B4.4 Fourier Analysis Consultation Session 2 TT21

Example 1 Calculate the Fourier transform of the function $e^{2x}H(-x)$, where H denotes the Heaviside function.

Let $\varepsilon>0$ and consider $\frac{1}{x+\mathrm{i}\varepsilon}.$ Explain why it is a tempered distribution on $\mathbb R$ and prove that the limit

$$\frac{1}{x+\mathrm{i}0} := \lim_{\varepsilon \searrow 0} \frac{1}{x+\mathrm{i}\varepsilon}$$

exists in $\mathscr{S}'(\mathbb{R})$. Calculate its Fourier transform.

Example 2 Let $p(x) \in \mathbb{C}[x]$ be a polynomial of one indeterminate.

Explain why p(x) can be considered a tempered distribution on \mathbb{R} .

Calculate the Fourier transforms of p(x) and of p(x)H(x), where H(x) is Heaviside's function.

Let $\xi_0 \in \mathbb{R}$. Find all $u \in \mathscr{S}'(\mathbb{R})$ satisfying $\operatorname{supp}(\widehat{u}) \subseteq \{\xi_0\}$. Find all distributions $v \in \mathscr{S}'(\mathbb{R})$ satisfying $\operatorname{supp}(\widehat{v}) \subseteq \{0,1\}$.

Example 3 Let H be the Heaviside function. Find the Fourier transform of $e^{-2x}H(x)$. Next, find the Fourier transform of $\frac{1}{4+x^2}$.

Example 4 Calculate the Fourier transform of the function $f(x) = e^{-|x|}$ on \mathbb{R} , and use it to establish the identity

$$e^{-\lambda} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + \xi^2} e^{i\lambda\xi} d\xi$$

for $\lambda \geq 0$. Next, use this together with $\frac{1}{1+\xi^2}=\int_0^\infty {\rm e}^{-(1+\xi^2)t}\,{\rm d}t$ to show that

$$\mathrm{e}^{-\lambda} = \int_0^\infty \frac{1}{\sqrt{\pi t}} \mathrm{e}^{-t - \frac{\lambda^2}{4t}} \, \mathrm{d}t \text{ for } \lambda \ge 0.$$

Calculate the Fourier transform of $\mathbb{R}^n \ni x \mapsto e^{-t|x|}$, where $n \ge 2$ and t > 0 is a parameter.