Fourier Analysis

HT21

Problem Sheet 3

Problem 1. Let $f \in L^p(\mathbb{R}^n)$ for some $p \in [1, \infty]$. Show that

$$g_j(\xi) = \int_{B_j(0)} f(x) e^{-i\xi \cdot x} dx \quad (j \in \mathbb{N})$$

converge to \widehat{f} in the sense of $\mathscr{S}'(\mathbb{R}^n)$ as $j \to \infty$. Hence find the limit of

$$\int_{-j}^{j} x^k e^{-i\xi x} dx$$

in $\mathscr{S}'(\mathbb{R})$ as $j \to \infty$ for each $k \in \mathbb{N}_0$.

Problem 2. Let $p(x) \in \mathbb{C}[x]$ be a polynomial in n variables. Find the Fourier transform \widehat{p} . Find all distributions $u \in \mathscr{S}'(\mathbb{R}^n)$ satisfying $\operatorname{supp}(\widehat{u}) \subseteq \{0\}$. (*Hint:* Use a theorem about distributions with support in $\{0\}$ from B4.3.)

Problem 3. Prove that e^x is not in $\mathscr{S}'(\mathbb{R})$ but that $e^x e^{ie^x}$ is in $\mathscr{S}'(\mathbb{R})$.

Problem 4.

 $-n-\alpha$.

(a) Recall that we defined homogeneity of distributions $u \in \mathscr{D}'(\mathbb{R}^n)$ in B4.3 by declaring that u is homogeneous of degree α , where $\alpha \in \mathbb{R}$, if $d_r u = r^\alpha u$ holds for each r > 0. Show that $u \in \mathscr{S}'(\mathbb{R}^n)$ is homogeneous of degree α if and only if \widehat{u} is homogeneous of degree

(b) A distribution $u \in \mathscr{S}'(\mathbb{R}^n)$ is radial if $\theta_* u = u$ for each $\theta \in \mathrm{O}(n)$.

Show that $u \in \mathscr{S}'(\mathbb{R}^n)$ is radial if and only if \widehat{u} is radial. Next, show that if u is a regular distribution, then u is radial if and only if u(x) = f(|x|) a.e., where $f : \mathbb{R} \to \mathbb{C}$ is a univariate function. (You may use elementary properties of orthogonal matrices without proof.)

(c) Use the Fourier transform to show that there exists a constant $c \in \mathbb{R}$ (that you should not find) so that c/|x| is a fundamental solution to the Laplacian on \mathbb{R}^3 . (*Hint:* $|\xi|^{-2} \in L^1(\mathbb{R}^3) + L^2(\mathbb{R}^3)$.)

Problem 5. [The Wiener algebra $\mathcal{F}(L^1)$ is strictly smaller than C_0]

(a) Prove that for 0 < s < t we have

$$\left| \int_{s}^{t} \frac{\sin(\xi)}{\xi} \, \mathrm{d}\xi \right| \le 4.$$

(b) Show that if $f\in \mathrm{L}^1(\mathbb{R})$ is an odd distribution (so $\widetilde{f}=-f$), then

$$\left| \int_{s}^{t} \frac{\widehat{f}(\xi)}{\xi} \, \mathrm{d}\xi \right| \le 4\|f\|_{1}.$$

(c) Let $g \in C_0(\mathbb{R})$ be an odd function so that $g(\xi) = 1/\log(\xi)$ for $\xi \geq 2$. Show that there does not exist an integrable function whose Fourier transform is g.

Problem 6. [S. Bernstein's inequality]

Let $f \in L^{\infty}(\mathbb{R}^n)$ and assume that \widehat{f} is supported in the closed ball $\overline{B_r(0)}$. Prove that $f \in C^{\infty}(\mathbb{R}^n)$ and that for each multi-index $\alpha \in \mathbb{N}_0^n$ there exists a constant $c = c(\alpha, n) \geq 0$ such that

$$\|\partial^{\alpha} f\|_{\infty} \le cr^{|\alpha|} \|f\|_{\infty}.$$

(Hint: Let $h \in \mathscr{S}(\mathbb{R}^n)$ be chosen so $\widehat{h}=1$ on $B_1(0)$ and $\widehat{h}=0$ off $B_2(0)$. Note that $f=f*h_{1/r}$.)