
Nonlinear Systems HT2021 — Sheet 3

1. Consider the system

ẋ = y − x− x2,
ẏ = µx− y − y2.

Find the value of µ for which there is a bifurcation at the origin. Find the evolution equation on
the extended centre manifold correct to quadratic terms in the Taylor expansion and determine
the type of bifurcation.

2. Consider the system

ẋ = µx+ y + sinx,

ẏ = x− y. (1)

Show that a bifurcation occurs at the origin of this system. Use the extended centre manifold to
classify it. Draw the local (close to the origin) phase portraits before and after the bifurcation.

3. Consider the 1D map
xn+1 = f(xn),

and assume that it supports a p-periodic orbit {x1, x2, . . . , xp} such that xi 6= xj ∀i, j ∈
{1, . . . , p} with i 6= j, and xp+1 = x1. Show that the stability of this orbit is determined by
the multiplier

λ =

p∏
i=1

f ′(xi),

whenever |λ| 6= 1.

4. Consider the map T defined by

xn+1 = yn,

yn+1 = −xn + 7yn − y3n.

(i) Find the fixed points, determine their stability and compute their local stable and unstable
subspaces.

(ii) Show that T admits 3 orbits of period 2, all within the square S = {(x, y) | |x| ≤ 3, |y| ≤
3}.

(iii) Show that every orbit starting outside S tends to infinity for either n→∞ or n→ −∞
and hence there are no periodic orbits outside S.

[Hint: Divide the complement of S into the regions

R1 = {(x, y) | x+ y ≥ 0, y > 3}, R2 = {(x, y) | x+ y < 0, y ≤ −3},

R3 = {(x, y) | x+ y ≥ 0, x > 3}, R4 = {(x, y) | x+ y < 0, x ≤ −3}.

Show a point in R1 is mapped to a point in R2 and vice versa, and that for such points
|yn+1| > |yn|. For R3 and R4 consider the inverse map. ]

(The map T admits infinitely many periodic orbits but the proof is somewhat more involved.)

Page 1 of 2 Turn Over



5. Consider the system
ẍ+ x− εx2 = 0

for an asymmetric spring. Find the equilibrium points, and for which values of ε each exists.
Find for which values of ε each is stable, and classify the type of point. Sketch the bifurcation
diagram in the (ε, x)-plane.

Consider the periodic orbit satisfying u̇(0) = 0, u(0) = a. Use the Poincaré-Lindstedt method
to find the expansion of the frequency of this orbit up to [and including] terms of O(ε2).

6. In general relativity the equation of the orbit of a planet with polar coordinates (r, θ) is

d2u

dθ2
+ u =

1

`
+ ε`u2,

where u = 1/r, the sun is fixed at the origin r = 0, ` = h2/GM , and ε = 3GM/c2`. Here G
is the gravitational constant, c is the velocity of light, M is the mass of the sun, and h is the
angular momentum per unit mass of the planet about the sun.

Show that there is a centre at (uN , 0) and a saddle point at (uτ , 0) in the (u,du/dθ)-plane,
where

uN (ε) =
1

`
+
ε

`
+O(ε2), and uτ (ε) =

1

ε`
− 1

`
+O(ε),

as ε → 0. Sketch the phase portrait and identify the region of orbits representing solutions
which are periodic functions of θ.

Define φ = ωθ, where 2π/ω is the period of an orbit, and assume that

ω(ε) = ω0 + εω1 + ε2ω2 + · · · .

Hence show that ω0 = 1 and ω1 = −1. Deduce that the planet is at perihelium (i.e. that
its distance from the sun is a local minimum) at successive angles θ differing by 2π/ω =
2π + 2πε+O(ε2) as ε→ 0.

[This gives the precession of the perihelium of the planet by the angle 2πε = 6πGM/c2`
approximately each revolution, where ` is close to the mean radius of the orbit. This result is
used in one of the classic tests of Einstein’s general theory of relativity.]

Page 2 of 2 End of Last Page


