Fourier Analysis

Problem Sheet 1

Problem 1. Consider the following four functions on \mathbb{R} :

$$f_1(x) = e^{-x^2 + 2x}, \quad f_2(x) = e^{-x}H(x), \quad f_3(x) = e^{-|x|}, \quad f_4(x) = \frac{1}{x^2 + 1},$$

where H is Heaviside's function.

(i) Verify that these functions all belong to $L^1(\mathbb{R})$. Which of them belong to $\mathscr{S}(\mathbb{R})$ and which to $L^2(\mathbb{R})$?

(ii) Calculate the Fourier transforms of these functions. Deduce Laplace's integral

$$\int_0^\infty \frac{\cos(x\xi)}{1+x^2} \,\mathrm{d}x = \frac{\pi}{2} \mathrm{e}^{-|\xi|} \quad (\xi \in \mathbb{R}).$$

(iii) For each of the Fourier transforms \hat{f}_j , determine whether it is a function in $\mathscr{S}(\mathbb{R})$, in $L^1(\mathbb{R})$, or in $L^2(\mathbb{R})$.

Problem 2. Let $f \in L^1(\mathbb{R}^n)$ and denote by $(\mathbf{e}_j)_{j=1}^n$ the standard basis for \mathbb{R}^n . For $\xi \in \mathbb{R}^n$ we write $\xi = \xi_1 \mathbf{e}_1 + \cdots + \xi_n \mathbf{e}_n$. Show that if $\xi_j \neq 0$, then

$$\hat{f}(\xi) = -\int_{\mathbb{R}^n} f\left(x + \frac{\pi}{\xi_j} \mathbf{e}_j\right) \mathrm{e}^{-ix\cdot\xi} \,\mathrm{d}x,$$

and conclude that

$$\left|\hat{f}(\xi)\right| \leq \frac{1}{2} \int_{\mathbb{R}^n} \left|f\left(x\right) - f\left(x + \frac{\pi}{\xi_j} \mathbf{e}_j\right)\right| \mathrm{d}x.$$

Using that $\mathscr{D}(\mathbb{R}^n)$ is dense in $L^1(\mathbb{R}^n)$ deduce the *Riemann-Lebesgue Lemma*: \hat{f} is continuous and $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

Problem 3. Let t > 0 and put $G_t(x) = e^{-t|x|^2}$ for $x \in \mathbb{R}^n$. Use the Fourier transform to find a formula for the convolution $G_s * G_t$ for all s, t > 0.

Problem 4. Let a > 0 and $b, c \in \mathbb{R}$. Put $g(x) = e^{-ax^2 + bx + c}$, $x \in \mathbb{R}$. Calculate \hat{g} .

Problem 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function satisfying $|f(x)| \leq e^{-|x|}$ for almost all $x \in \mathbb{R}$. Prove that the Fourier transform \hat{f} cannot have compact support unless f(x) = 0 for almost all $x \in \mathbb{R}$. (*Hint: Use a Differentiation Rule to see that* \hat{f} *is* C^{∞} *and consider a suitable Taylor expansion.*)

Problem 6. (Optional) Let $\phi \in \mathscr{S}(\mathbb{R}^n)$. Prove one of the following assertions and then derive the other:

- (i) If $\phi(0) = 0$, then we may write $\phi = \sum_{j=1}^{n} x_j \phi_j$ with $\phi_j \in \mathscr{S}(\mathbb{R}^n)$.
- (ii) If $\int_{\mathbb{R}^n} \phi \, dx = 0$, then we may write $\phi = \sum_{j=1}^n \partial_j \phi_j$ with $\phi_j \in \mathscr{S}(\mathbb{R}^n)$.

Problem 7. (Optional) Let $f(x) = e^{-|x|}$, $x \in \mathbb{R}^n$. (a) Compute the Fourier transform $\hat{f}(\xi)$ when n = 1. Deduce for $\lambda \ge 0$ the identity

$$\mathrm{e}^{-\lambda} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+|\xi|^2} \mathrm{e}^{i\lambda\xi} \,\mathrm{d}\xi.$$

(b) Using $\frac{1}{1+|\xi|^2} = \int_0^\infty e^{-(1+|\xi|^2)t} dt$ and (a) show that for each $\lambda \ge 0$ the identity

$$\mathrm{e}^{-\lambda} = \int_0^\infty \frac{1}{\sqrt{\pi t}} \mathrm{e}^{-t - \frac{\lambda^2}{4t}} \,\mathrm{d}t$$

holds.

(c) Compute the Fourier transform $\hat{f}(\xi)$ in the general *n*-dimensional case, for instance by use of the formula from (b) with $\lambda = |x|$.