
B5.4 Waves & Compressible Flow Trinity Term

Consultation session questions

• A quick question about supersonic flow past a thin wing. On page 60 of the notes, where we’re
finding the value of � in each of the 6 regions, in regions 3 and 6, is � supposed to be 0 or a
constant (so that we have continuity between regions 2 and 3, 5 and 6)? The notes say that �
should be 0 (so that they are zones of silence) but in the lectures, you imposed continuity so that
� are non-zero constants instead, so I was just wondering which one I should use? Can we still say
that there are zones of silence if � is non-zero?

• 2012 Q1(b)(iv) Could you talk through whether the waves are dispersive?

• 2012 Q2(b) Could you just talk through how to apply FT for this question?

• 2021 Q3(c)(ii) Unsure of how to approach this part!!

• 2013 Q1(c) Could you talk through the BCs we need to apply here?

• 2013 Q2(a)(iii) Could you just quickly cover region of silence?

• 2013 Q2(b) I think I got the correct BCs and solution, but could I perhaps check these?

• 2013 Q2(c)(ii) Less sure on this part. Behaviour changes at y=0 but not sure what this means!

• 2016 Q3(b) Why must the fluid depths and velocities satisfy these relations to the left and the
right of x = Vt? How come the shock / expansion fan doesn’t at x = bt doesn’t get in the way?
Why do we know that the shock is a straight line?

• 2017 Q2(c,d) Please could you go over them.

• 2017 Q3(c) Please could you go over it.

• 2014 Q1(c) We will end up with AJ0 +BY0 as our solution, but could you just discuss the BCs we
need here?

• 2014 Q3(d) Not quite sure how to combine previous parts? Was happy with all previous parts
however.

• 2017 Q1(c) I’d much appreciate if we could go through the computations.

Please send comments and corrections to oliver@maths.ox.ac.uk
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1. A barotropic gas has pressure–density relation p = P (⇢) and is at rest with uniform density

⇢0 and pressure p0 = P (⇢0) such that P 0
(⇢0) = 1. You may assume that small amplitude

perturbations to the uniform state are described by a velocity potential �, which satisfies

the radially symmetric wave equation

@2�

@t2
= r2� =

@2�

@r2
+

1

r

@�

@r
+

@2�

@z2
,

and that the corresponding pressure perturbations are given by

p� p0 = �⇢0
@�

@t
.

A circular cylinder with radius 1 and length 1 is placed in the gas. Suppose the walls are

rigid, but that the ends at z = 0 and z = 1 are open, so that the pressure there is fixed at

p0.

(a) [12 marks] Write down appropriate boundary conditions for the velocity potential inside

the cylinder.

Seeking a separable solution �(r, z, t) = e�i!tf(r)g(z), find the natural frequencies for

radially symmetric normal modes, and show that the lowest of these is given by

!2
= ⇡2

+ ⇠21 ,

where ⇠1 is the first positive zero of J 0
0(⇠).

Suppose instead that the cylinder is infinitely long, and that the walls undergo small-

amplitude oscillations with radius given by R(t) = 1 + ✏e�i!t
(the real part is assumed),

perturbing the gas both inside and outside the cylinder.

(b) [6 marks] Explain why it is appropriate to prescribe the boundary condition

@�

@r
= �i!✏e�i!t

at r = 1.

Hence find the solution for the perturbed velocity potential �(r, t) inside the cylinder.

For which values of ! is this solution invalid?

(c) [7 marks] Show that the solution for the perturbed velocity potential �(r, t) outside the
cylinder is

�(r, t) = �i✏e�i!tJ0(!r) + iY0(!r)

J 0
0(!) + iY 0

0(!)
.

[You may make use of the two linearly independent solutions, J0(⇠) and Y0(⇠), to Bessel’s
equation of order zero,

d
2f

d⇠2
+

1

⇠

df

d⇠
+ f = 0,

and of their asymptotic behaviour,

J0(⇠) ⇠ 1� 1
4⇠

2

Y0(⇠) ⇠ 2
⇡ ln

⇣
⇠
2

⌘

9
=

; as ⇠ ! 0,
J0(⇠) ⇠

q
2
⇡⇠ cos (⇠ � ⇡/4)

Y0(⇠) ⇠
q

2
⇡⇠ sin (⇠ � ⇡/4)

9
=

; as ⇠ ! 1. ]
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3. A stream flowing over a horizontal surface is governed by the shallow water equations

@h

@t
+ u

@h

@x
+ h

@u

@x
= 0,

@u

@t
+ u

@u

@x
+ g

@h

@x
= 0,

where u(x, t) is the fluid velocity in the x direction, h(x, t) is the depth of the stream and g
is the acceleration due to gravity.

(a) [6 marks] Show that the shallow water equations can be rewritten as

✓
@

@t
+ (u± c)

@

@x

◆
(u± 2c) = 0,

where c =
p
gh, and state the significance of the quantities Q± = u± 2c and the curves

dx/ dt = u± c.

At t = 0, a previously uniform stream u = 1, h = 1 is suddenly blocked by a dam at x = 0,

so that u(x, 0) = h(x, 0) = 1, but u(0, t) = 0 for t > 0. You may assume that g > 1.

(b) [12 marks] Concentrate on x > 0, t > 0. By considering the characteristics that come

from {t = 0, x > 0}, and {x = 0, t > 0}, deduce that the value of c immediately

downstream of the dam is c(0, t) =
p
g � 1

2 . Also considering characteristics that come

from {x = 0, t = 0}, deduce that the fluid velocity is given by

u(x, t) =

8
><

>:

0 0 < x <
�p

g � 1
2

�
t,

2
3

�
x
t �

p
g
�
+

1
3

�p
g � 1

2

�
t < x <

�p
g + 1

�
t,

1
�p

g + 1
�
t < x,

and find a similar expression for c(x, t).

(c) [4 marks] In x < 0, a shock propagates upstream with speed V , separating the uniform

stream u = 1, h = 1 from a region of stationary water with depth h0 > 1 adjacent to

the dam. Show that the shock speed is

V =
1

h0 � 1
,

and that h0 satisfies

2h0 = g(h0 + 1)(h0 � 1)
2.

(d) [3 marks] Combining your solutions from parts (b) and (c), draw a sketch of the height

profiles h(x, t) (as a function of x) at t = 1 and at t = 2, on the same pair of axes.

[You may assume the conditions for a shallow water shock moving with velocity �V ,

[h(u+ V )]
+
� =

⇥
h(u+ V )

2
+

1
2gh

2
⇤+
� = 0,

where [ ]
+
� denotes the change in the quantity from one side of the shock to the other. ]
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1. (a) [7 marks] A two-dimensional container has vertical walls at x = 0 and x = a, a rigid base

at z = �h, and is filled with fluid of constant density ⇢, such that the undisturbed free

surface of the fluid would be at z = 0. Small-amplitude perturbations disturb this surface

to z = ⌘(x, t). A gravitational acceleration g acts vertically, and the pressure above the

free surface is atmospheric.

Assuming that the flow is irrotational, derive the following linearised model for the velocity

potential � and surface displacement ⌘,

r2� = 0 � h < z < 0,

@⌘

@t
=

@�

@z
and

@�

@t
+ g⌘ = 0 on z = 0,

@�

@z
= 0 on z = �h,

@�

@x
= 0 on x = 0 and x = a.

[You may assume the existence of a velocity potential, and an appropriate version of
Bernoulli’s equation.]

(b) [8 marks] Show that separable solutions with temporal frequency ! > 0 must take the

form

⌘n(x, t) = Re

⇢
e�i!t

cos(knx)

�
, �n(x, z, t) = Re

⇢
�i!e�i!t

cos(knx)
cosh(kn(z + h))

kn sinh(knh)

�
,

where kn = n⇡/a, for n = 1, 2, . . . . Hence show that the corresponding natural frequencies

!n are given by

!2
n = gkn tanh (knh) .

(c) [10 marks] Suppose now that the container is oscillated from side to side, such that the

position of the walls are x = ✏ sin⌦t and x = a + ✏ sin⌦t, with ✏ ⌧ a. Assume that this

causes periodic perturbations to the surface displacement that also have frequency ⌦.

Write down the new linearized boundary conditions on x = 0 and x = a.

By writing �(x, z, t) = Re
�
U
�
x� 1

2a
�
e�i⌦t

 
+ �̃(x, z, t) for a suitable choice of U , and

seeking suitable series solutions for ⌘ and �̃, show that the free surface height is given by

⌘(x, t) = ✏ sin⌦t

" 1X

m=1

4 tanh(k̃mh)

k̃ma

⌦
2

⌦2 � !̃2
m

cos(k̃mx)

#
,

where k̃m = k2m�1 and !̃m = !2m�1.

Sketch the free surface at ⌦t = ⇡/2 when ⌦ is close to (but not equal to) !3.

[You may make use of the Fourier series,

x� 1
2a = �

1X

m=1

4

ak̃2m
cos(k̃mx),

for 0 < x < a.]
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Force balance on a free surface with surface tension 7
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2. A barotropic gas with pressure-density relation p = P (⇢) flows steadily past a thin symmetric

wing, which occupies the region |x| 6 a and has upper and lower surfaces given by y = ±f(x),

where f(±a) = 0 and |f | ⌧ a. The flow is governed by Euler’s equations for an inviscid

compressible fluid,

r · (⇢u) = 0, ⇢u ·ru = �rp.

Far upstream of the wing the flow is uniform, with speed U in the x direction, density ⇢0,

pressure p0 = P (⇢0), and sound speed given by c
2
0 = P

0
(⇢0).

(a) [10 marks] Assuming the flow is irrotational and writing u = U êx +r�, find a linearised

expression for the pressure perturbation in terms of the velocity potential, and show that

�(x, y) satisfies

(M
2 � 1)

@
2
�

@x2
=

@
2
�

@y2
,

where the Mach number M should be defined. Also derive the linearised boundary con-

ditions
@�

@y
= ±Uf

0
(x) on y = 0±, |x| 6 a,

where y = 0± denotes the boundary approached from above and below, respectively.

Briefly describe the conditions that should be applied at infinity if M < 1, and explain

why an appropriate condition in the case M > 1 is � ! 0 as x ! �1.

(b) [8 marks] Suppose now that M > 1. With the aid of a diagram to identify distinct regions

of the flow, find the solution for �(x, y).

(c) [7 marks] Suppose further that f(x) = b(1 � x
2
/a

2
). Sketch the streamlines of the flow,

and calculate the drag force D on the wing. Show that D is minimised (for M > 1) when

U =
p
2 c0.

[You may assume the expression

D =

Z a

�a
f
0
(x) [p(x, 0�) + p(x, 0+)] dx,

for the drag force on the wing.]
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