B5.4 Waves & Compressible Flow Trinity Term
Consultation session questions

e A quick question about supersonic flow past a thin wing. On page 60 of the notes, where we're
finding the value of ¢ in each of the 6 regions, in regions 3 and 6, is ¢ supposed to be 0 or a
constant (so that we have continuity between regions 2 and 3, 5 and 6)? The notes say that ¢
should be 0 (so that they are zones of silence) but in the lectures, you imposed continuity so that
¢ are non-zero constants instead, so I was just wondering which one I should use? Can we still say
that there are zones of silence if ¢ is non-zero?

e 2012 Q1(b)(iv) Could you talk through whether the waves are dispersive?
e 2012 Q2(b) Could you just talk through how to apply FT for this question?

e 2021 Q3(c)(ii) Unsure of how to approach this part!!

(
(
(c)
e 2013 Q1(c) Could you talk through the BCs we need to apply here?
e 2013 Q2(a)(iii) Could you just quickly cover region of silence?

\/ e 2013 Q2(b) I think I got the correct BCs and solution, but could I perhaps check these?

e 2013 Q2(c)(ii) Less sure on this part. Behaviour changes at y=0 but not sure what this means!

e 2016 Q3(b) Why must the fluid depths and velocities satisfy these relations to the left and the
right of x = Vt? How come the shock / expansion fan doesn’t at x = bt doesn’t get in the way?
Why do we know that the shock is a straight line?

e 2017 Q2(c,d) Please could you go over them.
e 2017 Q3(c) Please could you go over it.

e 2014 Q1(c) We will end up with A.Jy+ BY} as our solution, but could you just discuss the BCs we
need here?

e 2014 Q3(d) Not quite sure how to combine previous parts? Was happy with all previous parts
however.

e 2017 Q1(c) I'd much appreciate if we could go through the computations.
/ . : : ‘W[AM:) [

e Is contour integration examinable? — Yes (e 220) .
‘/2014 Q3(d) Please can we go through the sketches.
\/2015 Q2(c), Q3(b) and Q3(c) Please can we go through the sketches.

Please send comments and corrections to oliver@maths.ox.ac.uk
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1. The flow of a stratified incompressible fluid with density p, velocity u and pressure p is governed
by
dp

Ju
E—I—(u-V)p—O, V- -u=0, p<at+(u-V)u> = —Vp — pgk,

where g the acceleration due to gravity.
(a) [7 marks] (i) Determine the pressure p = po(z) in the stationary state in which the fluid
is at rest with density po(z) = pa€P% and p = p, on z = 0, where p, > 0, 8 and pq
are constants.

(ii) Small amplitude waves perturb the stationary state so that p = po(z) + 0,
p=po(z) +p' and u = v'i +v'j + w'k, where the primed variables are small. Write
down the linearized versions of the governing equations and deduce that w’ satisfies

iQ 82w’+82w’+82w’ _ 5 82w’+02w’ 10310’
a2 \ ax2 a2 022 ) I\ a2 T oy T go.0i2 )

(%)

(b) [6 marks] Suppose that the flow is two dimensional and gravity dominated with the fluid
occupying the channel x > 0, 0 < z < h between rigid walls at z = 0 and z = h, so that
w'(z, z,t) is governed by

2 2,/ 2,/ 2,/
0 <8w 8w):—6g8w for >0, 0<z<h,

ot2 \ 022 * 022 Ox?
with w' =0 on 2z =0, h for x > 0. A wave-maker at x = 0 disturbs the fluid such that
w = ae” M sin (%Z) on =0, 0<z<h,

where a and Q > 0 are constants. By imposing as # — oo either boundedness of w’ or a
radiation condition on w’, as appropriate, solve for w’ when (i) Q% > Bg and (ii) 22 < Bg.

(¢) [12 marks] Now suppose that the flow is three dimensional with u = ui + vj + wk below
a free surface at z = n(x,y,t) on which

on on on

where v is the surface tension and x is the curvature. The primed variables and n are
small, so that w'(z,y, 2,t) is governed by (%) for z < 0.

(i) Assuming that x = V25 after linearization for small 7, derive the linearized boundary
condition
3w’ 2w 0% 2 92 \? ,
Pagzop — Pl ( 022 T o2 > v (8x2 + ay2> weoon 2
(ii) Show that there are waves of the form
w' = Aexp(i(kz cos a + kysin o — wt) + Az)

with A, k, o, w and A being constant and Re(\) > 0 only if the frequency w is such
that w? is a function of the wavenumber k that you should determine.
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2. (a) [10 marks] Small-amplitude waves disturb a barotropic gas contained in a two-dimensional
rectangular pipe between rigid walls at x = 0, z = a and free ends at y = 0, y = b main-
tained at constant pressure py. You may assume that the linearized equations for the
potential ¢(x,y,t) for the velocity pertubations and for the pressure p(z,y,t) are given

by

Pp o (¢ n ¢ 9¢

T _ 22 2% — pn — ot

o2 0 Ox2 ayg ) b bo 0o ot
in0 <z <a 0 <y < b, where the sound speed ¢y and undisturbed density pg are
constant.

(i) State the boundary conditions for ¢ on the boundary of the pipe.

(ii) By seeking a separable solution of the form ¢ = e “!F(2)G(y), find the normal
modes and the natural frequencies w.

(b) [15 marks] Small deflections n(z,t) of an elastic beam lying on a shallow water layer
satisfy the equation

0%n

O _ g20%
o2

=5 0z6

for —oco<x<oo, t>0,

where [ is a positive constant. The beam is released from rest such that

QO —a?/e @(x,o):() for —oo<zx < o0,

0) =
n(z,0) e , 5t

where o and € are positive constants.

(i) Show that the solution may be written in the form
o .
n(x,t) :/ F(k) cos (w(k)t) e*® dk,
—00

where the function F(k) should be defined and w(k) = B|k[>.

[You may assume that the Fourier transform of AT eﬁe_62k2/4.]

(ii) Use the method of stationary phase to show that if € is sufficiently small then

A Baz??  r
n(xvt) ~ (1:75)1/4 cos t1/2 4

as x,t — 4oo with z/t held constant, where the constants A and B should be
determined.

[You may assume that if f(k) and ¥ (k) are sufficiently well behaved, and (k) is

real-valued and such that i)' (k) has a single zero at k., then

> i i T 27
/_ Rk (e, [ s o,

where the + takes the sign of V" (k).]
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3. (a) [12 marks| Shallow water of uniform depth hg is held at rest in z < 0 by a dam at = = 0.
The dam is suddenly removed at time ¢ = 0, so that the water flows into z > 0 forming
a shallow layer of depth h(z,t) and horizontal fluid velocity w(z,t) under the action of
gravity with acceleration g. You may assume that the Riemann invariants u + 2¢ are
conserved along characteristics satisfying dz/dt = u+ ¢, where the wave speed ¢ = v/gh.
(i) Show that
u=0, c=c for =< —cot, t>0,

where ¢y = v/ghg. Derive the solution given by

2 1
u:§<co+%>, c:§<200—%> for —cot < x < 2c¢t, t >0,
explaining why it is not valid for = > 2¢gt, £ > 0.

(ii) Find the time taken by a fluid element initially at + = —a < 0 to reach = 0.

(b) [13 marks] Now suppose that shallow water of uniform depth hg is held at rest in z > 0
by a dam at x = 0. At time ¢t = 0 the dam suddenly starts to move into the water and to
leak, so that h(u—U) = —Ah? on the dam at x = Ut for t > 0, where U and \ are positive
constants. Suppose that the flow separates into a region of uniform velocity and uniform
depth Shg in Ut < & < V't and a stationary region of uniform depth hg in = > V¢, with
a shock at x = V¢ moving at constant speed V. You may assume the Rankine-Hugoniot
conditions,

gh*]"

[h(u— V)T =0, h(u— V)% + 5 =0,

where [ |T denotes the change in the quantity from one side of the shock to the other.
(i) Find the shock speed V in terms of § and ¢y = v/gho, and deduce that
B-1vB+1 U b

V2P o w’

Using a diagram explain why this equation has a unique positive root for .

(ii) Show from first principles that the net rate at which energy flows out of the moving
shock is given by

pghgVa(B),

where p is the density and ¢(f) is a function of 5 that you should determine. Hence
explain why the condition U > Ahg is necessary for the shock to be physical.

Page 4 of 4 End of Last Page
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3. A stream flowing over a horizontal surface is governed by the shallow water equations

oh oh ou ou ou oh

o Tlar Tlhar T o Tlar T9g: =Y

where u(z,t) is the fluid velocity in the x direction, h(zx,t) is the depth of the stream and g
is the acceleration due to gravity.

(a) [6 marks| Show that the shallow water equations can be rewritten as

<§gwui@£)@uﬁdzq

where ¢ = v/gh, and state the significance of the quantities Q+ = u + 2¢ and the curves
dz/dt =u+te.

At t = 0, a previously uniform stream v = 1, h = 1 is suddenly blocked by a dam at = = 0,
so that u(x,0) = h(z,0) =1, but u(0,¢) =0 for ¢ > 0. You may assume that g > 1.

(b) [12 marks] Concentrate on = > 0, t > 0. By considering the characteristics that come
from {t = 0, x > 0}, and {z = 0, ¢t > 0}, deduce that the value of ¢ immediately
downstream of the dam is ¢(0,t) = /g — % Also considering characteristics that come
from {z =0, t = 0}, deduce that the fluid velocity is given by

0<z<(yVg—2i)t,
F-va)+s (Va—3)t<e<(Vg+1)t,
(Vg+1)t<ua,

u(x,t) =

—owhhn O

and find a similar expression for ¢(z,t).

(c¢) [4 marks] In z < 0, a shock propagates upstream with speed V', separating the uniform
stream v = 1, h = 1 from a region of stationary water with depth hy > 1 adjacent to
the dam. Show that the shock speed is

1
Ve
ho— 1’

and that hg satisfies
2hy = g(ho + 1)(h0 — 1)2.

(d) [3 marks] Combining your solutions from parts (b) and (c), draw a sketch of the height
profiles h(z,t) (as a function of z) at ¢ = 1 and at ¢ = 2, on the same pair of axes.

[You may assume the conditions for a shallow water shock moving with velocity =V,
[h(u+V)JE = [hu+ V) + 3gh%] " =0,

where [ |7 denotes the change in the quantity from one side of the shock to the other. ]

2B45 Page 4 of 4 End of Last Page



2014 Q3(d) Not quite sure how to combine previous parts? Was happy with all previous parts
however.
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2. A barotropic gas with pressure-density relation p = P(p) flows steadily past a thin symmetric
wing, which occupies the region |x| < a and has upper and lower surfaces given by y = 4 f(x),
where f(+a) = 0 and |f| < a. The flow is governed by Euler’s equations for an inviscid
compressible fluid,

V- (pu) =0, pu-Vu=—Vp.

Far upstream of the wing the flow is uniform, with speed U in the x direction, density po,
pressure pg = P(pg), and sound speed given by c3 = P'(po).

(a) [10 marks] Assuming the flow is irrotational and writing u = Ué, + V¢, find a linearised
expression for the pressure perturbation in terms of the velocity potential, and show that
¢(z,y) satisfies

32 qb 62 ¢
M?*—1)—— = —
where the Mach number M should be defined. Also derive the linearised boundary con-
ditions
¢ _ / _
0 =2Uf(z) on y=0+, [z|<aq,
Y

where y = 0+ denotes the boundary approached from above and below, respectively.

Briefly describe the conditions that should be applied at infinity if M < 1, and explain
why an appropriate condition in the case M > 1is ¢ — 0 as x — —o0.

(b) [8 marks] Suppose now that M > 1. With the aid of a diagram to identify distinct regions
of the flow, find the solution for ¢(z,y).

(¢) [7 marks] Suppose further that f(x) = b(1 — x2/a?). Sketch the streamlines of the flow,
and calculate the drag force D on the wing. Show that D is minimised (for M > 1) when

U =2c.

[You may assume the expression

D= [ @) pe.0-)+ plz.04)] dr,

—a

for the drag force on the wing.
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3. A homentropic gas with pressure-density relation p = kp? occupies a one-dimensional tube.
The gas is initially at rest with density pp and pressure pgy, and lies to the right of an imper-
meable piston at x = 0. A measuring device is placed in the tube ahead of the piston, at
x = L.

(a) [3 marks| Briefly describe the physical principles underlying the Rankine-Hugoniot con-
ditions for a shock moving with speed V,

LS/ I A
(w—V)+ )J__a

[MU—VWF=@+M“_Vﬂi:[2 (-1

(b) [10 marks| For ¢ > 0 the piston is pushed forwards with constant speed U, causing a
shockwave to travel ahead of it.

Use the Rankine-Hugoniot conditions to show that the speed of the shock is given by
162\
1 14+ ——0
() |
where ¢ = ypo/po-

Sketch the density p(L,t) measured as a function of time at x = L, labelling all the
important points on your graph. (Consider only ¢ < L/U.)

v+ 1)U

V:
4

(c¢) [12 marks] Now suppose that instead of being pushed forwards, the piston is pulled back-
wards for ¢t > 0, with constant speed U in the negative x direction.
Assuming U < 2¢p/(y + 1), and with the aid of a characteristic diagram to help find the
solution c¢(z,t), carefully sketch the sound speed ¢(L, t) measured as a function of time at
x = L, labelling all the important points on your graph.
What is different if U > 2¢o/(y+ 1)?

[You may assume that the equations of one-dimensional homentropic gas dynamics,

dp dp ou ou ou 10p
o s TP T e e Toar TV

0 0 2¢
(2 crol) (s 2) =0

can be written as

where ¢ = vp/p.]
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