B4.4 Fourier Analysis Consultation Session 3 TT21

Example 1 Show that $(\mathbf{1}_{(-1,1)} * \mathbf{1}_{(-1,1)})(x) = (2 - |x|)^+$ for all $x \in \mathbb{R}^n$, where $t^+ := \max\{t, 0\}$. Hence, or otherwise, show that

$$\mathcal{F}_{x \to \xi} \left(\left(2 - |x| \right)^+ \right) = 4 \mathrm{sinc}^2 \xi,$$

where sinc is sinus cardinalis. Use the Plancherel theorem to calculate the integral

$$\int_0^\infty \frac{\sin^2(ax)\sin^2(bx)}{x^4} \,\mathrm{d}x.$$

•.

for all $a, b \in \mathbb{R}$.

Example 2 Prove the two inclusions (i) $\bigcap_{s \in \mathbb{R}} H^{s}(\mathbb{R}^{n}) \subset C^{\infty}(\mathbb{R}^{n})$ (ii) $\mathscr{E}'(\mathbb{R}^{n}) \subset \bigcup_{s \in \mathbb{R}} H^{s}(\mathbb{R}^{n}).$

Explain why both inclusions are strict.

Example 3 Prove that for $s \in (0, 1)$ and $f \in L^2(\mathbb{R}^n)$ we have that $f \in H^s(\mathbb{R}^n)$ if and only if

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x+y) - f(x)|^2}{|y|^{n+2s}} \, \mathrm{d}x \, \mathrm{d}y < \infty.$$

Hint: You may assume without proof that a continuous function $h: \mathbb{R}^n \to \mathbb{R}$ has the form $h(\xi) = h_0(|\xi|)$, where $h_0: [0, \infty) \to \mathbb{R}$ is a continuous function, provided $h(\theta\xi) = h(\xi)$ holds for all $\xi \in \mathbb{R}^n$ and $\theta \in SO(n)$.