
B5.4 Waves & Compressible Flow

Question Sheet 3 Solutions to Optional Questions

(i) (a) Define

I =

∫ R

−R
e±is

2

ds, (1)

and deform the contour into three components (see the figure):

γ1 : s = Rei(θ+π), γ2 : s =
(1± i) t√

2
, γ3 : s = Reiθ. (2)

Figure 1: Contours for question (i)

Then,

I =

∫ ±π/4
0

eiR
2(cos 2θ+i sin 2θ)2iRei(θ+π) dθ +

∫ R

−R
e(±i)

2t2 (1± i)√
2

dt

+

∫ ±π/4
0

e±iR
2(cos 2θ+i sin 2θ)2iReiθ dθ,

=I1 + I2 + I3. (3)

Now,

I1 =

∫ ∞
−∞

e−t
2

dt
(1± i)√

2
=
√
π

(1± i)√
2

= (1± i)
√
π

2
. (4)

Also,

I2 = −2

∫ ∞
R

e−t
2

dr
(1± i)√

2
, (5)

so that (substituting t = R + s),

|I2| ≤ 2e−R
2

∫ ∞
0

e−Rse−s
2

ds ≤ 2e−R
2

√
π

2
= O

(
e−R

2
)
. (6)

Finally,

I3 = 4iR

∫ ±π/4
0

e±iR
2(cos θ+i sin 2θ)eiθ dθ, (7)
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so that (using sin 2θ ≥ 2θ/π),

|I3| ≤ 4R

∫ ±π/4
0

∣∣∣e±R2 sin 2θ
∣∣∣ dθ

≤ 4R

∫ π/4

0

e−R
2·2θ/π dθ,

≤ 4R
π

2R2

[
e−2R

2θ/π
]π/4
0

,

= O (1/R) . (8)

Hence,

I = (1± i)
√
π

2
+O (1/R) . (9)

(b) Define

I(t) =

∫ b

a

f(k)eikt dk. (10)

We integrate by parts by setting u = eikt/it and v = f (k) to give

I (t) =

[
1

it
eiktf (k)

]b
a

−
∫ b

a

1

it
eiktf ′ (k) dk. (11)

Therefore

|I (t)| ≤ 1

t
(|f (a)|+ |f (b)|) +

1

t
(b− a) supk {|f ′ (k)|} , (12)

and providing f and f ′ are bounded,

|I (t)| ≤ M

t
for some M. (13)

Therefore I (t) = O (1/t) as t→∞.

(c) See lecture notes.

(ii) The Fourier transform of ε/(x2 + ε2) is given by

f̂ (k) =

∫ ∞
−∞

ε

x2 + ε2
e−ikx dx. (1)

The integrand has poles at x = ±iε, and can be written in the form

εe−ikx

(x+ iε) (x− iε)
. (2)

Therefore, the residues are
εe±kε

±2iε
= ∓1

2
ie±kε. (3)

For k > 0 we close the contour in the lower half plane, and for k < 0 we close the contour in the
upper half plane (see figure 2). Jordan’s Lemma tells us that the semi-circular contour doesn’t
contribute as R→∞, so we just pick up the residue at the pole. Therefore,

f̂ (k) =

{
(−2πi)

(
i
2
e−kε

)
for k > 0,

(2πi)
(
− i

2
ekε
)

for k < 0,
, (4)
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so that
f̂ (k) = πe−|k|ε. (5)

Also note that the case k = 0 follows by continuity, or by direct integration:

f̂ (0) =

∫ ∞
−∞

ε

x2 + ε2
dx =

[
arctan

(x
ε

)]∞
−∞

= π. (6)

k>0

R

k<0

R

Figure 2: The contours for Question (ii).

Now we assume that fluid occupying the half-space z < 0 starts from rest with the initial free
surface profile η0(x) = −aε/π(x2 + ε2). The solution in the lecture notes gives

η̂ (k, t) = η̂0 (k) cos (w (k) t) , (7)

with w (k) =
√
g |k|. Using the result above we have that η̂0 (k) = −ae−ε|k|. We invert the

transform to get

η (x, t) =
1

2π

∫ ∞
−∞

η̂ (k, t) eikx dk,

= − a

2π

∫ ∞
−∞

e−ε|k| cos
(
t
√
g |k|

)
eikx dk,

= I+ + I−, (8)

where

I± = − a

4π

∫ ∞
−∞

e−ε|k|e
i
(
kx/t±
√
g|k|

)
dk. (9)
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The method of stationary phase tells us that the main contribution to the integral comes from
ψ′ (k) = 0 where

ψ (k) =
kx

t
±
√
g |k|, (10)

i.e. where
x

t
±
√
g |k?|
2k?

= 0 ⇒ k? = ∓ gt
2

4x2
. (11)

Further,

ψ′′ (k?) = ∓
√
g |k?|

4k?2
= ∓
√
g

4

8x3

g3/2t3
= ∓2x3

gt3
. (12)

Therefore the method of stationary phase gives

I± ∼ −
a

4π
e−ε|k

?|ei(ψ(k
?)t+π

4
sgn(ψ′′(k?)))

√
2π

|ψ′′ (k?)| t
. (13)

Now, for ε sufficiently small, e−ε|k
?| ∼ 1, so

I± ∼ −
a

4π
e
i

[
∓ gt

2

4x
± gt

2

2x
∓π

4

]√
2πgt3

2x3t

∼ −at
4

e
±i

[
gt2

4x
−π

4

]√
g

πx3
. (14)

Therefore,

η (x, t) = I+ + I− ∼ −
at

2

√
g

πx3
cos

(
gt2

4x
− π

4

)
. (15)
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