
B5.4 Waves & Compressible Flow Trinity Term

Consultation session questions

• A quick question about supersonic flow past a thin wing. On page 60 of the notes, where we’re
finding the value of � in each of the 6 regions, in regions 3 and 6, is � supposed to be 0 or a
constant (so that we have continuity between regions 2 and 3, 5 and 6)? The notes say that �
should be 0 (so that they are zones of silence) but in the lectures, you imposed continuity so that
� are non-zero constants instead, so I was just wondering which one I should use? Can we still say
that there are zones of silence if � is non-zero?

• 2012 Q1(b)(iv) Could you talk through whether the waves are dispersive?

• 2012 Q2(b) Could you just talk through how to apply FT for this question?

• 2021 Q3(c)(ii) Unsure of how to approach this part!!

• 2013 Q1(c) Could you talk through the BCs we need to apply here?

• 2013 Q2(a)(iii) Could you just quickly cover region of silence?

• 2013 Q2(b) I think I got the correct BCs and solution, but could I perhaps check these?

• 2013 Q2(c)(ii) Less sure on this part. Behaviour changes at y=0 but not sure what this means!

• 2016 Q3(b) Why must the fluid depths and velocities satisfy these relations to the left and the
right of x = Vt? How come the shock / expansion fan doesn’t at x = bt doesn’t get in the way?
Why do we know that the shock is a straight line?

• 2017 Q2(c,d) Please could you go over them.

• 2017 Q3(c) Please could you go over it.

• 2014 Q1(c) We will end up with AJ0 +BY0 as our solution, but could you just discuss the BCs we
need here?

• 2014 Q3(d) Not quite sure how to combine previous parts? Was happy with all previous parts
however.

• 2017 Q1(c) I’d much appreciate if we could go through the computations.

• Is contour integration examinable?

• 2014 Q3(d) Please can we go through the sketches.

• 2015 Q2(c), Q3(b) and Q3(c) Please can we go through the sketches.

Please send comments and corrections to oliver@maths.ox.ac.uk
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1. The flow of a stratified incompressible fluid with density ⇢, velocity u and pressure p is governed
by

@⇢

@t
+ (u ·r)⇢ = 0, r · u = 0, ⇢

✓
@u

@t
+ (u ·r)u

◆
= �rp� ⇢gk,

where g the acceleration due to gravity.

(a) [7 marks] (i) Determine the pressure p = p0(z) in the stationary state in which the fluid

is at rest with density ⇢0(z) = ⇢ae��z and p = pa on z = 0, where ⇢a > 0, � and pa
are constants.

(ii) Small amplitude waves perturb the stationary state so that ⇢ = ⇢0(z) + ⇢0,
p = p0(z) + p0 and u = u0i + v0j + w0k, where the primed variables are small. Write

down the linearized versions of the governing equations and deduce that w0
satisfies

@2

@t2

✓
@2w0

@x2
+
@2w0

@y2
+
@2w0

@z2

◆
= ��g

✓
@2w0

@x2
+
@2w0

@y2
� 1

g

@3w0

@z@t2

◆
. (?)

(b) [6 marks] Suppose that the flow is two dimensional and gravity dominated with the fluid

occupying the channel x > 0, 0 < z < h between rigid walls at z = 0 and z = h, so that

w0
(x, z, t) is governed by

@2

@t2

✓
@2w0

@x2
+
@2w0

@z2

◆
= ��g@

2w0

@x2
for x > 0, 0 < z < h,

with w0
= 0 on z = 0, h for x > 0. A wave-maker at x = 0 disturbs the fluid such that

w0
= ae�i⌦t

sin

⇣⇡z
h

⌘
on x = 0, 0 < z < h,

where a and ⌦ > 0 are constants. By imposing as x ! 1 either boundedness of w0
or a

radiation condition on w0
, as appropriate, solve for w0

when (i) ⌦
2 > �g and (ii) ⌦

2 < �g.

(c) [12 marks] Now suppose that the flow is three dimensional with u = ui+ vj+ wk below

a free surface at z = ⌘(x, y, t) on which

w =
@⌘

@t
+ u

@⌘

@x
+ v

@⌘

@y
, p� pa = ��,

where � is the surface tension and  is the curvature. The primed variables and ⌘ are

small, so that w0
(x, y, z, t) is governed by (?) for z < 0.

(i) Assuming that  = r2⌘ after linearization for small ⌘, derive the linearized boundary

condition

⇢a
@3w0

@z@t2
= ⇢ag

✓
@2w0

@x2
+
@2w0

@y2

◆
� �

✓
@2

@x2
+
@2

@y2

◆2

w0
on z = 0.

(ii) Show that there are waves of the form

w0
= A exp

�
i(kx cos↵+ ky sin↵� !t) + �z

�

with A, k, ↵, ! and � being constant and Re(�) > 0 only if the frequency ! is such

that !2
is a function of the wavenumber k that you should determine.
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2. (a) [10 marks] Small-amplitude waves disturb a barotropic gas contained in a two-dimensional

rectangular pipe between rigid walls at x = 0, x = a and free ends at y = 0, y = b main-

tained at constant pressure p0. You may assume that the linearized equations for the

potential �(x, y, t) for the velocity pertubations and for the pressure p(x, y, t) are given

by

@2�

@t2
= c20

✓
@2�

@x2
+
@2�

@y2

◆
, p = p0 � ⇢0

@�

@t

in 0 < x < a, 0 < y < b, where the sound speed c0 and undisturbed density ⇢0 are

constant.

(i) State the boundary conditions for � on the boundary of the pipe.

(ii) By seeking a separable solution of the form � = e
�i!tF (x)G(y), find the normal

modes and the natural frequencies !.

(b) [15 marks] Small deflections ⌘(x, t) of an elastic beam lying on a shallow water layer

satisfy the equation

@2⌘

@t2
= �2

@6⌘

@x6
for �1 < x < 1, t > 0,

where � is a positive constant. The beam is released from rest such that

⌘(x, 0) =
↵

✏
p
⇡
e
�x2/✏2 ,

@⌘

@t
(x, 0) = 0 for �1 < x < 1,

where ↵ and ✏ are positive constants.

(i) Show that the solution may be written in the form

⌘(x, t) =

Z 1

�1
F (k) cos (!(k)t) eikx dk,

where the function F (k) should be defined and !(k) = �|k|3.

[You may assume that the Fourier transform of e
�x2/✏2

is ✏
p
⇡e�✏

2k2/4
.]

(ii) Use the method of stationary phase to show that if ✏ is su�ciently small then

⌘(x, t) ⇠ A

(xt)1/4
cos

 
Bx3/2

t1/2
� ⇡

4

!

as x, t ! +1 with x/t held constant, where the constants A and B should be

determined.

[You may assume that if f(k) and  (k) are su�ciently well behaved, and  (k) is

real-valued and such that  0
(k) has a single zero at k⇤, then

Z 1

�1
f(k)ei (k)t dk ⇠ f(k⇤)e

i( (k⇤)t±⇡/4)

s
2⇡

| 00(k⇤)| t
as t ! 1,

where the ± takes the sign of  00
(k⇤).]
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3. (a) [12 marks] Shallow water of uniform depth h0 is held at rest in x < 0 by a dam at x = 0.

The dam is suddenly removed at time t = 0, so that the water flows into x > 0 forming

a shallow layer of depth h(x, t) and horizontal fluid velocity u(x, t) under the action of

gravity with acceleration g. You may assume that the Riemann invariants u ± 2c are

conserved along characteristics satisfying dx/ dt = u± c, where the wave speed c =
p
gh.

(i) Show that

u = 0, c = c0 for x < �c0t, t > 0,

where c0 =
p
gh0. Derive the solution given by

u =
2

3

⇣
c0 +

x

t

⌘
, c =

1

3

⇣
2c0 �

x

t

⌘
for � c0t < x < 2c0t, t > 0,

explaining why it is not valid for x > 2c0t, t > 0.

(ii) Find the time taken by a fluid element initially at x = �a < 0 to reach x = 0.

(b) [13 marks] Now suppose that shallow water of uniform depth h0 is held at rest in x > 0

by a dam at x = 0. At time t = 0 the dam suddenly starts to move into the water and to

leak, so that h(u�U) = ��h2 on the dam at x = Ut for t > 0, where U and � are positive

constants. Suppose that the flow separates into a region of uniform velocity and uniform

depth �h0 in Ut < x < V t and a stationary region of uniform depth h0 in x > V t, with
a shock at x = V t moving at constant speed V . You may assume the Rankine-Hugoniot

conditions,

[h(u� V )]
+
� = 0,


h(u� V )

2
+

gh2

2

�+

�
= 0,

where [ ]
+
� denotes the change in the quantity from one side of the shock to the other.

(i) Find the shock speed V in terms of � and c0 =
p
gh0, and deduce that

(� � 1)
p
� + 1p

2�
=

U

c0
� �h0

c0
�.

Using a diagram explain why this equation has a unique positive root for �.

(ii) Show from first principles that the net rate at which energy flows out of the moving

shock is given by

⇢gh20V q(�),

where ⇢ is the density and q(�) is a function of � that you should determine. Hence

explain why the condition U > �h0 is necessary for the shock to be physical.
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3. A stream flowing over a horizontal surface is governed by the shallow water equations

@h

@t
+ u

@h

@x
+ h

@u

@x
= 0,

@u

@t
+ u

@u

@x
+ g

@h

@x
= 0,

where u(x, t) is the fluid velocity in the x direction, h(x, t) is the depth of the stream and g
is the acceleration due to gravity.

(a) [6 marks] Show that the shallow water equations can be rewritten as

✓
@

@t
+ (u± c)

@

@x

◆
(u± 2c) = 0,

where c =
p
gh, and state the significance of the quantities Q± = u± 2c and the curves

dx/ dt = u± c.

At t = 0, a previously uniform stream u = 1, h = 1 is suddenly blocked by a dam at x = 0,

so that u(x, 0) = h(x, 0) = 1, but u(0, t) = 0 for t > 0. You may assume that g > 1.

(b) [12 marks] Concentrate on x > 0, t > 0. By considering the characteristics that come

from {t = 0, x > 0}, and {x = 0, t > 0}, deduce that the value of c immediately

downstream of the dam is c(0, t) =
p
g � 1

2 . Also considering characteristics that come

from {x = 0, t = 0}, deduce that the fluid velocity is given by

u(x, t) =

8
><

>:

0 0 < x <
�p

g � 1
2

�
t,

2
3

�
x
t �

p
g
�
+

1
3

�p
g � 1

2

�
t < x <

�p
g + 1

�
t,

1
�p

g + 1
�
t < x,

and find a similar expression for c(x, t).

(c) [4 marks] In x < 0, a shock propagates upstream with speed V , separating the uniform

stream u = 1, h = 1 from a region of stationary water with depth h0 > 1 adjacent to

the dam. Show that the shock speed is

V =
1

h0 � 1
,

and that h0 satisfies

2h0 = g(h0 + 1)(h0 � 1)
2.

(d) [3 marks] Combining your solutions from parts (b) and (c), draw a sketch of the height

profiles h(x, t) (as a function of x) at t = 1 and at t = 2, on the same pair of axes.

[You may assume the conditions for a shallow water shock moving with velocity �V ,

[h(u+ V )]
+
� =

⇥
h(u+ V )

2
+

1
2gh

2
⇤+
� = 0,

where [ ]
+
� denotes the change in the quantity from one side of the shock to the other. ]
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2. A barotropic gas with pressure-density relation p = P (⇢) flows steadily past a thin symmetric

wing, which occupies the region |x| 6 a and has upper and lower surfaces given by y = ±f(x),

where f(±a) = 0 and |f | ⌧ a. The flow is governed by Euler’s equations for an inviscid

compressible fluid,

r · (⇢u) = 0, ⇢u ·ru = �rp.

Far upstream of the wing the flow is uniform, with speed U in the x direction, density ⇢0,

pressure p0 = P (⇢0), and sound speed given by c
2
0 = P

0
(⇢0).

(a) [10 marks] Assuming the flow is irrotational and writing u = U êx +r�, find a linearised

expression for the pressure perturbation in terms of the velocity potential, and show that

�(x, y) satisfies

(M
2 � 1)

@
2
�

@x2
=

@
2
�

@y2
,

where the Mach number M should be defined. Also derive the linearised boundary con-

ditions
@�

@y
= ±Uf

0
(x) on y = 0±, |x| 6 a,

where y = 0± denotes the boundary approached from above and below, respectively.

Briefly describe the conditions that should be applied at infinity if M < 1, and explain

why an appropriate condition in the case M > 1 is � ! 0 as x ! �1.

(b) [8 marks] Suppose now that M > 1. With the aid of a diagram to identify distinct regions

of the flow, find the solution for �(x, y).

(c) [7 marks] Suppose further that f(x) = b(1 � x
2
/a

2
). Sketch the streamlines of the flow,

and calculate the drag force D on the wing. Show that D is minimised (for M > 1) when

U =
p
2 c0.

[You may assume the expression

D =

Z a

�a
f
0
(x) [p(x, 0�) + p(x, 0+)] dx,

for the drag force on the wing.]
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3. A homentropic gas with pressure-density relation p = k⇢
�
occupies a one-dimensional tube.

The gas is initially at rest with density ⇢0 and pressure p0, and lies to the right of an imper-

meable piston at x = 0. A measuring device is placed in the tube ahead of the piston, at

x = L.

(a) [3 marks] Briefly describe the physical principles underlying the Rankine-Hugoniot con-

ditions for a shock moving with speed V ,

[⇢(u� V )]
+
� =

⇥
p+ ⇢(u� V )

2
⇤+
� =


1

2
(u� V )

2
+

�p

(� � 1)⇢

�+

�
= 0.

(b) [10 marks] For t > 0 the piston is pushed forwards with constant speed U , causing a

shockwave to travel ahead of it.

Use the Rankine-Hugoniot conditions to show that the speed of the shock is given by

V =
(� + 1)U

4

"
1 +

✓
1 +

16c
2
0

(� + 1)2U2

◆1/2
#
,

where c
2
0 = �p0/⇢0.

Sketch the density ⇢(L, t) measured as a function of time at x = L, labelling all the

important points on your graph. (Consider only t < L/U .)

(c) [12 marks] Now suppose that instead of being pushed forwards, the piston is pulled back-

wards for t > 0, with constant speed U in the negative x direction.

Assuming U < 2c0/(� + 1), and with the aid of a characteristic diagram to help find the

solution c(x, t), carefully sketch the sound speed c(L, t) measured as a function of time at

x = L, labelling all the important points on your graph.

What is di↵erent if U > 2c0/(� + 1)?

[You may assume that the equations of one-dimensional homentropic gas dynamics,

@⇢

@t
+ u

@⇢

@x
+ ⇢

@u

@x
= 0,

@u

@t
+ u

@u

@x
+

1

⇢

@p

@x
= 0,

can be written as ✓
@

@t
+ (u± c)

@

@x

◆✓
u± 2c

� � 1

◆
= 0,

where c
2
= �p/⇢.]
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