e A quick question about supersonic flow past a thin wing. On page 60 of the notes, where we’re
finding the value of ¢ in each of the 6 regions, in regions 3 and 6, is ¢ supposed to be 0 or a
constant (so that we have continuity between regions 2 and 3, 5 and 6)7 The notes say that ¢
should be 0 (so that they are zones of silence) but in the lectures, you imposed continuity so that
¢ are non-zero constants instead, so I was just wondering which one I should use? Can we still say
that there are zones of silence if ¢ is non-zero?

The perturbed velocity \nabla \phi is the same in both cases and defined except on the Mach lines.
Hence, the zones of silence where \nabla \phi vanishes are identical in each case. As mentioned in
lecture 16, the Mach lines are really shocks (and weak in the sense that the jump in entropy is small
because the jump in velocity is small), so the two solutions are really different weak solutions. I
prefer the one in lectures as it treats the shocks the same, i.e. \phi is continuous across them, with
the discontinuity in \phi being across the wake at y=0, x > a. (Note that there must be a
discontinuity in \phi around the wing because the circulation is non-zero.) A better description of the
physics is given in section 4.6.3 of Ockendon & Ockendon on the reading list. My aim in lectures
was more modest: I tried to turn it into a problem as close as possible to the ones you saw on semi-
linear hyperbolic PDEs in part A DEs 1.
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1. (a) Waves in a linearly elastic solid satisfy Navier’s equation

82ui o 80@'
8t2 N 833j

p

where the stress tensor is given by

oij = AV -u)dyj + p (ax, + (9;> )
j i

for material constants A, u and we use the summation convention that a repeated index
indicates summation over that index.

(i) Show that Navier’s equation may also be written in vector form as

9%u

poz = A+ 20)V(V 1) —uV A (Y Au). ()

(ii) Deduce that V-u and V A u satisfy the wave equation with wave speeds ¢, and ¢,
respectively, where

Pep 7

(b) Consider now waves propagating in a two-dimensional elastic half-space with

A+2
P S/ L By |

—o<r<oo and —oo<y<O.

(i) Write u = Vyp + V A ¢ and show that if the potentials ¢ and 1 satisfy the wave
equation with wavespeeds ¢, and cs, respectively, then Navier’s equation (}) is
satisfied.

(ii) Let e, denote the unit vector in the direction perpendicular to the z- and y-axes.
Find separable solutions to these wave equations of the form ¢ = f(y)el**=«*) and
W = g(y)elk=wte, that satisfy u — 0 as y — —oo under the assumption that
k% —w?/c2 > 0.

(iii) Show that if the boundary condition at y = 0 is that 0,y = oyy = 0 (the surface is
free) then the waves satisfy the dispersion relation

k> (k2 —wZ/cIQ,)l/2 (k2 - wz/cg)l/2 = (k2 —w2/203)2.

(iv) Are these waves dispersive or non-dispersive?

[In this question, you may use the identity V A (VA A) = V(V - A) — V2A for any vector
field A]
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2. (a) Let
b
I(t) = / £k exp [ (k)] dk

where f(k) is continuously differentiable, (k) is real-valued and twice continuously
differentiable on [a,b]. Explain schematically why you would expect the behaviour of
I(t) as t — oo to be dominated by any points k = k, satisfying ¢’ (k.) = 0.

(b) Steady, small-amplitude waves disturb a fluid of constant density p occupying the half-
space z < 0 and flowing with uniform velocity Ue,.

(i) Show that the velocity potential describing the disturbance, ¢(zx,y,z), and the
position of the disturbed free surface z = n(z,y) satisfy

V24 =0 2 <0,
dop __On oo B B
62_Uc')m’ Ué?:r+g77_0 z=0,

Vo —0 z — —00.

[You may assume that the flow is potential and you may quote the non-linear
Bernoulli equation.]

(ii) Show that separable solutions with n = Ael(h*+) exist provided that

2 402
s g / 4U

(c) An obstacle is placed along the y-axis of the flow described in (b) such that

n(0,y) =no(y) and % =0 at xz=0.
(i) Show that
n(z,y) = 2i / o (0)e'™ cos [k(£)z] d,
™ —00

in x > 0, where k({) is given by (%) and 7y is the Fourier transform of 7y, which
you should define.

(ii) If y = Az, where z is large, show that the main contribution to 7 arises from values
of ¢ such that A = +dk/d¢. Hence show that in the far-field A must satisfy

s—1
A =1/—=5
M=/
where s = /1 + 4U%2/g>.
(iii) Deduce that the far-field wave pattern created by the obstacle is restricted to a
wedge of internal angle 6 = 2sin~1(1/3).
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3. (a) Consider a homentropic gas, so that p = Sp” for some positive constants S and 7.
(i) Show that the equations of one-dimensional gas dynamics
op 0 ou Ou  10p

o %(PU) =0,

EJ““%_ p O0x

0 0 2¢
(2ws0d) (o)

(ii) What is the significance of the Riemann invariants Ry = u + 2¢/(y — 1)?

can be written as

where ¢ = yp/p.

(b) Consider a one-dimensional flow in which homentropic gas is initially stationary and
confined to x € [0,00). Let ¢ = ¢y, a constant, denote the sound speed. At ¢ = 0 the
boundary at = 0 begins to move according to = —at?.

(i) Show that subsequently u =0, ¢ = ¢y for x > cot.
(ii) Show that for z < ¢ot and t < c¢o/[a(y — 1)]

u=—2ar, c=co—aly—1)7,
where 7 satisfies
= —ar?+ [co — (v + Dat] (t — 7).
(¢) Consider now a function v(z,t) satisfying the equation

ov ov
E—F(a—i—ﬁv)%:—év

with initial condition v(z,0) = vo(z) and «a, 3,0 positive constants.
(i) Show that v(z,t) = vo(z¢)e % where xq(x,t) satisfies

1—e 0

x = at + zp + Bvg(xo) 5

(ii) Explain why no shock can form if

o> max vh(x )
8 max {Ivh(xo)]}

2B45 Page 4 of 4 End of Last Page



e 2012 Q1(b)(iv) Could you talk through whether the waves are dispersive?

k> (k2 —w2/c]29)1/2 (k;2 - w2/c§)1/2 = (k2 - w2/2c§)2.
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- W > - v - ' -
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1. A barotropic gas with pressure—density relation p = P(p) is initially stationary and has
uniform density po.

(a) Starting from the Euler equations for an inviscid compressible fluid, show that small
amplitude irrotational perturbations to the initial state are governed by

82
e VY

where ¢ is a potential for the velocity perturbations, and c% is a constant whose value you
should state clearly. Write down expressions for the pressure and density perturbations
p’ and p’ in terms of ¢.

(b) The gas is confined to lie in a one-dimensional, semi-infinite tube X (¢) < z < co. The
motion of the end of the tube is prescribed so that X (t) = ae™“! where a is small and
the real part is understood.

By linearising the appropriate boundary condition at z = X(t) onto x = 0, show that

- . W R
4’:.:‘):-‘.(;&6“ m Loael )
ey o3
- ,. - WMZL'M?'

(c) The gas is now confined to lie in a one-dimensional, infinite tube —oco < z < 0o. An
infinitely thin barrier of mass per unit area m is introduced at z = X (¢) and moves in
response to the difference in gas pressure between its two sides according to

o> 1€t d2X

75“\ mﬁ = p’x:X— - p|x:X+ . (1)

A travelling wave ¢ = exp [iw (% — t)] is incident on the left-hand side of the barrier.

(i) Explain briefly why the appropriate solution of the wave equation may be written
in the form

exp [iw (% - t)} + Rexp {—iw (% —l—t)] , T < X(t),

Pet) = T exp [iw (c% o )} ’ v X,

for some constants R and T

(ii) By assuming small deflections of the barrier away from the origin of the form
X = zpe @t solve for the constants xg, R and 7.

(iii) Find the behaviour of R and T in the limits w — 0 and w — co. Why do the low
frequency notes of a noisy neighbour’s music penetrate a wall more effectively than
do the high frequency notes?
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2. Consider the steady flow of a barotropic gas with pressure—density relation p = P(p). In the
absence of any disturbance, the flow is uniform with speed U in the x—direction, density pg
and pressure pg = P(pg). You may assume that once disturbed the flow remains irrotational,
so that the velocity is given by u = Ui 4+ V¢, where V¢ < U.

(a) (i) Starting from the Euler equations for an inviscid compressible fluid, find an expres-

sion for the pressure in terms of ¢ and show that steady two-dimensional distur-
bances are governed by the equation

2 2
0=(- TS+ o )
where M = U/cy and ¢y is the speed of sound, which you should define.

(ii) Describe, briefly how the mathematical character of () is different depending on
whether M < 1 or M > 1. When M > 1, what is the significance of the lines
z + (M? — 1)/2y = constant?

(iii) A rigid wing is placed along —a < z < a, y = £f(x) with f(z) < a. Indicate with
a sketch the regions in which the gas is undisturbed by the presence of the wing
and those regions in which the gas is disturbed.

(b) The flow described above with M < 1 occupies the semi-infinite space, y > 0. A

pressure perturbation p’ = —poU f(x), for some function f(z), is applied at y = 0.

(i) What is the boundary condition for ¢ on y = 07
(ii) Use a Fourier transform in z to find the velocity potential ¢(z,y).

[You may assume that the Fourier transform of tan™"(x/e) is —mie~ ¥l /k as well as the
convolution theorem that if g(k) = hy(k)ha(k) then

o@) = [ T h(©ha(e — €) de]

(¢) Steady disturbances to a weakly stratified gas satisfy (1) with M = (1 +y)'/2.
(i) How does the mathematical character of () depend on whether y > 0 or y < 0 in
this case?
(ii) Consider a wave of the form ¢ = Re[e** A(y)] incident from above on y > 0.
Deive a differential equation for A(y) and explain the behaviour of the solution in
the regions y > 0 and y < 0 with reference to your answer to (c)i.
[You may assume that the relevant solution of Airy’s equation

d277

@—577:0

is oscillatory in £ < 0 but decays exponentially in £ > 0.]
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e 2013 Q1(c) Could you talk through the BCs we need to apply here?
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e 2013 QQ2(a)(iii) Could you just quickly cover region of silence?

‘4 2013 Q2(b) I think I got the correct BCs and solution, but could I perhaps check these?

e 2013 Q2(c)(ii) Less sure on this part. Behaviour changes at y=0 but not sure what this means!
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3. (a) [6 marks| The shallow-water equations are

oh oh ou ou ou oh
+u— +h— =0, =

o Tlar Thas o Tlar T95: =0

where h(z,t) is the fluid depth and w(z,t) is its velocity. Show that these equations can
be rewritten as

(gt—k(uj:c);z) (u20) =0,

where ¢ = \/gh. State the significance of the quantities u£2c and the curves dz/dt = u=c.
(b) [8 marks] A partition at x = 0 separates stationary fluid with depth Ay in z < 0 from
stationary fluid with depth hg < hy in > 0. At t = 0, the partition is removed.

The flow separates into a stationary region x < at, an expansion fan in at < x < bt, a
region of uniform depth bt < x < Vt, and a stationary region x > Vi, where a < 0, b,
and V > 0 are constants.

With reference to characteristic curves, explain why the fluid depths and velocities im-
mediately to the left (=) and right (+) of the shock at = V¢ must satisfy

U_ 4+ 2+/gh_ =2+/ghy, Uy + 24/ ghy = 2+/ghpg,

and show further that hy = hp. Using the shock conditions, show that the shock speed
V and upstream depth h_ are related by

v \/g(h +hh- _ 2(/ghe = v/gh)h—

2 hr h_ — hg

Hence show that the depth h_, and consequently u_ and V', are uniquely determined.
[Do not try to solve for them explicitly.]

(c¢) [8 marks] Noting that negative characteristics, on which u — 2y/gh is constant, emanate
from behind the shock, solve for the flow in each of the regions upstream of the shock,
giving expressions for the constants a and b in terms of hy, and h_.

(d) [3 marks] Sketch the water depth as a function of z at ¢t = ¢, > 0.

[You may assume the conditions for a shallow water shock moving with speed V.,
(= V)IZ = [h(u = V)* + 59h°] " =0,

where [ |* denotes the change in the quantity from one side of the shock to the other.]
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e 2016 Q3(b) Why must the fluid depths and velocities satisfy these relations to the left and the
right of x = Vt? How come the shock / expansion fan doesn’t at x = bt doesn’t get in the way?
Why do we know that the shock is a straight line?
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2.

(a)

(b)

[4 marks] Let
I@) = [ e

where f(¥) is an integrable function and ¢ (¢) is twice continuously differentiable. Explain
schematically why you would expect the behaviour of I(x) as  — oo to be dominated by
values of ¢ = £, for which v’ (¢,) = 0.

[10 marks| Steady small-amplitude waves disturb a fluid of constant density p that occu-
pies the region z < n(z,y) and moves with constant background velocity Ué,, where &,
is the unit vector in the z direction. The disturbances satisfy the linearised equations

V24 =0, z <0,

9¢ . 0On ¢ _ _
8z_U8x’ U6x+g77_0 on z=0,
@ — 0 as z — —oo.
0z
An obstacle placed on the y-axis provides the conditions
M _

n=mno(y), 8x—0 at z=0.

By taking a Fourier transform in y, or otherwise, show that

n(z,y) = S /00 ﬁg(ﬁ)ewy cos (k(£)x) d¢,

2 J_ o

where 7 (¢) is the Fourier transform of 79(y), and where

k(0) = 92(21[;5), s(0) = /T 1 AU/ 2.

[7 marks| By considering y = Az for large z, and making use of (a), show that the
dominant contribution to the wave pattern arises from values of ¢ such that A = £dk/d¢ =
+./(s—1)/2s2.

Hence show that the dominant wake of the obstacle is confined to a wedge, the edges of
which make an angle sin~!(1/3) with the z-axis.

[4 marks] Show further that the crests of the waves that are seen at the edge of the wake
are aligned at an angle cos™'(1/v/3) with the z-axis, and that these waves have wavelength
47U?/3g.
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