B5.4 Waves & Compressible Flow

Consultation session questions

- A quick question about supersonic flow past a thin wing. On page 60 of the notes, where we're finding the value of ϕ in each of the 6 regions, in regions 3 and 6, is ϕ supposed to be 0 or a constant (so that we have continuity between regions 2 and 3, 5 and 6)? The notes say that ϕ should be 0 (so that they are zones of silence) but in the lectures, you imposed continuity so that ϕ are non-zero constants instead, so I was just wondering which one I should use? Can we still say that there are zones of silence if ϕ is non-zero?
- 2012 Q1(b)(iv) Could you talk through whether the waves are dispersive?
- 2012 Q2(b) Could you just talk through how to apply FT for this question?
- 2021 Q3(c)(ii) Unsure of how to approach this part!!
- 2013 Q1(c) Could you talk through the BCs we need to apply here?
- 2013 Q2(a)(iii) Could you just quickly cover region of silence?
- 2013 Q2(b) I think I got the correct BCs and solution, but could I perhaps check these?
- 2013 Q2(c)(ii) Less sure on this part. Behaviour changes at y=0 but not sure what this means!
- 2016 Q3(b) Why must the fluid depths and velocities satisfy these relations to the left and the right of x = Vt? How come the shock / expansion fan doesn't at x = bt doesn't get in the way? Why do we know that the shock is a straight line?
- 2017 Q2(c,d) Please could you go over them.
- 2017 Q3(c) Please could you go over it.
- 2014 Q1(c) We will end up with $AJ_0 + BY_0$ as our solution, but could you just discuss the BCs we need here?
- 2014 Q3(d) Not quite sure how to combine previous parts? Was happy with all previous parts however.
- 2017 Q1(c) I'd much appreciate if we could go through the computations.
- · Is contour integration examinable? Yes but very walikely!
- \sim 2014 Q3(d) Please can we go through the sketches.
- \checkmark 2015 Q2(c), Q3(b) and Q3(c) Please can we go through the sketches.

1. The flow of a stratified incompressible fluid with density ρ , velocity **u** and pressure p is governed by

$$\frac{\partial \rho}{\partial t} + (\mathbf{u} \cdot \nabla)\rho = 0, \quad \nabla \cdot \mathbf{u} = 0, \quad \rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla p - \rho g \mathbf{k}.$$

where g the acceleration due to gravity.

- (a) [7 marks] (i) Determine the pressure $p = p_0(z)$ in the stationary state in which the fluid is at rest with density $\rho_0(z) = \rho_a e^{-\beta z}$ and $p = p_a$ on z = 0, where $\rho_a > 0$, β and p_a are constants.
 - (ii) Small amplitude waves perturb the stationary state so that $\rho = \rho_0(z) + \rho'$, $p = p_0(z) + p'$ and $\mathbf{u} = u'\mathbf{i} + v'\mathbf{j} + w'\mathbf{k}$, where the primed variables are small. Write down the linearized versions of the governing equations and deduce that w' satisfies

$$\frac{\partial^2}{\partial t^2} \left(\frac{\partial^2 w'}{\partial x^2} + \frac{\partial^2 w'}{\partial y^2} + \frac{\partial^2 w'}{\partial z^2} \right) = -\beta g \left(\frac{\partial^2 w'}{\partial x^2} + \frac{\partial^2 w'}{\partial y^2} - \frac{1}{g} \frac{\partial^3 w'}{\partial z \partial t^2} \right). \tag{(\star)}$$

(b) [6 marks] Suppose that the flow is two dimensional and gravity dominated with the fluid occupying the channel x > 0, 0 < z < h between rigid walls at z = 0 and z = h, so that w'(x, z, t) is governed by

$$\frac{\partial^2}{\partial t^2} \left(\frac{\partial^2 w'}{\partial x^2} + \frac{\partial^2 w'}{\partial z^2} \right) = -\beta g \frac{\partial^2 w'}{\partial x^2} \quad \text{for} \quad x > 0, \ 0 < z < h,$$

with w' = 0 on z = 0, h for x > 0. A wave-maker at x = 0 disturbs the fluid such that

$$w' = a \mathrm{e}^{-\mathrm{i}\Omega t} \sin\left(\frac{\pi z}{h}\right)$$
 on $x = 0, \ 0 < z < h$,

where a and $\Omega > 0$ are constants. By imposing as $x \to \infty$ either boundedness of w' or a radiation condition on w', as appropriate, solve for w' when (i) $\Omega^2 > \beta g$ and (ii) $\Omega^2 < \beta g$.

(c) [12 marks] Now suppose that the flow is three dimensional with $\mathbf{u} = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$ below a free surface at $z = \eta(x, y, t)$ on which

$$w = \frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} + v \frac{\partial \eta}{\partial y}, \quad p - p_a = -\gamma \kappa,$$

where γ is the surface tension and κ is the curvature. The primed variables and η are small, so that w'(x, y, z, t) is governed by (\star) for z < 0.

(i) Assuming that $\kappa = \nabla^2 \eta$ after linearization for small η , derive the linearized boundary condition

$$\rho_a \frac{\partial^3 w'}{\partial z \partial t^2} = \rho_a g \left(\frac{\partial^2 w'}{\partial x^2} + \frac{\partial^2 w'}{\partial y^2} \right) - \gamma \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)^2 w' \quad \text{on} \quad z = 0.$$

(ii) Show that there are waves of the form

$$w' = A \exp(i(kx\cos\alpha + ky\sin\alpha - \omega t) + \lambda z)$$

with A, k, α , ω and λ being constant and $\operatorname{Re}(\lambda) \ge 0$ only if the frequency ω is such that ω^2 is a function of the wavenumber k that you should determine.

2020 B5.4/Q1 (a) (i) AU equations satisfied with u = 0, $P = Pe^{BZ}$, $P = Pe^{(Z)}$ provided $\nabla p = -Peg^{R}$ in Z co with P = Pa on Z = 0. [B2] Hence, $p(z) = p_a - \int c(s)gds = p_a + \frac{p_a g}{B} \left(e^{-\beta z} - 1\right)$. (a) (ii) The linearized PDEs are (with y'= u'i+v'j+w'R) $p'_t + w' \frac{dp_0}{dt} = 0, \quad \nabla \cdot y' = 0, \quad p'_t = -\nabla p'_t - p'_g k$ Eliminate vievi: P'ax + P'yy = - Pouta - Pouty (by3) $= P_0 w' z t$ (by @)Since de =- Bp, we are left with $P'_{t} = P_{p}w', P'_{xx} + P'_{yy} = P_{v}w'_{zt}, P_{w}w'_{t} = -P'_{z} - P'_{y}$ Nou diminate p' and p': $(p_0 w'zt)zt = (\partial_2^{i} + \partial_y^{i}) p'zt \qquad (b_y G)$ = $(\partial_2^{i} + \partial_y^{i})(-p_0 w'tt - p'tg) \qquad (b_y G)$ => Powzzett + de w'zet = (dat + dy2) (- Powitt - Bgpw) (by (D)) $[B5] = (w'_{au} + w'_{yy} + w'_{zz})_{H} = -Rg(w'_{au} + w'_{yy} - \frac{1}{9}w'_{ztt})$ (av df. = Rg)(b) $w' = e^{-iAt} f(x) sin\left(\frac{\pi z}{h}\right) \Rightarrow (-iA)^2 \left(f'' - \frac{\pi^2}{h^2}f\right) = -\beta g f''$ $ar f'' + \frac{\pi^2}{h^2(\frac{\beta q}{\lambda^2} - 1)} f = 0 \quad for \quad \lambda > 0 \quad \text{and} \quad \lambda^2 \neq \beta q.$

(i) $\Lambda^2 > \beta g \Rightarrow f'' - \omega^2 f = 0$, $\omega = \frac{\pi}{h(1 - \frac{\beta g}{\Lambda^2})^{1/2}} > 0$ $\Rightarrow f = Ae^{12x} + Be^{-12x} (A, BEG and)$ B(m x = 0 2 w' bodd at as => f(0)=a, f(0) (a = A=0, B=a Hence, $w' = a e^{-int-vx} sin(\frac{nz}{h})$, is as above. (ii) $\underline{\Lambda}^{\prime} \subset \underline{Rg} = \int f'' + \underline{M}^{\prime} f = 0, M = \frac{1}{h(\frac{p_{g}}{\Lambda^{\prime}} - 1)^{1/L}}$ => f = Aeina + Beina (A, BEEmb.) Honce, W'= (A ei(ma-it) + Bei(ma+it)) sin (TZ) B($m = 0 e \operatorname{radiction}(\operatorname{andition} =) f(0) = a, B = 0$ (no initial wave) Hence $W' = a e^{i(ma - nt)} \sin(\frac{mz}{h}), m a above$ [56] (c)(i) B(s => $w' = m_t + u'm_a + v'm_y$, $P_0(m) - P_a + p' = -\delta K m z = m_t$ For small n, Taylor's Theorem gives $w'|_{z=n} = w'|_{z=0} + nw'_{z=0} + h.o.t.$ $p_o(n) = p_o(0) + n \frac{dp}{dz}(0) + h.o.f.$ and similarly for u', v' and p'. Hence, the linewized BC me $w' = m_{t}$, $p' = (agn - V(m_{2}) + m_{y})$ on z = 0where we used the fact $S = \overline{T}m$ after linearizing for making and $P_0(0) = P_n$, $\frac{dP_0(0)}{d\overline{z}} = -P_0(0)g = -P_ng$.

Eliminate ne p': $P_a w'_{ztt} = (\partial a^2 + \partial y^2) P'_t$ (by 5) an 2=0) = $Pag(\partial a^2 + \partial y^2)(mt - P(\partial a^2 + \partial y^2)mt)$ (+1) (by @, P=) = $p_{ny}(\partial_{x^{2}+}\partial_{y^{2}})(w' - \Gamma(\partial_{x^{2}+}\partial_{y^{2}})w')$ (by 7) [SING] giving Pawiztt = Pag(dain dy') w' - V (dain dy') w' on Z = 0 ((1)(ii) substituting w' = A exp{ikloska+iksinky-iwt+ >2} $(-i\omega)^{2} ((ikcos_{k})^{2} + (iksin_{k})^{2} + \lambda^{2}) = -\beta g ((ikcos_{k})^{2} + (iksin_{k})^{2} - \frac{\lambda(-i\omega)}{g})$ $() \Rightarrow \frac{1}{2} (-iw)^{2} = (ikcosx)^{2} + (iksinx)^{2} - P(likcosx)^{2} + (iksinx)^{2})^{2}$ Hence, $w^2(n^2 - \lambda^2 + \beta \lambda) = \beta \beta k^2$, $\lambda w^2 = \beta k^2(1 + \Gamma k^2)$ Eliminate w^2 : $(1+PP^2)(P^2 - \chi^2 + P\lambda) = P\lambda$ => $\lambda^{2} - \frac{\beta \Gamma p^{2}}{1 + \Gamma p^{2}} \lambda - p^{2} = 0$, $2\lambda = \frac{\beta \Gamma p^{2} \pm (1\beta \Gamma p^{2})^{2} + 4(1 + \Gamma p^{2})^{2} p^{2}}{1 + \Gamma p^{2}}$ But aly the tree root is admissible for Re(X)>0, so that @ and @ give the dispersion relation $\{ \mathcal{B}^{T} | \mathbf{k} | + (4(H^{T} \mathbf{k}^{2})^{2} + \mathcal{B}^{2} \mathcal{D}^{2} \mathbf{k}^{2})^{2} \} w^{2} = 2g | \mathbf{k} | (1 + \mathcal{D}^{2})^{2}$ where we divided through by 1k1= Jpt. Thus, $w^2 = \frac{2g[k](HPk^2)^2}{pP[k]+(4(1+Pk^2)^2 + p^2P^2)^{1/2}}$ (+2 [NIS6] where $\Gamma = \overline{\ell_{eag}}$.

2. (a) [10 marks] Small-amplitude waves disturb a barotropic gas contained in a two-dimensional rectangular pipe between rigid walls at x = 0, x = a and free ends at y = 0, y = b maintained at constant pressure p_0 . You may assume that the linearized equations for the potential $\phi(x, y, t)$ for the velocity pertubations and for the pressure p(x, y, t) are given by

$$\frac{\partial^2 \phi}{\partial t^2} = c_0^2 \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right), \qquad p = p_0 - \rho_0 \frac{\partial \phi}{\partial t}$$

in 0 < x < a, 0 < y < b, where the sound speed c_0 and undisturbed density ρ_0 are constant.

- (i) State the boundary conditions for ϕ on the boundary of the pipe.
- (ii) By seeking a separable solution of the form $\phi = e^{-i\omega t}F(x)G(y)$, find the normal modes and the natural frequencies ω .
- (b) [15 marks] Small deflections $\eta(x,t)$ of an elastic beam lying on a shallow water layer satisfy the equation

$$\frac{\partial^2 \eta}{\partial t^2} = \beta^2 \frac{\partial^6 \eta}{\partial x^6} \quad \text{for} \quad -\infty < x < \infty, \ t > 0,$$

where β is a positive constant. The beam is released from rest such that

$$\eta(x,0) = \frac{\alpha}{\epsilon\sqrt{\pi}} e^{-x^2/\epsilon^2}, \qquad \frac{\partial\eta}{\partial t}(x,0) = 0 \quad \text{for} \quad -\infty < x < \infty,$$

where α and ϵ are positive constants.

(i) Show that the solution may be written in the form

$$\eta(x,t) = \int_{-\infty}^{\infty} F(k) \cos(\omega(k)t) e^{ikx} dk,$$

where the function F(k) should be defined and $\omega(k) = \beta |k|^3$.

[You may assume that the Fourier transform of e^{-x^2/ϵ^2} is $\epsilon \sqrt{\pi} e^{-\epsilon^2 k^2/4}$.]

(ii) Use the method of stationary phase to show that if ϵ is sufficiently small then

$$\eta(x,t) \sim \frac{A}{(xt)^{1/4}} \cos\left(\frac{Bx^{3/2}}{t^{1/2}} - \frac{\pi}{4}\right)$$

as $x, t \to +\infty$ with x/t held constant, where the constants A and B should be determined.

[You may assume that if f(k) and $\psi(k)$ are sufficiently well behaved, and $\psi(k)$ is real-valued and such that $\psi'(k)$ has a single zero at k_* , then

$$\int_{-\infty}^{\infty} f(k) \mathrm{e}^{\mathrm{i}\psi(k)t} \,\mathrm{d}k \sim f(k_*) \mathrm{e}^{\mathrm{i}(\psi(k_*)t \pm \pi/4)} \sqrt{\frac{2\pi}{|\psi''(k_*)|t}} \quad \text{as} \quad t \to \infty.$$

where the \pm takes the sign of $\psi''(k_*)$.]

2020 85.4/92 (a)(i) No normal flow through rigid walls => \$x = 0 on x=0,a. Since $p = p_0 - p_0 \phi_t$, the condition of constant [B2] pressure p_0 m the free ends => $\phi_t = 0$ on y = 0, b. (a)(ii) Seek nontrivial separable solution $\phi = e^{-\iota \omega t} F(x) G(y)$. Wave equation => $-\frac{\omega^2}{c_0^2} - \frac{F''(x)}{F(x)} - \frac{F''(y)}{G(y)}$ (Forto) LHS ind. y & RHS ind. x => LHS = RHS ind. Duey and hence constant. Hence, $\frac{F''}{F} = -\lambda^2$, $\frac{G''}{G} = -\lambda^2$, $W^2 = C_0^2(\lambda^2 + \mu^2)$, where A n 6 IR and the signs of the constants have been chosen to give the oscillatory structions required for nontrivial solutions for which the [B|S4] BLS in (a)(i) require F'(0) = F'(a) = 0, G(0) = G(6) = 0. For $\lambda = 0$, F = constant, but for $\lambda \neq 0$, F = Acoshot + Brinks(A, BECarb.), so B(s \Rightarrow B=0 and $\lambda a = m\pi$ with $m \in \mathbb{Z} \setminus \{0\}$. Combo \Rightarrow F $\propto cos(\frac{m\pi s}{a}), \lambda = \frac{m\pi}{a}, m \in \mathbb{Z}$. +1+2 For n = 0, c = 0, but for $n \neq 0$, $c = (cos)y + Dsin_{y}$ $(c, D \in \mathbb{R}$ and), so $B(s \Rightarrow) (= 0, Mb = n\pi$ with $n \in \mathbb{Z} \mid \{0\}$. Hence, $c \neq sin(\frac{n\pi y}{b}), m = \frac{n\pi}{b}, n \in \mathbb{Z} \mid \{0\}$. (ombo => normal modes are $\phi = Ee^{i\omega t} cos(\frac{m\pi x}{6})sin(\frac{m\pi y}{6})$ (EEE and) with natural prequencies w s.t. + | + | $[B|S4] W' = C_{0}^{TT'}\left(\frac{m^{2}}{a^{2}} + \frac{m^{2}}{b^{2}}\right) for m \in \mathbb{Z}, n \in \mathbb{Z} \{0\}.$

(b)(i) Family transform in $\alpha : \hat{m}(k,t) = \int m(x,t)e^{-ik\alpha} dx$. PDE => mit = p'(ik) m = -p' pm for t>0. $\frac{I(s \Rightarrow)}{(hint)} \hat{m} = x e^{-\epsilon^2 k^2/4}, \hat{m}_t = 0 \text{ at } t = 0.$ +3 Hence, $\hat{m}(\mathbf{k},t) = A(\mathbf{k})\cos(\omega(\mathbf{k})t) + B(\mathbf{k})\sin(\omega(\mathbf{k})t)$, where $A(\mathbf{k})$, $B(\mathbf{k})$ are arbitrary and $\omega^2 = \beta^2 \beta^6$, so that $\omega(\mathbf{k}) = \beta |\mathbf{k}|^3 \omega \log_2$. $T(s \Rightarrow A(k) = \angle e^{-\varepsilon^2 k^2/4}, B(k) = 0.$ + 2 Inverse Fainer transform $m(x,t)=\frac{1}{2\pi}\int \hat{m}(k,t)e^{ikx}dk$ Hence, $m(x,t) = \int F(n) \cos(\omega(n)t) e^{iRx} dR$, where $F(R) = \frac{\chi}{2\pi} e^{-\epsilon^2 R^2/4}$ and $\omega(R) = \beta |R|^3$. [56] (b)(ii) Let $\frac{x}{t} = V = O(1)$ as $x, t \rightarrow +\infty$ and use $\cos(\omega t) = \frac{e^{i\omega t} i\omega}{2}$ $\Rightarrow n(Vt,t) = \int_{1}^{\infty} F(k) \left(e^{iwt} + e^{iwt} \right) e^{ikVt} dk$ =) $m(Vt,t) = \frac{1}{2}(I_{+}(t) + I_{-}(t))$, where $I_{\pm}(t) = \int^{\infty} F(r) e^{i\psi_{\pm}(r)t} dr, \quad I$ $\psi_{\pm}(t) = kV \mp \omega(k).$ [B2] Can now apply the method of stimmy phase to II(F), The main cartibutian to $I_{\pm}(t)$ as $t \rightarrow +\infty$ comes from wavenumbers $R = R_{\pm}^{\pm}$, where the phase $\Psi_{\pm}(R)$ is stationary, i.e. $\Psi_{\pm}'(R_{\pm}^{\pm}) = 0$.

(alculate: $w = \beta |k|^3 \Rightarrow w'(k) = 3\beta k |k|, w''(k) = 6\beta |k|.$ Hence $\Psi_{\pm}(R_{\pm}^{\pm}) = 0 \Rightarrow \forall \pm w'(R_{\pm}^{\pm}) = 0 \Rightarrow \exists \beta R_{\pm}^{\pm} | R_{\pm}^{\pm} | = \pm V,$ giving the critical wavenumbers $R_{\pm}^{\pm} = \pm \left(\frac{V}{\exists \beta}\right)^{1/2}$ +3 These are each simple zeros because $\psi_{\pm}^{*}(n_{\pm}) = 6\beta |R_{\pm}| \pm 0$ and ψ_{\pm} is trice dsly diff, while F(k) is a diff and decays exponentially rapidly as $k \rightarrow \pm \infty$, so hint applies giving ginng $I \neq (t) \sim F(n_{*}) e_{2}p \{ i(\Psi_{4}(n_{*})t \neq T_{4})\} (\frac{2\pi}{|\Psi_{4}'(n_{*})|+})$ as $t \rightarrow \infty$ because $sgn(t_{\pm}''(n_{\pm})) = \mp 1$ [++1] Calculate: $F(R_{\star}^{\pm}) = \frac{\alpha}{2\pi} e^{-\epsilon^2 V^2/12\beta}$ $\frac{\Psi_{\pm}(n_{\pm}^{\pm})}{\Psi_{\pm}(n_{\pm}^{\pm})} = \pm \frac{\nabla^{2h}}{(2p)^{1/2}} \mp \beta \left| \frac{\nabla^{1/2}}{(2p)^{1/2}} \right|^{2} = \pm \frac{2\nabla^{2h}}{3(2p)^{1/2}}$ $\left| \Psi_{\pm}^{11}(n_{\pm}^{\pm}) \right|^{2} = 6\beta \left(\frac{\nabla}{3p} \right)^{1/2} = 2(3\beta V)^{1/2}$ Hence, $I_{\pm}(t) \sim \frac{\alpha}{2\pi} e^{-z^{2}V^{2}/12\beta} e^{2p} \left\{ \pm i \left(\frac{2V^{3}h_{\pm}}{3(3\beta)^{12}} - \frac{17}{4} \right)^{2} \left(\frac{277}{2(3\beta)^{12}} \right)^{2} \right\}$ as $t \to \infty$, giving $m(Vt,t) \sim \frac{2e^{-\epsilon^2 V'/12\beta}}{(4\pi(3\beta V)^{1/2}t)^{1/2}} \cos\left(\frac{2V^{3}ht}{3(3\beta)^{1/2}} - \frac{17}{4}\right)$ Finally, e= EVV/12B-1 for E sufficiently small and replace V with x/t elsewhere to obtain $m(a,t) - \frac{A}{(a+1)!4} \cos\left(\frac{2x^{2}h}{3(3pt)!2} - \frac{\pi}{4}\right)$ [N|S7] as $z, t \to + 00$ with $\frac{x}{E} = O(1)$, where $A = \frac{\alpha}{(4\pi)^{1/2}(3E)^{1/4}}$.

3. (a) [12 marks] Shallow water of uniform depth h₀ is held at rest in x < 0 by a dam at x = 0. The dam is suddenly removed at time t = 0, so that the water flows into x > 0 forming a shallow layer of depth h(x,t) and horizontal fluid velocity u(x,t) under the action of gravity with acceleration g. You may assume that the *Riemann invariants* u ± 2c are conserved along *characteristics* satisfying dx/dt = u±c, where the wave speed c = √gh. (i) Show that

$$u = 0, \quad c = c_0 \quad \text{for} \quad x < -c_0 t, \ t > 0,$$

where $c_0 = \sqrt{gh_0}$. Derive the solution given by

$$u = \frac{2}{3} \left(c_0 + \frac{x}{t} \right), \quad c = \frac{1}{3} \left(2c_0 - \frac{x}{t} \right) \quad \text{for} \quad -c_0 t < x < 2c_0 t, \ t > 0,$$

explaining why it is not valid for $x > 2c_0 t$, t > 0.

- (ii) Find the time taken by a fluid element initially at x = -a < 0 to reach x = 0.
- (b) [13 marks] Now suppose that shallow water of uniform depth h_0 is held at rest in x > 0by a dam at x = 0. At time t = 0 the dam suddenly starts to move into the water and to leak, so that $h(u-U) = -\lambda h^2$ on the dam at x = Ut for t > 0, where U and λ are positive constants. Suppose that the flow separates into a region of uniform velocity and uniform depth βh_0 in Ut < x < Vt and a stationary region of uniform depth h_0 in x > Vt, with a shock at x = Vt moving at constant speed V. You may assume the *Rankine-Hugoniot* conditions,

$$[h(u-V)]_{-}^{+} = 0, \qquad \left[h(u-V)^{2} + \frac{gh^{2}}{2}\right]_{-}^{+} = 0,$$

where $[]_{-}^{+}$ denotes the change in the quantity from one side of the shock to the other.

(i) Find the shock speed V in terms of β and $c_0 = \sqrt{gh_0}$, and deduce that

$$\frac{(\beta-1)\sqrt{\beta+1}}{\sqrt{2\beta}} = \frac{U}{c_0} - \frac{\lambda h_0}{c_0}\beta.$$

Using a diagram explain why this equation has a unique positive root for β .

(ii) Show from first principles that the net rate at which energy flows out of the moving shock is given by

$$\rho g h_0^2 V q(\beta),$$

where ρ is the density and $q(\beta)$ is a function of β that you should determine. Hence explain why the condition $U > \lambda h_0$ is necessary for the shock to be physical.

B5.4/2020/Q3 (a)(i) x = -cot $\Pi: \{-\cot x \cdot c \cdot c \cdot c \cdot t > 0\} = x = 2c_0 t$ I: {>12- 60t, t>03 田: {sc>2cot, t>03 u = 0, $c = c_0 = J_{ghis} on \{x : 0, t = 0\}^0$ Region I: Where (+ char's from {x 20, t=0} intersect. -10 $U \pm 2c = \pm 2c_0 = 0$, $c = c_0$, Hence such $(\pm charce)$ are straight lines with dx/df = t co and therefore map [32] out 2 2-cot, t>0, i.e. u=0, c=co in regim I. Region II: Where a C- char intersects the family of C+ char! from \$260, t=0}, we have u-2c = const. and n+2c=2co on the c- chars; hence a and c are constant on it and it is therefore straight. To avaid it - | crossing other L- char? in regions I and II, it must originate from the argin and therefore have slope silt = u-c. Solving $u + 2c = 2c_0$, u - c = 2/t gives $u = \frac{2}{3}(c_0 + \frac{1}{2}/t)$ and i = 3(200-21t) in region II, which therefore maps aut - ist i x i 200t, t'>0 because we require c, h >, 0, i.e. expansion fan tarminates on x = 200t where c=h=0. [B|SS] Region III: u and a undefined as there is no water. (a)(ii) The finic element at x = - a < 0 at t = 0 mores with the flar according to the ODE $\frac{dx}{dt} = u(x, t) = \begin{cases} 0 & for x e - c_0 t, t > 0, \\ \frac{2}{3} l(x + \frac{3}{4}) & for - c_0 t e e e e e e, t > 0. \end{cases}$ +7

Hence the element does not more with x = -a until t = a/co. After this it moves according to (+ $\frac{dx}{dt} - \frac{2}{3t}x = \frac{2}{3}(0) \Longrightarrow \frac{d}{dt}\left(\frac{x}{t^{1/2}}\right) = \frac{2(0)}{3t^{2/3}}$ with $x = -\alpha$ at $t = \alpha | co;$ thus $\frac{1}{t^{2/3}} = 2c_0 t^{1/3} + A$ where $-\alpha \left(\frac{C_0}{\alpha}\right)^{2/3} = 2c_0 \left(\frac{\alpha}{c_0}\right)^{1/3} + A_{,giving} A = -3a^{1/3}c_0^{2/3}$. The element therefore reaches the origin at time $t = t_c$ [N5] where $0 = 2c_0 t_c^{1/3} + A = 2t_c^{1/3} = -A/2c_0 = 2t_c = \frac{27a}{8c_0}$ (b) IT The Bt on the dam says that the mass flux of water lost through the dam, i.e. - philo-U) lost where pis density, is proportional to the force exerted by the water on the dam, i.e. p-pain dz=Spgzdzxh. $\frac{1}{1} h_{-}=Bho, u_{-}=?$ $h_{+}=ho, u_{+}=0$ $ut \qquad Vt \qquad > 1$ (b)(i) Rankine-Huganot anditions give Bho(u--V) = - hoV, Bho(u-v)+ + + gBho= hov+ + + gho => u_-V=-V, P(-V)+ ±gP2ho = V2+ ±gho => $u_{-} = (1 - \frac{1}{p})V$, $V^{2}(1 - \frac{1}{p}) = \frac{1}{2}c_{0}^{2}(\beta^{2} - 1)$ +.1 [B[S] so taking two root gives $V = \frac{C_0}{2^{1/2}} B^{1/2} (B+1)^{1/2}$

The BC on the dam implies u_- U = - >h_, giving $U - \lambda \beta h_0 = u_- = \frac{\beta - 1}{\beta} V = c_0 \frac{(\beta - 1)(\beta + 1)^{1/2}}{(2\beta)^{1/2}}$ i.e. $(P-1)(P+1)^{1/2} = \frac{U}{CO} - \frac{Yho}{CO} P.$ (+) Since the LHS A with \$>0 and RHS with \$>0 as illustrated, I! root B = Be to (+) as illustrated. c_{o} r_{ho} β β [51/2] (b)(ii) Rate at which energy flows out of a stationary shock is $Q = \left[\int_{a}^{b} \left(\frac{1}{2} p u^{2} + p g z \right) u dz + \int_{a}^{b} \left(p - p_{atm} \right) u dz \right]_{a}^{\dagger}$ Rote at which KE_e PE A Rate at which work is done by pressure. Since P-Patm = pgz in shallow water theory and [hu] = 0 $Q = \left[\pm phu^3 + pgh^2 n \right]^{\dagger} = ph_{\pm}u_{\pm} \left[\pm u^2 + gh \right]^{\dagger}$ Hence for our mining shak, replacing a with u-V, $Q = ph_{(u-v)} [\frac{1}{2} (u-v)^{2} + gh]^{+} = ph_{0}(-v) (\frac{1}{2}v^{2} + gh_{0} - \frac{1}{2}(-\frac{v}{\beta})^{2} - g\betah_{0})$ $[SIN5] = Q = -phov(\frac{1}{2}\frac{gho}{2}B(P+1)(1-\frac{1}{p^{2}})+gho(1-p)) = Pghov(\frac{1-p}{2})^{S}$ The shock can only be physical if energy lost as fluid crosses the shock lie energy cannot be created), which requires q 20. But q 20 [N2] => Fo> 1 => Tho > Bc>1 (prom diagram) => U>Nho.

3. A stream flowing over a horizontal surface is governed by the shallow water equations

$$\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} = 0, \qquad \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} = 0,$$

where u(x,t) is the fluid velocity in the x direction, h(x,t) is the depth of the stream and g is the acceleration due to gravity.

(a) [6 marks] Show that the shallow water equations can be rewritten as

$$\left(\frac{\partial}{\partial t} + (u \pm c)\frac{\partial}{\partial x}\right)(u \pm 2c) = 0,$$

where $c = \sqrt{gh}$, and state the significance of the quantities $Q_{\pm} = u \pm 2c$ and the curves $dx/dt = u \pm c$.

At t = 0, a previously uniform stream u = 1, h = 1 is suddenly blocked by a dam at x = 0, so that u(x, 0) = h(x, 0) = 1, but u(0, t) = 0 for t > 0. You may assume that g > 1.

(b) [12 marks] Concentrate on x > 0, t > 0. By considering the characteristics that come from $\{t = 0, x > 0\}$, and $\{x = 0, t > 0\}$, deduce that the value of c immediately downstream of the dam is $c(0,t) = \sqrt{g} - \frac{1}{2}$. Also considering characteristics that come from $\{x = 0, t = 0\}$, deduce that the fluid velocity is given by

$$u(x,t) = \begin{cases} 0 & 0 < x < \left(\sqrt{g} - \frac{1}{2}\right)t, \\ \frac{2}{3}\left(\frac{x}{t} - \sqrt{g}\right) + \frac{1}{3} & \left(\sqrt{g} - \frac{1}{2}\right)t < x < \left(\sqrt{g} + 1\right)t, \\ 1 & \left(\sqrt{g} + 1\right)t < x, \end{cases}$$

and find a similar expression for c(x, t).

(c) [4 marks] In x < 0, a shock propagates upstream with speed V, separating the uniform stream u = 1, h = 1 from a region of stationary water with depth $h_0 > 1$ adjacent to the dam. Show that the shock speed is

$$V = \frac{1}{h_0 - 1},$$

and that h_0 satisfies

$$2h_0 = g(h_0 + 1)(h_0 - 1)^2$$

(d) [3 marks] Combining your solutions from parts (b) and (c), draw a sketch of the height profiles h(x, t) (as a function of x) at t = 1 and at t = 2, on the same pair of axes.

[You may assume the conditions for a shallow water shock moving with velocity -V,

$$[h(u+V)]_{-}^{+} = \left[h(u+V)^{2} + \frac{1}{2}gh^{2}\right]_{-}^{+} = 0,$$

where $[]_{-}^{+}$ denotes the change in the quantity from one side of the shock to the other.]

2014 Q3(d) Not quite sure how to combine previous parts? Was happy with all previous parts however.

2. A barotropic gas with pressure-density relation $p = P(\rho)$ flows steadily past a thin symmetric wing, which occupies the region $|x| \leq a$ and has upper and lower surfaces given by $y = \pm f(x)$, where $f(\pm a) = 0$ and $|f| \ll a$. The flow is governed by Euler's equations for an inviscid compressible fluid,

$$\nabla \cdot (\rho \mathbf{u}) = 0, \qquad \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p.$$

Far upstream of the wing the flow is uniform, with speed U in the x direction, density ρ_0 , pressure $p_0 = P(\rho_0)$, and sound speed given by $c_0^2 = P'(\rho_0)$.

(a) [10 marks] Assuming the flow is irrotational and writing $\mathbf{u} = U\hat{\mathbf{e}}_x + \nabla\phi$, find a linearised expression for the pressure perturbation in terms of the velocity potential, and show that $\phi(x, y)$ satisfies

$$(M^2 - 1)\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial y^2},$$

where the Mach number M should be defined. Also derive the linearised boundary conditions

$$\frac{\partial \phi}{\partial y} = \pm U f'(x)$$
 on $y = 0\pm$, $|x| \leqslant a$,

where $y = 0\pm$ denotes the boundary approached from above and below, respectively. Briefly describe the conditions that should be applied at infinity if M < 1, and explain why an appropriate condition in the case M > 1 is $\phi \to 0$ as $x \to -\infty$.

- (b) [8 marks] Suppose now that M > 1. With the aid of a diagram to identify distinct regions of the flow, find the solution for $\phi(x, y)$.
- (c) [7 marks] Suppose further that $f(x) = b(1 x^2/a^2)$. Sketch the streamlines of the flow, and calculate the drag force D on the wing. Show that D is minimised (for M > 1) when $U = \sqrt{2} c_0$.

[You may assume the expression

$$D = \int_{-a}^{a} f'(x) \left[p(x, 0-) + p(x, 0+) \right] \, \mathrm{d}x,$$

for the drag force on the wing.]

Would it be possible to go over 2015 q2c please?

2015

- 3. A homentropic gas with pressure-density relation $p = k\rho^{\gamma}$ occupies a one-dimensional tube. The gas is initially at rest with density ρ_0 and pressure p_0 , and lies to the right of an impermeable piston at x = 0. A measuring device is placed in the tube ahead of the piston, at x = L.
 - (a) [3 marks] Briefly describe the physical principles underlying the Rankine-Hugoniot conditions for a shock moving with speed V,

$$\left[\rho(u-V)\right]_{-}^{+} = \left[p + \rho(u-V)^{2}\right]_{-}^{+} = \left[\frac{1}{2}(u-V)^{2} + \frac{\gamma p}{(\gamma-1)\rho}\right]_{-}^{+} = 0.$$

(b) [10 marks] For t > 0 the piston is pushed forwards with constant speed U, causing a shockwave to travel ahead of it.

Use the Rankine-Hugoniot conditions to show that the speed of the shock is given by

$$V = \frac{(\gamma+1)U}{4} \left[1 + \left(1 + \frac{16c_0^2}{(\gamma+1)^2 U^2} \right)^{1/2} \right],$$

where $c_0^2 = \gamma p_0 / \rho_0$.

Sketch the density $\rho(L,t)$ measured as a function of time at x = L, labelling all the important points on your graph. (Consider only t < L/U.)

(c) [12 marks] Now suppose that instead of being pushed forwards, the piston is pulled backwards for t > 0, with constant speed U in the negative x direction. Assuming $U < 2c_0/(\gamma + 1)$, and with the aid of a characteristic diagram to help find the solution c(x, t), carefully sketch the sound speed c(L, t) measured as a function of time at x = L, labelling all the important points on your graph. What is different if $U > 2c_0/(\gamma + 1)$?

[You may assume that the equations of one-dimensional homentropic gas dynamics,

$$\frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + \rho\frac{\partial u}{\partial x} = 0, \qquad \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{1}{\rho}\frac{\partial p}{\partial x} = 0,$$

 $can \ be \ written \ as$

$$\left(\frac{\partial}{\partial t} + (u \pm c)\frac{\partial}{\partial x}\right)\left(u \pm \frac{2c}{\gamma - 1}\right) = 0,$$

where $c^2 = \gamma p / \rho$.]

2015 85.4/03

		√ _≥ [?] .			
(b) <u> </u>				1	
	h_= N	4=0	RHC =>	$l_{-} = l_{0} \frac{1}{1 + l_{0}}$	$> l_o = l$
\rightarrow	(-=?	l+ = lo		1- 1/	L)))
	P_ = ?	P+ = Po		as V>U	

$$2015|03|$$

$$0 + 2c = 2co$$

$$C_{1}$$

$$x = \lambda(+)$$

$$0 + 2c = 2co$$

$$C_{2}$$

$$x = \lambda(+) + 2c = \lambda(+)$$

$$x = \lambda(+) + 2c = \lambda(+)$$

$$x = \lambda^{-1}$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$

$$(-)$$