B4.4 Fourier Analysis Consultation Session 1 TT21

Example 1 Consider the following differential operators on \mathbb{R}^2 :

$$A(\partial) = \partial_1 - \partial_2^2 + \partial_2$$

$$B(\partial) = \partial_1^2 - \partial_2^2 + \partial_1$$

$$C(\partial) = -\partial_1^2 - \partial_2^2 + \lambda^2$$

where $\lambda > 0$. For each of them decide whether or not it is elliptic.

Example 2 Let $f \in L^2(\mathbb{R}^2)$ and $\lambda > 0$. Prove that the PDE

$$-\Delta u + \lambda^2 u = f$$

has a unique solution $u\in \mathscr{S}'(\mathbb{R}^2)$ and that

$$\min\{2\pi, \frac{2\pi}{\lambda^2}\}\|f\|_2 \le \|u\|_{\mathrm{H}^2} \le \max\{2\pi, \frac{2\pi}{\lambda^2}\}\|f\|_2$$

B4.4 Fourier Analysis Consultation Session 1 TT21

Example 3 Prove that the differential operator $-\Delta + \lambda^2$ ($\lambda > 0$) admits a unique fundamental solution $E \in \mathscr{S}'(\mathbb{R}^2)$. Use it to prove that the differential operator is hypoelliptic.

Example 4 Let Ω be an open nonempty subset of \mathbb{R}^2 , $\lambda > 0$ and $g \in L^2_{loc}(\Omega)$. Show that all solutions to

$$-\Delta v + \lambda^2 v = g$$
 in $\mathscr{D}'(\mathbb{R}^2)$

are regular distributions with $\partial^{\alpha} v \in L^2_{loc}(\Omega)$ for all multi-indices α of length $|\alpha| \leq 2$.