B4.4 Fourier Analysis HT21

Lecture 2: Properties of the Fourier transform on L¹ and definition of the Schwartz test functions

- 1. Invariance and symmetry properties of the Fourier transform
- 2. The convolution rule
- 3. The differentiation rules
- 4. Rapidly decreasing functions and Schwartz test functions
- 5. Examples

The material corresponds to pp. 5–12 in the lecture notes and should be covered in Week 1.

Lecture 2 (B4.4) HT21 1/18

Invariance and symmetry properties of the Fourier transform

In this connection there are three groups that act naturally on \mathbb{R}^n :

- rotations and more generally the orthogonal group: $x \mapsto \theta x$
- dilations: $x \mapsto rx$
- translations: $x \mapsto x + h$

The orthogonal group O(n): A real $n \times n$ matrix X is orthogonal, $X \in O(n)$, if its columns form an orthonormal basis for \mathbb{R}^n , so precisely when $X^tX = I$ holds. A rotation is an orthogonal matrix whose determinant is 1. We denote the set of these *special orthogonal* matrices by SO(n). Of course these notions have intrinsic and invariant meaning too, but we shall use this terminology and concrete representation.

Lecture 2 (B4.4) HT21 2/18

Invariance and symmetry properties of the Fourier transform Proposition: If $f \in L^1(\mathbb{R}^n)$ and $\theta \in O(n)$, then with the notation $(\theta_* f)(x) := f(\theta x)$, $x \in \mathbb{R}^n$, we have

$$\widehat{\left(\theta_*f\right)}=\theta_*\widehat{f}.$$

Proof. This is a straight forward calculation using the change-of-variables formula:

$$\widehat{(\theta_* f)}(\xi) = \int_{\mathbb{R}^n} f(\theta x) e^{-i\xi \cdot x} dx$$

$$\stackrel{y=\theta x}{=} \int_{\mathbb{R}^n} f(y) e^{-i\xi \cdot \theta^{-1} y} |\det \theta^{-1}| dy$$

$$\stackrel{\theta^{-1}=\theta^t}{=} \int_{\mathbb{R}^n} f(y) e^{-i\theta \xi \cdot y} dy$$

$$= (\theta_* \widehat{f})(\xi),$$

as required.

Lecture 2 (B4.4)

Special case: reflection through the origin

This is the case with $\theta = -I \in O(n)$: for $f \in L^1(\mathbb{R}^n)$ write

$$\widetilde{f}(x) := f(-x), \quad x \in \mathbb{R}^n.$$

We record that $\mathcal{F}(\widetilde{f}) = \widetilde{\mathcal{F}(f)}$ holds.

Examples

- (i) If $f \in L^1(\mathbb{R}^n)$ is even (odd), then so is \widehat{f} .
- (ii) If $f \in L^1(\mathbb{R}^n)$ and $\theta_* f = f$ for all $\theta \in O(n)$, then also $\theta_* \widehat{f} = \widehat{f}$ holds for all $\theta \in O(n)$.

In connection with (ii), note that a function is *radial*, meaning that the value f(x) only depends on |x|, precisely when $\theta_*f=f$ holds for all $\theta\in \mathrm{O}(n)$. This will be discussed further on a problem sheet.

Lecture 2 (B4.4) HT21 4/18

Dilations

We define two types.

- The dilation d_r of \mathbb{R}^n by factor r > 0 is defined by $d_r(x) := rx$ and transferred to functions $f \in L^1(\mathbb{R}^n)$ by $(d_r f)(x) := f(rx)$.
- The L¹ dilation with factor r > 0 of $f \in L^1(\mathbb{R}^n)$ is

$$f_r(x) := \frac{1}{r^n} f\left(\frac{x}{r}\right)$$

Note that it is called L¹ dilation because it preserves the L¹ norm: $||f_r||_1 = ||f||_1$.

Proposition: Let $f \in L^1(\mathbb{R}^n)$ and r > 0. Then

$$\widehat{d_r f} = (\widehat{f})_r$$
, $\widehat{f}_r = d_r \widehat{f}$.

The proof is a straight forward calculation with the change-of-variables formula: see lecture notes for details.

Lecture 2 (B4.4) HT21

Translation by $h \in \mathbb{R}^n$ is $\tau_h(x) := x + h$, $x \in \mathbb{R}^n$, and transferred to functions $f \in L^1(\mathbb{R}^n)$ by $(\tau_h f)(x) := f(x+h)$.

Proposition: Let $f \in L^1(\mathbb{R}^n)$ and $h \in \mathbb{R}^n$. Then

$$\widehat{(\tau_h f)}(\xi) = \widehat{f}(\xi) \mathrm{e}^{\mathrm{i} h \cdot \xi} \ \ \mathrm{and} \ \ \mathcal{F}_{x o \xi} \bigg(\mathrm{e}^{-\mathrm{i} h \cdot x} f(x) \bigg) = \big(\tau_h \widehat{f} \big)(\xi).$$

The proof is a straight forward calculation with the change-of-variables formula: see lecture notes for details.

Lecture 2 (B4.4) HT21 6/18 The convolution rule: Let $f, g \in L^1(\mathbb{R}^n)$. Then $f * g \in L^1(\mathbb{R}^n)$ and

$$\widehat{f*g}=\widehat{f}\widehat{g}.$$

In fact, there is another related rule, also called the convolution rule, but it will have to wait until we have developed the theory a bit further.

Proof. It is an exercise in using Fubini's theorem to swap integration orders:

$$(\widehat{f * g})(\xi) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x - y) g(y) \, \mathrm{d}y \, \mathrm{e}^{-\mathrm{i}\xi \cdot x} \, \mathrm{d}x$$

$$\stackrel{\mathsf{Fubini}}{=} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x - y) g(y) \mathrm{e}^{-\mathrm{i}\xi \cdot x} \, \mathrm{d}x \, \mathrm{d}y$$

$$\stackrel{t = x - y}{=} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(t) g(y) \, \mathrm{e}^{-\mathrm{i}\xi \cdot (t + y)} \, \mathrm{d}t \, \mathrm{d}y$$

$$= \widehat{f}(\xi) \widehat{g}(\xi),$$

as required.

Lecture 2 (B4.4)

Example The Wiener algebra $\mathcal{F}(L^1(\mathbb{R}^n))$ is an algebra: if h, k are two functions in the Wiener algebra, also hk is in the Wiener algebra.

Indeed we find f, $g \in L^1(\mathbb{R}^n)$ so $h = \widehat{f}$, $k = \widehat{g}$, and then by the convolution rule $hk = \widehat{f * g} \in \mathcal{F}(L^1(\mathbb{R}^n))$.

Note that $L^1(\mathbb{R}^n)$ becomes an algebra if we use convolution as product. The convolution rule is then saying that the Fourier transform is an algebra homomorphism of $L^1(\mathbb{R}^n)$ onto the Wiener algebra. The Fourier inversion formula, that we will prove in a later lecture, will show that the Fourier transform in fact is an algebra isomorphism of $L^1(\mathbb{R}^n)$ onto the Wiener algebra.

Lecture 2 (B4.4) HT21 8/18

The differentiation rules

(1) Let $f \in L^1(\mathbb{R}^n)$ and $\partial_j f \in L^1(\mathbb{R}^n)$ for some $1 \leq j \leq n$. Then

$$\widehat{\partial_j f}(\xi) = \mathrm{i} \xi_j \widehat{f}(\xi).$$

(2) Let $f \in L^1(\mathbb{R}^n)$ and $x_i f(x) \in L^1(\mathbb{R}^n)$ for some $1 \leq j \leq n$. Then

$$\partial_j \widehat{f} = \mathcal{F}_{x \to \xi} \bigg(-\mathrm{i} x_j f(x) \bigg).$$

Furthermore the partial derivative $\partial_i \hat{f}$ exists classically and is continuous.

Both rules admit generalizations: Let $p(x) \in \mathbb{C}[x]$.

(G1) Let $f \in L^1(\mathbb{R}^n)$ and $p(\partial)f \in L^1(\mathbb{R}^n)$. Then

$$\widehat{p(\partial)f}(\xi) = p(\mathrm{i}\xi)\widehat{f}(\xi).$$

(G2) Let $f \in L^1(\mathbb{R}^n)$ and $p(-ix)f(x) \in L^1(\mathbb{R}^n)$. Then

$$(p(\partial)\widehat{f})(\xi) = \mathcal{F}_{x\to\xi}\Big(p(-\mathrm{i}x)f(x)\Big).$$

Lecture 2 (B4.4) HT21

Proof of (1). First note that

$$\widehat{\partial_j f}(\xi) = \int_{\mathbb{R}^n} \partial_j f(x) e^{-i\xi \cdot x} dx.$$

Here $\partial_j f$ is a distributional partial derivative and $x\mapsto \mathrm{e}^{-\mathrm{i}\xi\cdot x}$ is *not* a test function. To overcome this we take $\chi=\rho*\mathbf{1}_{B_2(0)}$, so that $\chi\in\mathscr{D}(\mathbb{R}^n)$ with $\chi=1$ on $B_1(0)$. Clearly also $\chi_k(x):=\chi(x/k)$ is a test function and $\chi_k=1$ on $B_k(0)$. Now $x\mapsto \mathrm{e}^{-\mathrm{i}\xi\cdot x}\chi_k(x)$ is a test function. Hence using Lebesgue's dominated convergence theorem and the definition of distributional derivative we find:

$$\widehat{\partial_{j}}f(\xi) = \lim_{k \to \infty} \int_{\mathbb{R}^{n}} \partial_{j}f(x) e^{-i\xi \cdot x} \chi_{k}(x) dx
= -\lim_{k \to \infty} \int_{\mathbb{R}^{n}} f(x) \partial_{j} \left(e^{-i\xi \cdot x} \chi_{k}(x) \right) dx.$$

Lecture 2 (B4.4) HT21 10/18

Proof of (1) continued...

Next, note that as $k \to \infty$,

$$\partial_{j}\left(e^{-i\xi\cdot x}\chi_{k}(x)\right) = -i\xi_{j}e^{-i\xi\cdot x}\chi\left(\frac{x}{k}\right) + e^{-i\xi\cdot x}\left(\partial_{j}\chi\right)\left(\frac{x}{k}\right)\frac{1}{k} \to -i\xi_{j}e^{-i\xi\cdot x}$$

holds pointwise in $x \in \mathbb{R}^n$. Consequently, using Lebesgue's dominated convergence theorem once more we arrive at

$$\widehat{\partial_{j}}f(\xi) = -\lim_{k \to \infty} \int_{\mathbb{R}^{n}} f(x) \partial_{j} \left(e^{-i\xi \cdot x} \chi_{k}(x) \right) dx$$
$$= i\xi_{j} \int_{\mathbb{R}^{n}} f(x) e^{-i\xi \cdot x} dx,$$

concluding the proof.

We refer to the lecture notes for the proof of (G1).

Lecture 2 (B4.4) HT21 11 / 18

Proof of (2). We start by proving the last part of the statement. Fix $\xi \in \mathbb{R}^n$ and put for $h \in \mathbb{R}$, $\Delta_{he_j}\widehat{f}(\xi) := \widehat{f}(\xi + he_j) - \widehat{f}(\xi)$. For $h \neq 0$,

$$\frac{\Delta_{he_j}\widehat{f}(\xi)}{h} = \int_{\mathbb{R}^n} f(x) \frac{e^{-i(\xi + he_j) \cdot x} - e^{-i\xi \cdot x}}{h} dx \tag{1}$$

and since, using the fundamental theorem of calculus,

$$\left| f(x) \frac{e^{-i(\xi + he_j) \cdot x} - e^{-i\xi \cdot x}}{h} \right| \le \left| x_j f(x) \right|$$

and $x_j f(x) \in L^1(\mathbb{R}^n)$ we can use Lebesgue's dominated convergence theorem, whereby

$$\lim_{h \to 0} \frac{\Delta_{he_j} \widehat{f}(\xi)}{h} = \int_{\mathbb{R}^n} f(x) \left(-ix_j e^{-i\xi \cdot x}\right) dx$$
$$= \mathcal{F}_{x \to \xi} \left(-ix_j f(x)\right)$$

Thus the partial derivative $\partial_j \hat{f}$ exists classically at ξ . It follows from the Riemann-Lebesgue lemma that it is also continuous as a function of ξ .

Lecture 2 (B4.4) HT21

Proof of (2) continued...

Finally we must show that the formula also holds distributionally. Recall from B4.3 that

$$\lim_{h\to 0}\frac{\Delta_{he_j\widehat{f}}}{h}=\partial_j\widehat{f}\ \ \text{in}\ \ \mathscr{D}'(\mathbb{R}^n),$$

where now the right-hand side denotes the distributional partial derivative. Hence the left-hand side of (1) has the correct limit. What about the right-hand side? If we can show that the convergence is *locally uniform* in $\xi \in \mathbb{R}^n$ then we conclude the proof. In order to see that, we let $\xi_h \to \xi$ as $h \to 0$ and consider

$$\int_{\mathbb{R}^n} f(x) \frac{e^{-i(\xi_h + he_j) \cdot x} - e^{-i\xi \cdot x}}{h} dx.$$

We proceed exactly as before to see that we can use Lebesgue's dominated convergence theorem to conclude that the limit, as $h \to 0$, is

$$\mathcal{F}_{x \to \xi}(-ix_j f(x)).$$

We refer to the lecture notes for the proof of (G2).

Lecture 2 (B4.4) HT21

The issue of the adjoint identity revisited

Recall that the product rule implies that

$$\int_{\mathbb{R}^n} \widehat{\phi} \psi \, \mathrm{d} x = \int_{\mathbb{R}^n} \phi \widehat{\psi} \, \mathrm{d} x$$

holds for all ϕ , $\psi \in \mathscr{D}(\mathbb{R}^n)$. The issue here is that the Fourier transform of a test function in general is not a test function: $\widehat{\phi}$ is C^{∞} but its support might not be compact. We will prove in the next lecture that it instead has the property: for any multi-indices α , $\beta \in \mathbb{N}_0^n$ we have

$$\xi^{\alpha}(\partial^{\beta}\widehat{\phi})(\xi) \to 0 \text{ as } |\xi| \to \infty.$$

We will define a class of test functions requiring this property instead of compact support.

Lecture 2 (B4.4) HT21 14/18

Rapidly decreasing functions: A function $f: \mathbb{R}^n \to \mathbb{C}$ is rapid decreasing if for all $m \in \mathbb{N}_0$ there exist $r_m > 0$, $c_m > 0$ so

$$\left|f(x)\right| \leq \frac{c_m}{|x|^m} \text{ for all } |x| > r_m.$$

Remark If $f: \mathbb{R}^n \to \mathbb{C}$ is continuous, then f is rapidly decreasing if and only if

$$\sup_{x\in\mathbb{R}^n}|x|^m\big|f(x)\big|<\infty$$

holds for all $m \in \mathbb{N}_0$. We leave the details as an exercise.

Example The functions

$$e^{-|x|}, e^{-x^2} \text{ and } e^{-x^2} \cos x$$

are rapidly decreasing, while

$$\frac{1}{1+x^{127}}$$
 and $\frac{1}{1+|x|^{\alpha}}$ $(\alpha > 0)$

are not. Note also that *rapidly decreasing* does not mean the function need to be decreasing in the usual sense of that word.

Schwartz test functions and the Schwartz space

A function $\phi \colon \mathbb{R}^n \to \mathbb{C}$ is a *Schwartz test function* if

- (i) $\phi \in C^{\infty}(\mathbb{R}^n)$, and
- (ii) all its partial derivatives are rapidly decreasing: for all multi-indices α , $\beta \in \mathbb{N}_0^n$

$$\sup_{x\in\mathbb{R}^n}\left|x^{\alpha}(\partial^{\beta}\phi)(x)\right|<\infty.$$

The Schwartz space is the set of such functions:

$$\mathscr{S}(\mathbb{R}^n) = \left\{ \phi \in \mathsf{C}^\infty(\mathbb{R}^n) : \partial^\alpha \phi \text{ rapidly decreasing for all } \alpha \in \mathbb{N}_0^n \right\}$$

(Laurent Schwartz 1940s)

Lecture 2 (B4.4) HT21 16 / 18

Example The functions

$$e^{-|x|^2}$$
 and $p(x)e^{-|x|^2}$

are Schwartz test functions (for any polynomial $p(x) \in \mathbb{C}[x]$). However, the functions

$$\mathrm{e}^{-|x|}$$
 and $\frac{1}{1+x^{127}}$

are not. We show in the next lecture that $\widehat{\rho} \in \mathscr{S}(\mathbb{R}^n)$.

Proposition With the usual definitions of vector space operations and multiplication the Schwartz space $\mathscr{S}(\mathbb{R}^n)$ is a commutative algebra (without unit).

The only nontrivial issue is to show that $\phi\psi\in\mathscr{S}(\mathbb{R}^n)$ when ϕ , $\psi\in\mathscr{S}(\mathbb{R}^n)$. This is a consequence of the Leibniz rule—see the lecture notes for the details.

Lecture 2 (B4.4) HT21 17/18

Some useful norms

Let $\phi \in C^{\infty}(\mathbb{R}^n)$.

Definition For α , $\beta \in \mathbb{N}_0^n$ we put

$$S_{\alpha,\beta}(\phi) := \sup_{x \in \mathbb{R}^n} \left| x^{\alpha} (\partial^{\beta} \phi)(x) \right|$$

and for $k, l \in \mathbb{N}_0$ put

$$\overline{S}_{k,l}(\phi) := \max \{ S_{\alpha,\beta}(\phi) : |\alpha| \le k \,, \, |\beta| \le l \}$$

Remark $S_{\alpha,\beta}$ and $\overline{S}_{k,l}$ are norms on $\mathscr{S}(\mathbb{R}^n)$. Note that

$$\begin{split} \mathscr{S}(\mathbb{R}^n) &= \left\{ \phi \in \mathscr{S}(\mathbb{R}^n) : \, S_{\alpha,\beta}(\phi) < \infty \, \forall \, \alpha, \, \beta \in \mathbb{N}_0^n \right\} \\ &= \left\{ \phi \in \mathscr{S}(\mathbb{R}^n) : \, \overline{S}_{k,l}(\phi) < \infty \, \forall \, k, \, l \in \mathbb{N}_0 \right\} \end{split}$$

As we will see already in the next lecture, many results about Schwartz test functions can be conveniently expressed in terms of these norms.