1 + x1) cos τ dτ +

[
dx1
dτ

cos τ − x1 sin τ

]2π

0

= 0

=

∫ 2π

0

(
2ω1a+

3a3

4

)
cos2 τ +

a3

4
cos 3τ cos τ dτ

=
1

2

(
2ω1a+

3a3

4

)
.

Remark 6.1. Instead of translating time to fix dx/dτ(0) = 0, x(0) = a, we could just write
the leading order solution as

x0 = a cos(τ + Φ).

Note that this “amplitude-phase” representation is almost always better (i.e. the algebra is
easier) than the equivalent “cos-sin” representation

x0 = A cos τ +B sin τ.

6.2 The Hopf bifurcation

There is another generic bifurcation with one parameter. It happens when the eigenvalues at
the bifurcation are imaginary. Recall that we can bring a system to its canonical form

ẋ = Ax + f(x,y, µ), x ∈ Rnc

ẏ = By + g(x,y, µ), y ∈ Rns+nu

µ̇ = 0

(6.16)
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We have studied the case where A is of dimension 1 and vanishes at the bifurcation. Next,
we study the case where

A =

[
0 −ω
ω 0

]
. (6.17)

On the center manifold, at the bifurcation, the dynamics of the linear part (with x = (x, y))
is

ẋ = −ωy
ẏ = ωx.

(6.18)

To obtain the behaviour of the system close to the bifurcation (unfolding), we consider the
generic perturbation around the linear system: Close to the bifurcation, the system unfolds
to

ẋ = µx− ωy + f(x, y, µ)

ẏ = ωx+ µy + g(x, y, µ).
(6.19)

det

[
µ− λ −ω
ω µ− λ

]
= (λ− µ)2 + ω2 = 0 ⇒ λ = µ± iω.

µ < 0 µ = 0 µ > 0

Example 6.3. Consider the typical example of a Hopf bifurcation

ẋ = µx− ωy − x(x2 + y2)

ẏ = ωx+ µy − y(x2 + y2).
(6.20)

In polar coordinates, it reads

ṙ = µr − r3

θ̇ = ω.
(6.21)

Compare to (??).

µ < 0 µ = 0 µ > 0
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In polar coordinates, the general form of a Hopf bifurcation is

ṙ = dµr + ar3

θ̇ = ω + cµ+ br2,
(6.22)

where a, b, c, d are parameters that depend on the vector field at the bifurcation. The parame-
ters c and d can be found from a linear analysis: if λ(µ) is the eigenvalue such that λ(0) = iω,
then

d =
d

dµ
Re(λ(µ)), c =

d

dµ
Im(λ(µ)).

A Hopf bifurcation is a bifurcation from a fixed point to a limit cycle. For dµ/a < 0 the
radius of the limit cycle is

r =

√
−dµ
a

and the period is

T =
2π

ω + cµ+ br2
=

2π

ω + cµ− bdµ/a ≈
2π

ω

(
1 +

µ

ωa
(ac+ bd)

)
.

d > 0, a < 0 d < 0, a > 0 d > 0, a > 0 d < 0, a < 0

Theorem 6.2 (Hopf ’42). Let

ẋ = f(x, µ), x ∈ Rn, µ ∈ R,
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and with f ∈ C4(E × J) for open subsets E ⊆ Rn and J ⊆ R. Let (x0, µ0) ∈ E × J be such
that Dxf(x0, µ0) has a single pair of eigenvalues ±iω (ω ∈ R) and no other eigenvalues with
zero real part. Then there exists a smooth curve of equilibria (x(µ), µ) with x(µ0) = x0. The
eigenvalues λ(µ), λ̄(µ) of Dxf(x(µ), µ) vary smoothly with µ and are such that λ(µ0) = iω,
λ̄(µ0) = −iω.

If, moreover,
d

dµ
Re(λ(µ))|µ=µ0 = d 6= 0,

then there exists a unique two-plus-one dimenensional centre manifold W c in E × J passing
through (x0, µ) and a smooth change of coordinates such that on the centre manifold the
system is transformed to the normal form

ẋ = (dµ̃+ a(x2 + y2))x− (ω + cµ̃+ b(x2 + y2))y,

ẏ = (dµ̃+ a(x2 + y2))y + (ω + cµ̃+ b(x2 + y2))x,

in a neighbourhood of the origin, where µ̃ = µ− µ0.

If a 6= 0 then W c is a paraboloid at (x0, µ0) and for d > 0

a < 0⇒ stable limit cycle for µ > µ0,

a > 0⇒ unstable limit cycle for µ < µ0.

while for d < 0

a < 0⇒ stable limit cycle for µ < µ0,

a > 0⇒ unstable limit cycle for µ > µ0.

6.2.1 Normal Form Transformations for Hopf Bifurcations

Consider the 2D system
ẋ = f(x, y;µ), ẏ = g(x, y;µ).

Suppose the linearisation at a fixed point (x0, y0) shows that a pair of complex eigenvalues
cross the imaginary axis Re(λ) = 0 at a bifurcation point µ = µ0 . In order to put the system
into the normal form for a Hopf bifurcation, i.e.

ṙ = µr + ar3 +O(r5),

θ̇ = ω + br2 +O(r4),

or, equivalently
ż = (µ+ iω)z + (a+ ib)|z|2z +O(z5)

it is in general necessary to do the following (see Glendinning pp. 227-243):

1. Shift coordinates by writing (x̃, ỹ) = (x − x0(µ), y − y0(µ)) and µ̃ = µ − µ0 so that the
fixed point is at the origin x̃ = ỹ = 0 for all µ̃ and the bifurcation is at µ̃ = 0.

2. .If necessary, rescale µ̃ so that the eigenvalues are λ = µ ± iω. Make a linear change of
basis so that the Jacobian is in the Jordan Normal Form

[
Re(λ) − Im(λ)
Im(λ) Re(λ)

]
.
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3. Drop the tildes and write (x, y) as the single complex-valued variable z = x + iy. Set
µ = 0. Then, Taylor expanding the right-hand sides we see that the ODEs take the
form

ż = iωz + a1z
2 + a2zz̄ + a3z̄

2 +O(z3).

It turns out that all these quadratic terms can be removed by making a suitable choice of
the coefficients αi in a near-identity change of coordinates z = w+α1w

2+α2ww̄+α3w̄
2.

[Note: the algebra can be done by differentiating the inverse w = z − α1z
2 − α2zz̄ −

α3z̄
2 +O(z3) and then substituting for ż and ˙̄z.]

4. Now we may attempt to eliminate all the cubic terms in ẇ = iωw + b1w
3 + b2w

2w̄ +
b3ww̄

2 +b4w̄
3 +O(w4) by a suitable choice of the coefficients βi in another near-identity

map

w = Z + β1Z
3 + β2Z

2Z̄ + β3ZZ̄
2 + β4Z̄

3.

It turns out that the b2w
2w̄ term cannot be eliminated!

5. Continuing with more near-identity transformations, it is possible to eliminate all the
quartic terms to show that the next term remaining in the normal form is quintic.

The chief point of these steps is to find the sign of a in the normal form, and hence decide
whether the bifurcation is subcritical or supercritical. If steps 1 and 2 have already been done
so that the system is in the form

ẋ = µx− ωy + f(x, y),

ẏ = ωx+ µy + g(x, y)

then

a =
1

16ω
((fxxx + fxyy + gxxy + gyyy)ω + fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy) .

Example 6.4.

ẋ = (1 + µ)x− 4y + x2 − 2xy,

ẏ = 2x− 4µy − y2 − x2.

For the equilibrium point at the origin we have

Df(0, 0) =

[
1 + µ −4

2 −4µ

]
. (6.23)

There is a bifurcation at µ = 1/3 with matrix

D =

[
4/3 −4
2 −4/3

]
⇒ λ2 − 16

9
+ 8 = 0 λ = ±i

2
√

14

3
, v =

[
2± i

√
14

3

]
.

1. Compute d. First find λ for general µ:

λ =
1

2

(
1− 3µ±

√
−31 + 10µ+ 25µ2

)
⇒ d = Re(∂µλ)|µ=1/3 = −3

2
6= 0.
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2. Change axes. Let

P =

[
2 −

√
14

3 0

]
⇒ P−1DP =

[
0 −2

√
14
3

2
√
14
3 0

]
.

Then set

[
u
v

]
= P−1

[
x
y

]
⇒

u̇ = −2
√

14

3
v + f(u, v),

v̇ =
2
√

14

3
u+ g(u, v),

where
[
f
g

]
= P−1

[
x2 − 2xy
−y2 − x2

]
=

1

3
√

14

[
0
√

14
−3 2

] [
(2u−

√
14v)2 − 2(2u−

√
14v)(3u)

−9u2 − (2u−
√

14v)2

]

=
1

3
√

14

[ √
14(−13u2 + 4

√
14uv − 14v2)

−3(−8u2 + 2
√

14uv + 14v2) + 2(−13u2 + 4
√

14uv − 14v2)

]

=
1

3
√

14

[ √
14(−13u2 + 4

√
14uv − 14v2)

−2u2 + 2
√

14uv − 70v2

]

3. Use the formula for a:

a =
1

16ω
((fuuu + fuvv + guuv + gvvv)ω + fuv(fuu + fvv)− guv(guu + gvv)− fuuguu + fvvgvv)

=
3

32
√

14

1

9× 14

(
4× 14(−26

√
14− 28

√
14)− 2

√
14(−4− 140)− 26

√
14× 4 + 28

√
14× 140

)

=
45

56

Thus

a =
45

56
> 0, d = −3

2
< 0, ω =

2
√

14

3
> 0,

and the normal form is

ṙ = dµ̃r + ar3, µ̃ = µ− 1/3.

ω > 0⇒ anticlockwise rotation

µ̃ < 0, dµ̃ > 0 µ̃ = 0, ṙ = ar3, a > 0 µ̃ > 0
⇒ r = 0 unstable ⇒ r = 0 unstable r = 0 stable

r =
√
−µd/a unstable
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We have seen there is a Hopf bifurcation at µ = 1/3 and there is also a transcritical
bifurcation at µ = 1.

µ = 0 µ = 0.34 µ ≈ 0.351
homoclinic connection

µ = 0.8 µ = 1.2

We can study bifurcation of periodic orbits by studying bifurcations of the Poincaré map.
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6.3 Local bifurcation of maps

Consider the mapping

xn+1 = G(xn), (6.24)

where x ∈ E ⊆ Rm. Assume that x0 is a fixed point (i.e. G(x0) = x0).
This fixed point is asymptotically stable if |λ| < 1 for all λ ∈ Spec(DG(x0)).
The fixed point is unstable if there ∃ λ ∈ Spec(DG(x0)) s.t. |λ| > 1.
So bifurcation will occur when an eigenvalue is on the unit complex circle.

We consider a mapping with one parameter µ

xn+1 = G(xn, µ), (6.25)

where x ∈ E ⊆ Rm. Assume that x0 = x0(µ) is a fixed point. We are interested in the
case where one of the eigenvalues crosses the unit disk. This gives three possibilities at the
bifurcation: either (I) λ = 1, (II) λ = −1 or (III) λ 6= λ̄ with |λ| = 1.

6.3.1 Case I: λ = 1 at bifurcation

This case is similar to the cases obtained for vector fields, namely we have locally

x 7→ x+ µ− x2 saddle-node bifurcation

x 7→ x+ µx− x2 transcritical bifurcation

x 7→ x+ µx− x3 pitchfork bifurcation.

µ = −1 µ = 0 µ = 1
Saddle-node bifurcation

µ = −1 µ = 0 µ = 1
Transcritical bifurcation
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µ = −1 µ = 0 µ = 1
Pitchfork bifurcation

Example 6.5. Consider
xn+1 = µ sinxn.

There is a fixed point at x = 0, with DG(0) = µ cos 0 = µ. For a one-dimensional map
the eigenvalue is just λ = DG(0) = µ, so that there is a bifurcation when µ = 1. Setting
µ = 1 + µ̃ and Taylor expanding we find that locally

xn+1 = (1 + µ̃) sinxn = xn + µ̃xn −
x3n
6

+ · · · .

We see that the bifurcation is a pitchfork bifurcation. The non-zero fixed points are present
when µ̃ > 0. The fixed point x = 0 is stable for µ̃ < 0 (because λ = µ < 1) and unstable
for µ̃ > 0. Thus we expect that the non-trivial fixed points are stable, and a check of the
eigenvalue shows that this is indeed the case, since linearising about x = (6µ̃)1/2 gives

λ = 1 + µ̃− x2

2
= 1 + µ̃− 3µ̃ = 1− 2µ̃ < 1 when µ̃ > 0.

Thus we have a supercritical pitchfork bifurcation.

Example 6.6. Consider

xn+1 = µxn + xnyn

yn+1 =
yn
2
− x2n

There is a fixed point at (x, y) = (0, 0), with

DG(0, 0) =

[
µ 0
0 1

2

]
.

The eigenvalues are

λ1 = µ, w1 =

[
1
0

]
, λ2 =

1

2
, w2 =

[
0
1

]
.

There is a bifurcation at µ = 1 with

Ec =

〈[
1
0

]〉
, Es =

〈[
0
1

]〉
.

Let µ = 1 + µ̃. The centre manifold locally is

y = h(x) = ax2 + bxµ̃+ cµ̃2 + · · · .
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Then

yn+1 =
yn
2
− x2n =

h(xn)

2
− x2n =

ax2n + bxnµ̃+ cµ̃2

2
− x2n + · · · .

But also

yn+1 = h(xn+1) = h ((1 + µ̃)xn + xnyn) = ax2n + bxnµ̃+ cµ̃2 + · · · .

[Note that we cannot use the chain rule for discrete maps, but we can still Taylor expand,
observing (1 + µ̃)xn + xnyn = xn + · · · ]. Equating coefficients of x2n, µ̃xn and µ̃2 gives

a =
a

2
− 1, b =

b

2
, c =

c

2
, ⇒ a = −2, b = 0, c = 0.

the equation for x now gives, on the centre manifold,

xn+1 = xn + µ̃xn + xnh(xn) = xn + µ̃xn − 2x3n + · · · .

Again we have a supercritical pitchfork bifurcation.

Remark 6.3. If the problem is simple enough, a direct analysis of the steady states can help
identify the bifurcation. In this case the steady states satisfy

x = µx+ xy, y =
y

2
− x2.

Thus

y = −2x2, x(µ− 1− 2x2) = 0 ⇒ x = 0, x = ±
(
µ− 1

2

)1/2

.

We see the emergence of two new steady states (in addition to x = 0) when µ > 1, which is
the hallmark of a pitchfork bifurcation.

Example 6.7 (Bifurcation of periodic orbit). Consider

ẋ = −y − x(µ− (x2 + y2 − 1)2)

ẏ = x− y(µ− (x2 + y2 − 1)2)
⇒

ṙ = −r
(
µ− (r2 − 1)2

)

θ̇ = 1

We see (0, 0) is a fixed point, and there are periodic orbits at

(r2 − 1)2 = µ ⇒ r = r± =

√
1± µ1/2, µ ≥ 0.

Define
Γ =

{
(r, θ) ∈ R× S1 | θ = 0

}

and consider the Poincaré map from P : Γ 7→ Γ,

r 7→ P (r, µ).

The bifurcation point is µ = 0 with the fixed point (of the map—i.e. a periodic orbit really)
r = 1. Then expanding locally

1 + δ 7→ P (1 + δ, µ) ∼ P (1, 0) + δPr(1, 0) +
δ2

2
Prr(1, 0) + µPµ(1, 0) + · · ·

= 1 + δ +
δ2

2
Prr(1, 0) + µPµ(1, 0) + · · ·
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since P (1, 0) = 1 (r = 1 is the fixed point when µ = 0) and Pr(1, 0) = 1 (since Pr(1, 0) = λ = 1
at the bifurcation). Thus, locally,

δ 7→ δ +
δ2

2
Prr(1, 0) + µPµ(1, 0)

and we expect a saddle-node bifurcation if these terms are all non-zero. How do we find Prr
and Pµ? For a system in which

ṙ = f(r, θ, µ),

has a fixed point f(1, θ, 0) = 0 we are interested in orbits close to r = 1 for values of µ close
to zero. Suppose we start from r = 1 + δ. Then

δ̇ = f(1, θ, 0) + fr(1, θ, 0)δ +
δ2

2
frr(1, θ, 0) + µfµ(1, θ, 0) + · · ·

=
δ2

2
frr(1, θ, 0) + µfµ(1, θ, 0) + · · · (6.26)

where fr(1, θ, 0) = 0 because we are at the bifurcation point. The Poincaré map takes δ(0)
to δ(2π). If we donote δ(0) = a then we are interested in Paa(0, 0) and Pµ(0, 0). We could
just solve the nonlinear ode (6.26), evaluate at t = 2π and then differentiate the answer. But
it is much easier to differentiate and then solve. Thus consider δ = δ(t, a, µ). Differentiating
(6.26) with respect to µ and evaluating at µ = 0, a = 0 gives

δ̇µ = δδµfrr(1, θ, 0) + fµ(1, θ, 0) = fµ(1, θ, 0), δµ(0) =
∂a

∂µ
= 0.

since δ(t, 0, 0) = 0 (the solution to (6.26) with µ = 0 and δ(0) = 0 is just δ(t) ≡ 0). Thus

Pµ(1, 0) = δµ(2π, 0, 0) =

∫ 2π

0
fµ(1, θ, 0) dt.

Similarly

δ̇a = δδafrr(1, θ, 0) = 0, δa(0) = 1,

δ̇aa = δδaafrr(1, θ, 0) + δ2afrr(1, θ, 0) = δ2afrr(1, θ, 0), δaa(0) = 0,

Thus

δa = 1, δaa =

∫ t

0
frr(1, θ, 0) dt.

Thus

Pr(1, 0) = 1, (as expected) Prr(1, 0) =

∫ 2π

0
frr(1, θ, 0) dt.

Thus locally the map is

δ 7→ δ +
δ2

2

∫ 2π

0
frr(1, θ, 0) dt+ µ

∫ 2π

0
fµ(1, θ, 0) dt.

In our case frr(1, 0) = 8, fµ(1, 0) = −1 and the local form is

δ 7→ δ + 8πδ2 − 2πµ,
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and we see a saddle-node bifurcation with the emergence of two fixed points for µ > 0.
We can check the stability of the bifurcating branches by computing the eigenvalues along

them. For the system
ṙ = f(r), θ̇ = 1

with fixed point f(r0) = 0 we consider orbits close to r = r0. Suppose we start from r = r0+δ.
Then

δ̇ = f ′(r0)δ +O(δ2) ⇒ δ(t) = Cef
′(r0)t.

Note that since we are not at a bifurcation f ′(r0) 6= 0. Thus, after t→ t+ 2π, δ → δe2πf
′(r0).

Therefore
λ = e2πf

′(r0).

In our case

f ′(r±) = −(µ− (r2± − 1)2) + r±2(r2± − 1)2r± = 4r2±(r2± − 1) = ±4µ1/2(1± µ1/2).

Thus
λ± = e±8πµ

1/2(1±µ1/2).

At the bifurcation point µ = 0, λ± = 1, while for µ > 0, λ+ > 1 and λ− < 1, so that r+ is
unstable and r− is stable.

µ̃ < 0 µ̃ = 0 0 < µ̃ < 1 µ̃ > 1

Example 6.8 (Slightly less trivial bifurcation of periodic orbit). For the previous example
we used the machinery of the Poincaré map, but we could have just used the equation for r.
To illustrate the power of the Poincaré map more fully let us consider the example

ẋ = −y − x(µ(1 + x)− (x2 + y2 − 1)2)

ẏ = x− y(µ(1 + x)− (x2 + y2 − 1)2)
⇒

ṙ = −r
(
µ(1 + r cos θ)− (r2 − 1)2

)

θ̇ = 1
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Now the equations for r and θ do not decouple. However, we see that there is still a periodic
orbit r = 1 (twice) when µ = 0. The fact that r = 1 is a double root of the right-hand side of
the r-equation when µ = 0 leads us to believe this will still be a bifurcation point. As before
define

Γ =
{

(r, θ) ∈ R× S1 | θ = 0
}

and consider the Poincaré map from P : Γ 7→ Γ,

r 7→ P (r, µ).

The bifurcation point is µ = 0 and the fixed point is r = 1. This time

frr(1, θ, 0) = 8, fµ(1, θ, 0) = −(1 + cos t),

so that the local form is in fact the same as before, namely,

δ 7→ δ + 8πδ2 − 2πµ

and we see exactly the same saddle-node bifurcation with the emergence of two fixed points
for µ > 0.

µ̃ < 0 µ̃ = 0 0 < µ̃ < 1 µ̃ > 1

6.3.2 Case II: λ = −1 at bifurcation. Period doubling

Consider
x 7→ f(x, µ) = −x− µx+ x3 (6.27)

Then
f(0, µ) = 0, fx(0, µ) = −1− µ.

There is a pitchfork bifurcation λ = 1 at µ = −2. At µ = 0 there is a period doubling
bifurcation with λ = −1. Fixed points are given by

x = −x− µx+ x3 ⇒ x = 0, x = ±
√

2 + µ.

Consider applying the map twice:

x 7→ f(f(x, µ), µ) = f (2)(x, µ).

Then

f (2) = −(1 + µ)(−(1 + µ)x+ x3) + (−(1 + µ)x+ x3)3 ∼ (1 + µ)2x− ((1 + µ) + (1 + µ)3)x3 +O(x4)

∼ x+ 2µx− 2x3 + · · ·
We see that µ = 0 is a pitchfork bifurcation for f (2), with two additional fixed points x = ±√µ
which exist for µ > 0. These are not fixed points of f , but periodic orbits of period 2.
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µ = −0.5 µ = 0 µ = 0.75
The map f

µ = −0.5 µ = 0 µ = 0.75

The map f (2)

When we have a period doubling bifurcation in the Poincaré map of a limit cycle, topo-
logically the trajectories lie on a Möbius strip. The example below is from the Rössler system

ẋ = −y − z,
ẏ = x+ by,

ż = b+ z(x− a)

with a = 3.1 and b = 0.2.
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An important example of period-doubling cascade leading to chaotic dynamics is the
logistic map

x 7→ µx(1− x) (6.28)
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7 Global bifurcations, Homoclinic
chaos, Melnikov’s method

7.1 A paradigm

Consider the Duffing oscillator

ẍ = x− x3 − δẋ+ γ cos(t) (7.1)

For δ = γ = 0 there are homoclinic orbits. When δ > 0 these homoclinic connections are
broken. When γ > 0, δ > 0 we get chaos. For what values? What does chaos mean?

Similar questions arise for any conservative system

ẍ = −∂V
∂x

in which the force may be written as the gradient of a potential with multiple wells.

δ = γ = 0 γ = 0, δ > 0

7.2 The problem

Consider the first-order system of differential equations

ẋ = f(x) + εg(x, t) where x ∈ E ⊆ Rn, (7.2)

and assume that g is periodic in t (∃ T > 0 such that g(x, t+ T ) = g(x, t)).
Assuming we know the dynamics of the system when ε = 0 and that it supports periodic

and homoclinic orbits:
• What happens when ε > 0?
• Are there still periodic orbits?
• Are there homoclinic orbits?
• Are there new orbits?
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Main idea Our construction will be in four steps of increasing complexity

Step 1: Bernoulli shift (the simplest dynamical system with chaos)

Step 2: Smale’s horseshoe (a geometric construction)

Step 3: Homoclinic chaos in ODEs

Step 4: Melnikov’s method (an explicit method to detect chaos)

7.3 Step 1: Bernoulli Shift

To define a dynamical system we need:
- A phase space Σ.
- The dynamics on Σ (how elements of Σ are mapped to other elements).

1. The phase space.

For the Bernoulli shift we define Σ as the set of bi-infinite sequence of 0 and 1:

s ∈ Σ : s = {. . . , s−n, . . . , s−1|s0, s1, . . . , sn, . . .} , (7.3)

where si is equal to 0 or 1 for i ∈ Z. To define distance on Σ, take two elements s, s′ ∈ Σ
and define

d(s, s′) =
∑

i∈Z

|si − s′i|
2|i|

(7.4)

Two elements are close if their central blocks agree.

2. The dynamics on Σ

Define the shift map σ : Σ 7→ Σ as follows. If

s = {. . . , s−n, . . . , s−2, s−1|s0, s1, . . . , sn, . . .} ,

then
σ(s) = {. . . , s−n, . . . , s−1, s0|s1, . . . , sn, . . .} .

Equivalently
(σ(s))i = si+1. (7.5)

Question: What are the orbits of σ on Σ?

Theorem 7.1. The shift map has:

1. a countable infinity of periodic orbits, and periodic orbits of arbitrary period;

2. an uncountable infinity of non-periodic orbits;
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3. a dense orbit.

Definition 7.2. A dense orbit for the shift map is a particular orbit sd ∈ Σ such that for
any s ∈ Σ and ε > 0, ∃n ∈ N such that d(σn(sd), s) < ε.

Proof.

1. All periodic sequences are periodic orbits:

{. . . , 1010|1010 . . .}
{. . . , 100100|100100 . . .}

Clearly the period can have arbitrary length.

2. We can map and s ∈ Σ to

S = 0.s0s1s−1s2s−2 · · · .
This is the binary coding of a real number S ∈ [0, 1] Since the irrational numbers form
an uncountable set, so do the non-periodic orbits in Σ.

3. To create a dense orbit we must find sd ∈ Σ such that for any s ∈ Σ, ε > 0 ∃n ∈ N such
that d(σn(sd), s) < ε. We create sd by taking the concatenation of all possible finite
sequences of length n, for all n = 1, 2, . . .:

sd = {0 · · · 0| 1 0︸︷︷︸
n=1

00 01 10 11︸ ︷︷ ︸
n=2

000 001 010 011 100 101 110 111︸ ︷︷ ︸
n=3

· · · }

Now for given ε > 0 there exists k such that

∑

|i|>k

1

2|i|
< ε.

For any s ∈ S, the middle sequence s−k . . . s−1|s0 . . . sk is in sd somewhere (since all
finite sequences are in sd). If we choose n to shift this sequence to the middle block,
then

d(s, σn(sd)) =
∑

i∈Z

|si − σn(sd)i|
2|i|

=
∑

|i|>k

|si − σn(sd)i|
2|i|

≤
∑

|i|>k

1

2|i|
≤ ε.

�

7.3.1 Sensitive dependence to initial conditions

Two important notions in dynamical systems.
Let Λ be an invariant compact set for an invertible iterative map f :M→M.

Definition 7.3. f has sensitivity to initial conditions on Λ if ∃ε > 0 such that for any p ∈ Λ
and any neighbourhood U of p, there exists p′ ∈ U and n ∈ N such that |fn(p)− fn(p′)| > ε.

Definition 7.4. f is topologically transitive on Λ if for any open sets U, V ⊆ Λ then ∃n ∈ Z
such that fn(U) ∩ V 6= ∅.
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Together they lead to the notion of chaos:

Definition 7.5. Let Λ be an invariant compact set for an invertible iterative map f :M→
M. Then f is chaotic on Λ if it has sensitivity to initial conditions on Λ and is topologically
transitive on Λ.

Theorem 7.6. The shift map is chaotic on Σ.

Proof. Consider a sequence s and all sequences in a neighbourhood U (i.e. all sequences with
the same central block of size k). However large k is, choose a sequence s′ ∈ U which differs
from s in position N > k. Then d(σN (s), σN (s′)) ≥ 1 so that we have sensitivity to initial
conditions (choose any 0 < ε < 1). Moreover, since Σ has no isolated point then the existence
of a dense orbit can be shown to imply topological transitivity. �

7.4 Step 2: Smale’s horseshoe

First define two rectangular regions in the unit square:

H0 = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/µ},
H1 = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 1− 1/µ ≤ y ≤ 1}.

Second, define a map of these rectangles into themselves:

H0 :

[
x
y

]
7→

[
λ 0
0 µ

] [
x
y

]
,

H1 :

[
x
y

]
7→

[
−λ 0
0 −µ

] [
x
y

]
+

[
1
µ

]
.
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Stretch

Fold

Third, repeat the operation.

f f

Fourth, introduce a coding: 101 means that it was right at the first iteration, left at the
second, right at the third (read from the right).
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Fifth, do the same for the inverse map:

f−1 f−1

Sixth, take the intersection between the two sets
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D D ∩ f(D) D ∩ f(D) ∩ f2(D)

D ∩ f−1D D ∩ f−1(D) ∩ f−2(D) f−2(D) ∩ f−1(D) ∩D ∩ f(D) ∩ f2(D)

Λ =
⋂
n∈Z

fn(H0 ∪H1).
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This is the intersection of a Cantor set of vertical lines and a Cantor set of horizontal lines.
The dynamics on Λ is given by f : Λ 7→ Λ. By construction Λ is an invariant set.

Each point in Λ can be coded by two binary sequences. The first sequence codes its
horizontal position, the second sequence codes its vertical position. Therefore to each point
p in Λ we can associated a bi-infinite sequence σ in Σ.

What about the dynamics? For the vertical encoding we read from the right: ...101 meant
right at the first iteration, left at the second, right at the third, etc. Applying the map to
such a point clearly just chops off the last digit and shifts the sequence to the right: the first
iteration of the new point will be the second iteration of the old point. The same is true for
the horizontal encoding with respect to the inverse map: applying f−1 just chops off the last
digit and shifts the sequence to the right. Thus the forward map f must shift the horizontal
sequence to the left and add a new digit at the end. Since f(H0) = V0 and f(H1) = V1 the
new digit is exactly that which is chopped off the vertical encoding. Thus if we write vertical
encoding backwards to read from left to right

s =




. . . , s−n, . . . , s−2, s−1︸ ︷︷ ︸
horizontal encoding

| s0, s1, . . . , sn, . . .︸ ︷︷ ︸
vertical encoding




,

then f maps s to
{. . . , s−n, . . . , s−1, s0|s1, . . . , sn, . . .} ,

that is, the same as the shift map σ. If we label the map from Λ to Σ

h : Λ→ Σ

then h is a homeomorphism (1:1, onto, continuous with continuous inverse). Since there exists
a homeomorphism h, it implies that the dynamics of f on Λ is topologically conjugate to the
dynamics of σ on Σ.

Topological equivalence

Λ
f−−−−→ Λ

h

y
yh

Σ
σ−−−−→ Σ

To each orbit in Σ there is a corresponding orbit on Λ Therefore, the system has, a count-
able infinity of periodic orbits, an uncountable infinity of non-periodic orbit, a dense orbit,
sensitivity dependence to initial conditions. We conclude that f on Λ is chaotic.
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7.5 Step 3: Transverse homoclinic points

Γ0

Γ0

The stable and unstable manifolds
from the origin intersect tangentially
on the homoclinic orbit Γ0.

The stable manifold from x0 and the
unstable manifold from x1 intersect
transversely on the heteroclinic orbit
Γ0.

A transverse homoclinic point is a point at which the stable and unstable manifolds from a
hyperbolic fixed point intersect transversly. It is not possible for a dynamical system to have
a transverse homoclinic orbit since

dimW s(x0) + dimW u(x0) ≤ n

whereas transversality requires

dimW s(x0) + dimW u(x0) > n.

However, the Poincaré map associated with a dynamical system can have a transverse homo-
clinic orbit.

Consider a C1-map P : Rn 7→ Rn and suppose that 0 is a hyperbolic fixed point (i.e. no
centre manifold). Suppose that the stable and unstable manifolds intersect transversally at a
point x0.

Since W s(0) and W u(0) are invariant under P , iterates of x0 under P and P−1 must also lie
in W s(0) ∩W u(0). Thus

{. . . , P−n(x0), . . . , P
−1(x0),x0, P (x0), . . . , P

n(x0), . . .} ∈W s(0) ∩W u(0).
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None of these points can coincide, since otherwise this would become a periodic orbit, while
we know that Pn(x0)→ 0 as n→∞ [since x0 ∈W s(0)] and as n→ −∞ [since x0 ∈W u(0)].
Thus the existence of one transverse homoclinic point implies the existence of an infinite
number of homoclinic points. It can be shown that they are all transverse, and accumulate
at 0. This leads to what is known as a “homoclinic tangle”.

In a homoclinic tangle, a high enough iterate of P will lead to a horseshoe map. To see
why this is so consider what happens to a small square near the critical point under iterates
of the map, as illustrated below.

The square is stretched in the unstable direction and compressed in the stable direction. Then
as the unstable manifold approaches the critical point again it is folded. In the following figure
we see that the intersection between the domain D and P (5)(D) (highlighted red) resembles
that shown for Smale’s horseshoe map.
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The formal argument above can be made rigorous:

Theorem 7.7 (The Smale-Birkhoff Homoclinic Theorem). Let P : Rn 7→ Rn be a diffeomor-
phism such that P has a hyperbolic fixed point of saddle type, p, and a transverse homoclinic
point q ∈ W s(p) ∩W u(p). Then there exists an integer N such that F = PN has a hyper-
bolic compact invariant Cantor set Λ on which F is topologically equivalent to a shift map on
bi-infinite sequences of zeros and ones. The invariant set Λ

(i) contains a countable set of periodic orbits of F of arbitrarily long periods;

(ii) contains an uncountable set of bounded nonperiodic orbits, and

(iii) contains a dense orbit.
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7.6 Step 4: Melnikov’s method

Melnikov’s method gives us an analytical tool to determine the existence of transverse homo-
clinic points for the Poincaré map for a periodic orbit of a perturbed dynamical system. We
consider the case of periodically perturbed Hamiltonian planar systems of the form

ẋ = f(x) + εg(x, t), (7.6)

where g is periodic in t of period T and

(1) For ε = 0 the system (7.6) has a homoclinic orbit

x = q0(t) −∞ < t <∞

at a hyperbolic saddle point x0.

(2) For ε = 0 the system (7.6) has a one-parameter family of periodic orbits x = qα(t) of
period Tα in the interior of the homoclinic orbit, with ∂qα(0)/∂α 6= 0.

x0

q0

We will embed the system in 3-dimensional phase space (x, θ):

ẋ = f(x) + εg(x, θ), θ̇ = 1. (7.7)

We define the Poincaré map

P t0ε : Σt0 7→ Σt0

where t0 ∈ [0, T ) is fixed and

Σt0 = {(x, θ) : θ = t0},

in the usual way, that is, given ξ we integrate (7.7) from t0 to t0 +T with the initial condition
x = ξ at t = t0. Then P t0ε (ξ) = x(t0 + T ). Conditions (1) and (2) are enough to guarantee
that the perturbed system (7.6) has a unique hyperbolic periodic orbit x = γε(t) of period T
and that γε(t) = x0 + O(ε), that is, the orbit lies close to that of the unperturbed system.
The Poincaré map P t0ε has a unique hyperbolic fixed point of saddle type xε which is close to
that of the unperturbed system, i.e., xε = x0 +O(ε).
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x0

xε

x0

xε

γε

θ = t0

θ = t0 + T

Fixed points of P t0ε in the xy-plane
The periodic orbit γε of (7.7) and the
periodic orbit (x0, t) when ε = 0.

Choose a point on the (unperturbed) homoclinic orbit. We can shift the origin of time so
that this point is q0(0). We aim to determine the distance between the stable and unstable
manifolds of the map P t0ε near q0(0). Denote the orbits which satisfy (7.7) and lie in the stable
and unstable manifolds in the three-dimensional phase space by (qsε(t; t0), t) and (quε (t; t0), t)
respectively.

x0

xε

W u
0 (x0)

W s
0 (x0)

W u
ε (xε)

W s
ε (xε)

q0(0)

quε (t0; t0)

qsε(t0; t0)

When ε = 0 we know that (q0(t− t0), t) lies in the stable and unstable manifolds of P t0ε .
We expand about this solution to give

qsε(t; t0) = q0(t− t0) + εqs1(t− t0) + · · · for t ≥ t0,
quε (t; t0) = q0(t− t0) + εqu1(t− t0) + · · · for t ≤ t0.
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The limit on the range of t is due to the fact that solutions approach the stable manifold
exponentially for forward time, but diverge from it exponentially for backward time (and vice
versa for the unstable manifold). In principle we can find qs1 and qu1 by regular perturbation
theory. Substituting into (7.7) and using the fact that q0 satisfies the equation when ε = 0
gives

q̇s1(t; t0) = J(q0(t− t0))qs1(t; t0) + g(q0(t− t0), t) for t ≥ 0, (7.8)

where J is the Jacobian matrix of f , with

qs1 → x1 as t→∞,

where
xε = x0 + εx1 + · · · .

Similarly
q̇u1(t; t0) = J(q0(t− t0))qu1(t; t0) + g(q0(t− t0), t) for t ≤ 0, (7.9)

with
qu1 → x1 as t→ −∞.

Since for small ε W u(xε) and W s(xε) are almost tangential to the homoclinic orbit at the
point q0(0) we can measure the distance between W u(xε) and W s(xε) near to the point q0(0)
in the direction normal to the homoclinic orbit. We define the displacement

d(t0) = quε (t0; t0)− qsε(t0; t0) = ε (qu1(t0; t0)− qs1(t0; t0)) + · · · .

If f = (f1, f2) then the outward normal vector is n = (−f2, f1)/|f |, so the distance between
the two manifolds at q0(0) is

D(t0) = d · n =
εf(q0(0)) ∧ (qu1(t0; t0)− qs1(t0; t0))

|f(q0(0))| + · · · . (7.10)

Rather than solve for qu1 and qu1 and the substitute into (7.10) we are going to use (7.8) and
(7.9) to get a differential equation for D which we can then solve. To this end define

∆s(t; t0) = f(q0(t− t0)) ∧ qs1(t; t0).

Differentiating gives

∆̇s(t; t0) = J(q0(t− t0))f(q0(t− t0)) ∧ qs1(t; t0) + f(q0(t− t0)) ∧ q̇s1(t; t0)

= J(q0(t− t0))f(q0(t− t0)) ∧ qs1(t; t0) +

f(q0(t− t0)) ∧ (J(q0(t− t0))qs1(t; t0) + g(q0(t− t0), t))
= trace(J(q0(t− t0))) [f(q0(t− t0)) ∧ qs1(t; t0)] + f(q0(t− t0)) ∧ g(q0(t− t0), t)
= f(q0(t− t0)) ∧ g(q0(t− t0), t)

since
(Ja) ∧ b + a ∧ (Jb) = (trace J)(a ∧ b)

for any a and b and in in our case

trace J =
∂f1
∂x

+
∂f2
∂y

=
∂2H

∂x∂y
− ∂2H

∂y∂x
= 0
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because the system is Hamiltonian. Therefore

∆s(t; t0) = ∆s(∞; t0)−
∫ ∞

t
f(q0(t

′ − t0)) ∧ g(q0(t
′ − t0), t′) dt′,

so that

∆s(t0; t0) = ∆s(∞; t0)−
∫ ∞

t0

f(q0(t− t0)) ∧ g(q0(t− t0), t) dt.

But ∆s(∞; t0) = 0 because

f(q0(t− t0))→ f(x0) = 0 as t→∞,

while qs1 is bounded. Similarly

∆u(t0; t0) =

∫ t0

−∞
f(q0(t− t0)) ∧ g(q0(t− t0), t) dt.

Thus (7.10) becomes

D(t0) =
εM(t0)

|f(q0(0))| ,

where the Melnikov function

M(t0) =

∫ ∞

−∞
f(q0(t− t0)) ∧ g(q0(t− t0), t) dt. (7.11)

If M has a simple zero at a point t0 = τ then so does D, so that the stable and unstable
manifolds of the Poincaré map P τε intersect transversally at the point q0(0). What about the
Poincaré maps for other values of t0? Since the system is autonomous when ε = 0 changing
t0 is equivalent to changing the origin of time in q0, so corresponds to moving the point q0(0)
around the homoclinic orbit.

Theorem 7.8 (Melnikov ’63). Under assumptions (1) and (2), if the Melnikov function M(t0)
defined by (7.11) has a simple zero in [0, T ] then for all sufficiently small ε 6= 0 the stable and
unstable manifolds W s(xε) and W u(xε) of the Poincaré map Pε intersect transversally, i.e. Pε
has a transverse homoclinic point. If M(t0) > 0 (or < 0) for all t0 then W s(xε)∩W u(xε) = ∅.

We note that there is a generalisation of this theorem to non-Hamiltonian systems with a
slightly different M .

Example 7.1 (Duffing’s equation). Let us return to our motivational example:

ẍ = x− x3 − δẋ+ γ cos(t).

Suppose δ and γ are small. To quantify this we set δ → εδ, γ → εγ. We write y = ẋ to put
the equation in the form of a first order system:

ẋ = y, ẏ = x− x3 − εδx+ εγ cos(t).

This is in the required form ẋ = f(x) + εg(x, t) with

f =

[
y

x− x3
]
, g =

[
0

γ cos t− δy

]
.
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We see g is periodic in t with period T = 2π. When ε = 0 the system is Hamiltonian with

H(x, y) =
y2

2
− x2

2
+
x4

4
; f =

[
∂H

∂y
,−∂H

∂x

]T
.

Since H is conserved during the motion, it follows that the homoclinic orbits have H = 0, so
that

ẋ = y = ±x
(

1− x2

2

)1/2

.

The solutions are

(x0(t), y0(t)) = q0(t) = ±(
√

2 sech t,−
√

2 sech t tanh t).

Then, for the right-hand homoclinic orbit (the plus sign),

M(t0) =

∫ ∞

−∞
f(q0(t− t0)) ∧ g(q0(t− t0), t) dt

=

∫ ∞

−∞
y0(t− t0) [γ cos t− δy0(t− t0)] dt

=

∫ ∞

−∞
y0(s) [γ cos(s+ t0)− δy0(s)] ds

= −
∫ ∞

−∞

√
2 sech s tanh s

[
γ cos(s+ t0) + δ

√
2 sech s tanh s

]
ds

= −
∫ ∞

−∞

√
2 sech s tanh s

[
γ cos s cos t0 − γ sin s sin t0 + δ

√
2 sech s tanh s

]
ds

=

∫ ∞

−∞

√
2 sech s tanh s

[
γ sin s sin t0 − δ

√
2 sech s tanh s

]
ds

=
√

2γ sin t0

∫ ∞

−∞
sech s tanh s sin s ds− 2δ

∫ ∞

−∞
sech2 s tanh2 s ds

=
√

2γ sin t0π sech(π/2)− 4δ/3

on making the substitution s = t− t0. Thus if

√
2γπ sech(π/2) > 4δ/3

then M has simple zeros and there is chaos for small ε, while if

√
2γπ sech(π/2) < 4δ/3

then M < 0 for all t0 and there is no homoclinic tangle.


