
B4.4 Fourier Analysis HT21

Lecture 8: The Fourier transform on L2 and Plancherel’s theorem

1. Plancherel’s theorem
2. The Fourier transform on Lp and the Hausdorff-Young inequality
3. The Hilbert transform on L2

The material corresponds to pp. 31–32 in the lecture notes and should be
covered in Week 4.
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The Fourier transform so far...

We have defined the Fourier transform on tempered distributions and have
so far recorded the following mapping properties:

• F : L1(Rn) → C0(Rn) ⊂ L∞(Rn),
• F : S (Rn) → S (Rn) (bijection),
• F : S ′(Rn) → S ′(Rn) (bijection),

and we have seen that the Fourier transform of the Heaviside function
H ∈ L∞(R) is a distribution of order 1.

We mentioned that the Wiener algebra F
(
L1(Rn)

)
is strictly smaller than

C0(Rn) (you will show this on a problem sheet). Can we say something
about the Fourier transform on other Lp spaces? –For instance, what kind
of tempered distribution is F(f ) when f ∈ L2(Rn)?
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The Plancherel theorem

Theorem The Fourier transform F : L2(Rn) → L2(Rn) is bijective and(
2π

)−n
2F is unitary (isometric and onto):

∥f̂ ∥2 =
(
2π

) n
2 ∥f ∥2 (1)

and
F
(
L2(Rn)

)
= L2(Rn).

Remark The identity (1) is called Plancherel’s formula as is the closely
related formula ∫

Rn

f̂ (ξ)ĝ(ξ) dξ =
(
2π

)n ∫
Rn

f (x)g(x) dx . (2)
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Proof of Plancherel’s theorem

Proof. For ϕ, ψ ∈ S (Rn) we get by the Fourier inversion formula and the
product rule ∫

Rn

ϕψ dx =

∫
Rn

ϕF
(
F−1ψ

)
dx =

∫
Rn

ϕ̂F−1ψ dx .

Here we have that(
F−1ψ

)
(x) =

(
2π

)−n
∫
Rn

ψ(y)eix ·y dy

=
(
2π

)−n
∫
Rn

ψ(y)e−ix ·y dy =
(
2π

)−n
ψ̂(x),

hence we arrive at∫
Rn

ϕ̂(ξ)ψ̂(ξ) dξ =
(
2π

)n ∫
Rn

ϕ(x)ψ(x) dx .
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Proof of Plancherel’s theorem continued...

If we take ψ = ϕ in the previous formula we get

∥ϕ̂∥2 =
(
2π

) n
2 ∥ϕ∥2.

Note that we have now established Plancehrel’s formulas (1) and (2) for
test functions. In order to extend the formulas and conclude the proof of
the theorem we use approximation and that L2(Rn) is complete. Fix
f ∈ L2(Rn). By a result from B4.3 we can find a sequence (ϕj) in D(Rn)
such that ∥f − ϕj∥2 → 0. In particular we have then that ϕj → f in
S ′(Rn) and so, by S ′ continuity of the Fourier transform, also ϕ̂j → f̂ in
S ′(Rn). We now take ϕ = ϕk − ϕj in the formula above:

∥ϕ̂k − ϕ̂j∥2 =
(
2π

) n
2 ∥ϕk − ϕj∥2.

The sequence (ϕj) is Cauchy in L2(Rn) because it is convergent there, and
consequently we see that also the sequence (ϕ̂j) is Cauchy in L2(Rn).
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Proof of Plancherel’s theorem continued...

But then it is convergent by completeness, that is, there exists g ∈ L2(Rn)
such that ∥g − ϕ̂j∥2 → 0. In particular we must then have ϕ̂j → g in
S ′(Rn), and then necessarily f̂ = g ∈ L2(Rn) and we conclude that (1)
holds for f . An entirely similar argument can be used to establish (2).
We have shown that

(
2π

)− n
2F : L2(Rn) → L2(Rn) is isometric (that is (1)

holds). To see that it is onto we just recall the Fourier inversion formula in
S ′(Rn). Accordingly we have

f =
(
2π

)−n˜̂
f = F

((
2π

)−n
f̃

)
∈ F

(
L2(Rn)

)
.

This completes the proof. □
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The Fourier transform of on L2 function

Let f ∈ L2(Rn). Then f is in particular a tempered distribution and so we
may Fourier transform it:⟨

f̂ , ϕ
⟩
=

⟨
f , ϕ̂

⟩
ϕ ∈ S (Rn).

This is how we define f̂ and it is important to note that it cannot be
defined as a Lebesgue integral as we did for L1 functions simply because f
need not be integrable. However, Plancherel’s theorem tells us that the
tempered distribution f̂ is then actually an L2 function.

Lecture 8 (B4.4) HT21 7 / 14



The Fourier transform of on L2 function

You might recall that we observed before that we could represent the
Fourier transform of an Lp function as an S ′ limit:

f̂ (ξ) = lim
j→∞

∫
Bj (0)

f (x)e−iξ·x dx in S ′(Rn) (3)

This of course remains true in particular for L2 functions. Now in view of
Plancherel’s formula (1) we can improve the convergence: when
f ∈ L2(Rn), then the convergence in (3) takes place in L2(Rn).

This means convergence in the L2 norm and does not automatically entail
convergence almost everywhere in ξ ∈ Rn. General results from integration
theory however say that there exists a subsequence (jk) along which the
convergence holds almost everywhere.
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The Fourier transform on Lp

We have shown that F : L1(Rn) → L∞(Rn) and F : L2(Rn) → L2(Rn).
We can use this to say something about the Fourier transform of an Lp

function for exponents p ∈ (1, 2): Let f ∈ Lp(Rn) and write f = f1 + f2,
where

f1 =

{
f if |f | ≥ 1,
0 if |f | < 1,

and f2 =

{
0 if |f | ≥ 1,
f if |f | < 1.

Because ∥f1∥1 ≤ ∥f ∥p and ∥f2∥2 ≤ ∥f ∥p we get

f̂ = f̂1 + f̂2 ∈ C0(Rn) + L2(Rn).

But in fact a much more precise result holds true!
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The Fourier transform on Lp

The Hausdorff-Young inequality For p ∈ (1, 2) and 1
p + 1

q = 1 we have

for f ∈ Lp(Rn) that f̂ ∈ Lq(Rn) and

∥f̂ ∥q ≤
(
2π

) n
q ∥f ∥p

holds. [Not examinable]

For p > 2 the Fourier transform of an Lp function can be a distribution of
positive order. We saw already an example of this with the Heaviside
function where the Fourier transform had order 1.
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Example: The Hilbert transform again

Recall that the Hilbert transform was defined for each ϕ ∈ S (R) as

H(ϕ) :=
1
π

(
pv

( 1
y

)
∗ ϕ

)
(x) = lim

ε↘0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x − y)

πy
dy

and that hereby H : S (Rn) → S ′(Rn) as a linear map. We claim that H
extends by continuity to L2(R) and that hereby the extended map

H : L2(R) → L2(R)

is unitary (isometric and onto).
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Example: The Hilbert transform again

To prove that H extends by continuity to L2(R) we use the Fourier
transform and Plancherel’s theorem.
Let ϕ ∈ S (Rn). Then Ĥ(ϕ)(ξ) = −i sgn(ξ)ϕ̂(ξ) and so by Plancherel’s
formula (1) we get

∥H(ϕ)∥2 =
(
2π

)− n
2 ∥Ĥ(ϕ)∥2

=
(
2π

)− n
2 ∥ϕ̂∥2

= ∥ϕ∥2.

In particular we have that H : S (R) → L2(R) is uniformly continuous if on
the domain S (R) we use the metric d(ϕ, ψ) = ∥ϕ− ψ∥2. Because S (R)
is dense in L2(R) we can now appeal to the an abstract result to conclude
that H admits a unique continuous extension to L2(R).
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Example: The Hilbert transform again

Abstract extension theorem Let (M1, d1) be a metric space and
(M2, d2) be a complete metric space. Assume that S is a dense subset of
M1 and that T : S → M2 is uniformly continuous. Then there exists a
unique continuous map T : M1 → M2 such that T |S = T .
Under these circumstances we say that the T extends to M1 by continuity
and because the extension is unique we just denote it by T again.

The proof of the abstract extension theorem is left as an exercise.

In order to see that the extension of H to L2(R) is unitary we use that it is
isometric on S (R) and that S (R) is dense in L2(R). For f ∈ L2(R) find a
sequence (ϕj) in S (R) with ϕj → f in L2(R). Then we get

∥H(f )∥2 = lim
j→∞

∥H(ϕj)∥2 = lim
j→∞

∥ϕj∥2 = ∥f ∥2

so H is isometric on L2(R).
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Example: The Hilbert transform again

Next, we use Plancherel’s theorem to see that it is onto: Let g ∈ L2(R).
Define f (x) = F−1

ξ→x

(
i sgn(ξ)ĝ(ξ)

)
. Then f ∈ L2(R) and taking a sequence

(ϕj) in S (R) such that ϕj → f in L2(R) we calculate:

H(f ) = lim
j→∞

H(ϕj)

= lim
j→∞

F−1(−i sgn(ξ)ϕ̂j(ξ)
)

= F−1(−i sgn(ξ)f̂ (ξ)
)

= F−1(ĝ) = g .

This concludes the proof. □
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