
B5.4 Waves & Compressible Flow Hilary Term

Question Sheet 3

The first two questions are optional. They reiterate material covered in lectures, but are well worth
doing yourself.

(i) [Optional ]

(a) Use contour integration to show that∫ R
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as R→∞.

(b) If f(k) is continuously differentiable, show that∫ b

a

f(k)eikt dk = O(1/t) as t→∞.

(c) Let

I(t) =

∫ b

a

f(k)eiψ(k)t dk,

where f(k) is continuously differentiable, ψ(k) is real-valued and twice continuously differen-
tiable on [a, b], and suppose that ψ′(k) has a single simple zero at k = k∗ ∈ (a, b). Explain
schematically why you would expect the behaviour of I(t) as t → ∞ to be dominated by
values of k where ψ(k) is stationary.

By splitting the range of integration, and performing appropriate changes of variables in the
integrals, show that

I(t) ∼ f(k∗)e
i
(
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)√
2π
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as t→∞,

where the ± takes the sign of ψ′′(k∗).

(ii) [Optional ] Show that the Fourier transform of ε/(x2 + ε2) is πe−ε|k|.

If fluid occupying the half-space z < 0 starts from rest with the initial free surface profile η0(x) =
−aε/π(x2 + ε2), show that

η(x, t) = − a

2π

∫ ∞
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eikx dk.

Invoke the method of stationary phase to show that, as x, t → ∞, the major contribution to the
integral comes from values of k satisfying

x
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= 0.

Hence show that, for x > 0, and if ε is sufficiently small,

η ∼ −at
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√
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)
.

Sketch this approximation of η(x, t) versus x for a fixed (large) value of t.



1. Steady small-amplitude waves disturb a fluid of constant density ρ occupying the half-space z < 0
and flowing with uniform velocity U êx. Show that the disturbance velocity potential φ(x, y, z) and
free surface displacement z = η(x, y) satisfy

∇2φ = 0 z < 0,

∂φ

∂z
= U

∂η

∂x
, U

∂φ

∂x
+ gη = 0 z = 0,

∇φ→ 0 z → −∞.

Show that separable solutions with η = Aei(kx+`y) exist provided
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)
. (?)

An obstacle is placed on the y-axis such that η = η0(y) and ∂η/∂x = 0 at x = 0. Deduce that

η(x, y) =
1

2π

∫ ∞
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η̂0(`)e
i`y cos

(
k(`)x

)
d`,

in x > 0, where k(`) is given by (?) and η̂0 is the Fourier transform of η0.

If y = λx, where x is large, show that the main contribution to η arises from values of ` such that
λ = ±dk/d`. Hence show that the far-field wave pattern is contained in the region

|λ| =
√
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where s =
√

1 + 4U4`2/g2.

2. A barotropic compressible inviscid fluid flows steadily at uniform speed U in the x-direction past
a thin symmetric wing with upper and lower surfaces given by y = ±f(x), −a < x < a.

(a) If the velocity is irrotational and given by u = U êx +u′, where |u′| � U , show that u′ = ∇φ
for some velocity potential φ. Find an expression for the pressure in terms of φ and show that
two-dimensional steady disturbances are governed by the equation

(
1−M2

) ∂2φ
∂x2

+
∂2φ

∂y2
= 0,

where M = U/c0 and c0 is the speed of sound.

(b) Assuming that the flow is symmetric about the x-axis, find the boundary conditions for φ
linearised to y = 0. Deduce that in subsonic flow the Fourier transform of φ with respect to
x satisfies

∂2φ̂

∂y2
= β2k2φ̂ y > 0,

∂φ̂

∂y
= UF̂ (k) y = 0,

where β =
√

1−M2 and F̂ (k) is the Fourier transform of

F (x) =

{
f ′(x) |x| < a,

0 |x| > a.



(c) Hence find ∂φ/∂y and deduce that

φ(x, y) =
U

2πβ

∫ a

−a
f ′(ξ) log

(
(x− ξ)2 + β2y2

)
dξ.

[You may use without proof the result that πe−ε|k| is the Fourier transform of ε/(x2 + ε2) for
ε > 0.]

(d) Show that this problem is mathematically equivalent to incompressible flow past the same
body and deduce that the overall force on the wing in subsonic flow is zero.

3. Show that for homentropic flow, the equations of one-dimensional gas dynamics

∂ρ
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∂
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(ρu) = 0,
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can be written as (
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∂t
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)(
u± 2c
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where c2 = γp/ρ.

4. Gas is confined to a semi-infinite tube x > s(t) by a piston at x = s(t). At t = 0 the gas is at rest,
with s = 0, p = p0 and ρ = ρ0.

(a) If the piston expands the gas such that ṡ(0) = 0 and ṡ(t), s̈(t) < 0 for t > 0, show that the
flow is given parametrically by

u = ṡ(τ), u− 2c

γ − 1
= − 2c0

γ − 1
, x = s(τ) + (u+ c)(t− τ),

in the region x < c0t, where c20 = γp0/ρ0. Show that the piston leaves the gas behind if
ṡ(t) < −2c0/(γ − 1) for any t.

(b) If the piston is removed instantaneously, show that u + c = x/t and deduce that the gas
expands into the region

− 2c0
γ − 1

<
x

t
< c0.

(c) If s(t) = −αt2, where α > 0, show that

u(x, t) =
1

γ

{√(
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)2
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}
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in x < c0t, and find where the vacuum forms.

(d) If α < 0, i.e. the piston is pushed in to the gas, show that (?) still applies for t < −c0/(γ+1)α.
What happens when t > −c0/(γ + 1)α?


