
B4.4 Fourier Analysis HT21

Lecture 2: Properties of the Fourier transform on L1 and definition of the
Schwartz test functions

1. Invariance and symmetry properties of the Fourier transform
2. The convolution rule
3. The differentiation rules
4. Rapidly decreasing functions and Schwartz test functions
5. Examples

The material corresponds to pp. 5–12 in the lecture notes and should be
covered in Week 1.
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Invariance and symmetry properties of the Fourier transform

In this connection there are three groups that act naturally on Rn:
• rotations and more generally the orthogonal group: x 7→ θx

• dilations: x 7→ rx

• translations: x 7→ x + h

The orthogonal group O(n): A real n × n matrix X is orthogonal,
X ∈ O(n), if its columns form an orthonormal basis for Rn, so precisely
when X tX = I holds. A rotation is an orthogonal matrix whose
determinant is 1. We denote the set of these special orthogonal matrices
by SO(n). Of course these notions have intrinsic and invariant meaning
too, but we shall use this terminology and concrete representation.
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Invariance and symmetry properties of the Fourier transform
Proposition: If f ∈ L1(Rn) and θ ∈ O(n), then with the notation
(θ∗f )(x) := f (θx), x ∈ Rn, we have(̂

θ∗f
)
= θ∗f̂ .

Proof. This is a straight forward calculation using the change-of-variables
formula: (̂

θ∗f
)
(ξ) =

∫
Rn

f (θx)e−iξ·x dx

y=θx
=

∫
Rn

f (y)e−iξ·θ−1y
∣∣detθ−1∣∣ dy

θ−1=θt
=

∫
Rn

f (y)e−iθξ·y dy

=
(
θ∗f̂

)
(ξ),

as required. □
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Special case: reflection through the origin

This is the case with θ = −I ∈ O(n): for f ∈ L1(Rn) write

f̃ (x) := f (−x), x ∈ Rn.

We record that F(f̃ ) = F̃(f ) holds.

Examples
(i) If f ∈ L1(Rn) is even (odd), then so is f̂ .
(ii) If f ∈ L1(Rn) and θ∗f = f for all θ ∈ O(n), then also θ∗f̂ = f̂ holds

for all θ ∈ O(n).
In connection with (ii), note that a function is radial, meaning that the
value f (x) only depends on |x |, precisely when θ∗f = f holds for all
θ ∈ O(n). This will be discussed further on a problem sheet.
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Dilations

We define two types.
• The dilation dr of Rn by factor r > 0 is defined by dr (x) := rx and

transferred to functions f ∈ L1(Rn) by
(
dr f

)
(x) := f (rx).

• The L1 dilation with factor r > 0 of f ∈ L1(Rn) is

fr (x) :=
1
rn

f
(x
r

)
Note that it is called L1 dilation because it preserves the L1 norm:
∥fr∥1 = ∥f ∥1.

Proposition: Let f ∈ L1(Rn) and r > 0. Then

d̂r f =
(
f̂
)
r
, f̂r = dr f̂ .

The proof is a straight forward calculation with the change-of-variables
formula: see lecture notes for details.
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Translation by h ∈ Rn is τh(x) := x + h, x ∈ Rn, and transferred to
functions f ∈ L1(Rn) by

(
τhf

)
(x) := f (x + h).

Proposition: Let f ∈ L1(Rn) and h ∈ Rn. Then

(̂τhf )(ξ) = f̂ (ξ)eih·ξ and Fx→ξ

(
e−ih·x f (x)

)
=

(
τh f̂

)
(ξ).

The proof is a straight forward calculation with the change-of-variables
formula: see lecture notes for details.
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The convolution rule: Let f , g ∈ L1(Rn). Then f ∗ g ∈ L1(Rn) and

f̂ ∗ g = f̂ ĝ .

In fact, there is another related rule, also called the convolution rule, but it
will have to wait until we have developed the theory a bit further.

Proof. It is an exercise in using Fubini’s theorem to swap integration orders:(
f̂ ∗ g

)
(ξ) =

∫
Rn

∫
Rn

f (x − y)g(y) dy e−iξ·x dx

Fubini
=

∫
Rn

∫
Rn

f (x − y)g(y)e−iξ·x dx dy

t=x−y
=

∫
Rn

∫
Rn

f (t)g(y) e−iξ·(t+y) dt dy

= f̂ (ξ)ĝ(ξ),

as required. □
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Example The Wiener algebra F
(
L1(Rn)

)
is an algebra: if h, k are two

functions in the Wiener algebra, also hk is in the Wiener algebra.

Indeed we find f , g ∈ L1(Rn) so h = f̂ , k = ĝ , and then by the
convolution rule hk = f̂ ∗ g ∈ F

(
L1(Rn)

)
.

Note that L1(Rn) becomes an algebra if we use convolution as product.
The convolution rule is then saying that the Fourier transform is an algebra
homomorphism of L1(Rn) onto the Wiener algebra. The Fourier inversion
formula, that we will prove in a later lecture, will show that the Fourier
transform in fact is an algebra isomorphism of L1(Rn) onto the Wiener
algebra.
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The differentiation rules

(1) Let f ∈ L1(Rn) and ∂j f ∈ L1(Rn) for some 1 ≤ j ≤ n. Then

∂̂j f (ξ) = iξj f̂ (ξ).

(2) Let f ∈ L1(Rn) and xj f (x) ∈ L1(Rn) for some 1 ≤ j ≤ n. Then

∂j f̂ = Fx→ξ

(
−ixj f (x)

)
.

Furthermore the partial derivative ∂j f̂ exists classically and is continuous.

Both rules admit generalizations: Let p(x) ∈ C[x ].
(G1) Let f ∈ L1(Rn) and p(∂)f ∈ L1(Rn). Then

p̂(∂)f (ξ) = p(iξ)f̂ (ξ).

(G2) Let f ∈ L1(Rn) and p(−ix)f (x) ∈ L1(Rn). Then(
p(∂)f̂

)
(ξ) = Fx→ξ

(
p(−ix)f (x)

)
.
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Proof of (1). First note that

∂̂j f (ξ) =

∫
Rn

∂j f (x)e−iξ·x dx .

Here ∂j f is a distributional partial derivative and x 7→ e−iξ·x is not a test
function. To overcome this we take χ = ρ ∗ 1B2(0), so that χ ∈ D(Rn)
with χ = 1 on B1(0). Clearly also χk(x) := χ(x/k) is a test function and
χk = 1 on Bk(0). Now x 7→ e−iξ·xχk(x) is a test function. Hence using
Lebesgue’s dominated convergence theorem and the definition of
distributional derivative we find:

∂̂j f (ξ) = lim
k→∞

∫
Rn

∂j f (x)e−iξ·xχk(x) dx

= − lim
k→∞

∫
Rn

f (x)∂j

(
e−iξ·xχk(x)

)
dx .
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Proof of (1) continued...
Next, note that as k → ∞,

∂j

(
e−iξ·xχk(x)

)
= −iξje−iξ·xχ

(x
k

)
+ e−iξ·x(∂jχ) (x

k

) 1
k
→ −iξje−iξ·x

holds pointwise in x ∈ Rn. Consequently, using Lebesgue’s dominated
convergence theorem once more we arrive at

∂̂j f (ξ) = − lim
k→∞

∫
Rn

f (x)∂j

(
e−iξ·xχk(x)

)
dx

= iξj
∫
Rn

f (x)e−iξ·x dx ,

concluding the proof. □

We refer to the lecture notes for the proof of (G1).
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Proof of (2). We start by proving the last part of the statement. Fix
ξ ∈ Rn and put for h ∈ R, ∆hej f̂ (ξ) := f̂ (ξ + hej)− f̂ (ξ). For h ̸= 0,

∆hej f̂ (ξ)

h
=

∫
Rn

f (x)
e−i(ξ+hej )·x − e−iξ·x

h
dx (1)

and since, using the fundamental theorem of calculus,∣∣∣∣f (x)e−i(ξ+hej )·x − e−iξ·x

h

∣∣∣∣ ≤ ∣∣xj f (x)∣∣
and xj f (x) ∈ L1(Rn) we can use Lebesgue’s dominated convergence
theorem, whereby

lim
h→0

∆hej f̂ (ξ)

h
=

∫
Rn

f (x)
(
−ixje−iξ·x) dx

= Fx→ξ

(
−ixj f (x)

)
Thus the partial derivative ∂j f̂ exists classically at ξ. It follows from the
Riemann-Lebesgue lemma that it is also continuous as a function of ξ.
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Proof of (2) continued...

Finally we must show that the formula also holds distributionally. Recall
from B4.3 that

lim
h→0

∆
hej f̂

h
= ∂j f̂ in D ′(Rn),

where now the right-hand side denotes the distributional partial derivative.
Hence the left-hand side of (1) has the correct limit. What about the
right-hand side? If we can show that the convergence is locally uniform in
ξ ∈ Rn then we conclude the proof. In order to see that, we let ξh → ξ as
h → 0 and consider ∫

Rn

f (x)
e−i(ξh+hej )·x − e−iξ·x

h
dx .

We proceed exactly as before to see that we can use Lebesgue’s dominated
convergence theorem to conclude that the limit, as h → 0, is
Fx→ξ

(
−ixj f (x)

)
. □

We refer to the lecture notes for the proof of (G2).
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The issue of the adjoint identity revisited

Recall that the product rule implies that∫
Rn

ϕ̂ψ dx =

∫
Rn

ϕψ̂ dx

holds for all ϕ, ψ ∈ D(Rn). The issue here is that the Fourier transform of
a test function in general is not a test function: ϕ̂ is C∞ but its support
might not be compact. We will prove in the next lecture that it instead has
the property: for any multi-indices α, β ∈ Nn

0 we have

ξα(∂βϕ̂)(ξ) → 0 as |ξ| → ∞.

We will define a class of test functions requiring this property instead of
compact support.
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Rapidly decreasing functions: A function f : Rn → C is rapid decreasing
if for all m ∈ N0 there exist rm > 0, cm > 0 so∣∣f (x)∣∣ ≤ cm

|x |m
for all |x | > rm.

Remark If f : Rn → C is continuous, then f is rapidly decreasing if and
only if

sup
x∈Rn

|x |m
∣∣f (x)∣∣ <∞

holds for all m ∈ N0. We leave the details as an exercise.

Example The functions

e−|x | , e−x2
and e−x2

cos x

are rapidly decreasing, while
1

1+x127 and 1
1+|x |α (α > 0)

are not. Note also that rapidly decreasing does not mean the function need
to be decreasing in the usual sense of that word.
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Schwartz test functions and the Schwartz space

A function ϕ : Rn → C is a Schwartz test function if
(i) ϕ ∈ C∞(Rn), and
(ii) all its partial derivatives are rapidly decreasing: for all multi-indices α,

β ∈ Nn
0

sup
x∈Rn

∣∣∣∣xα(∂βϕ)(x)∣∣∣∣ <∞.

The Schwartz space is the set of such functions:

S (Rn) =

{
ϕ ∈ C∞(Rn) : ∂αϕ rapidly decreasing for all α ∈ Nn

0

}
(Laurent Schwartz 1940s)
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Example The functions

e−|x |2 and p(x)e−|x |2

are Schwartz test functions (for any polynomial p(x) ∈ C[x ]). However,
the functions

e−|x | and
1

1 + x127

are not. We show in the next lecture that ρ̂ ∈ S (Rn).

Proposition With the usual definitions of vector space operations and
multiplication the Schwartz space S (Rn) is a commutative algebra
(without unit).

The only nontrivial issue is to show that ϕψ ∈ S (Rn) when ϕ,
ψ ∈ S (Rn). This is a consequence of the Leibniz rule–see the lecture
notes for the details.
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Some useful norms

Let ϕ ∈ C∞(Rn).

Definition For α, β ∈ Nn
0 we put

Sα,β(ϕ) := sup
x∈Rn

∣∣xα(∂βϕ)(x)∣∣
and for k , l ∈ N0 put

Sk,l(ϕ) := max
{
Sα,β(ϕ) : |α| ≤ k , |β| ≤ l

}
Remark Sα,β and Sk,l are norms on S (Rn). Note that

S (Rn) =
{
ϕ ∈ S (Rn) : Sα,β(ϕ) <∞∀α, β ∈ Nn

0
}

=
{
ϕ ∈ S (Rn) : Sk,l(ϕ) <∞∀ k, l ∈ N0

}
As we will see already in the next lecture, many results about Schwartz test
functions can be conveniently expressed in terms of these norms.
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