B4.4 Fourier Analysis HT21

Lecture 9: L² based Sobolev spaces and the general convolution rule

- 1. L² based Sobolev spaces
- 2. A special case of the Sobolev embedding theorem
- 3. The Fourier transform of a compactly supported distribution
- 4. The general convolution rule
- 5. Representation in terms of Bessel kernel

The material corresponds to pp. 33–38 in the lecture notes and should be covered in Week 5.

Lecture 9 (B4.4) HT21 1/1

Another look at Sobolev spaces

An often used approach when solving PDEs and related equations is to first find a distributional or weak (meaning *generalized*) solution by use of general principles. For instance, when it is a linear PDE with constant coefficients we could attempt to do it using the Fourier transform. But often we expect the solution is more *regular* and not just a general distribution. A convenient way to quantify regularity of distributions is by use of Sobolev spaces. Recall that we defined for $k \in \mathbb{N}_0$ and $p \in [1, \infty]$,

$$\mathsf{W}^{k,p}(\mathbb{R}^n) = \Big\{ u \in \mathsf{L}^p(\mathbb{R}^n) : \, \partial^{\alpha} u \in \mathsf{L}^p(\mathbb{R}^n) \, \text{ for each } |\alpha| \leq k \Big\},$$

and the local variant

$$\mathsf{W}^{k,p}_{\mathrm{loc}}(\mathbb{R}^n) = \bigg\{ u \in \mathsf{L}^p_{\mathrm{loc}}(\mathbb{R}^n) : \, \partial^\alpha u \in \mathsf{L}^p_{\mathrm{loc}}(\mathbb{R}^n) \, \text{ for each } \, |\alpha| \leq k \bigg\}.$$

In fact, we defined these spaces on each open subset Ω of \mathbb{R}^n .

Lecture 9 (B4.4) HT21

These correspond to taking the exponent p = 2:

$$\mathsf{W}^{k,2}(\mathbb{R}^n) = \bigg\{ u \in \mathsf{L}^2(\mathbb{R}^n) : \, \partial^\alpha u \in \mathsf{L}^2(\mathbb{R}^n) \, \text{ for each } \, |\alpha| \leq k \bigg\},$$

and

$$\mathsf{W}^{k,2}_{\mathrm{loc}}(\mathbb{R}^n) = \bigg\{ u \in \mathsf{L}^2_{\mathrm{loc}}(\mathbb{R}^n) : \, \partial^\alpha u \in \mathsf{L}^2_{\mathrm{loc}}(\mathbb{R}^n) \, \text{ for each } \, |\alpha| \leq k \bigg\}.$$

The former is equipped with the inner product

$$(u,v)_{\mathsf{W}^{k,2}} := \sum_{|\alpha| \le k} \int_{\mathbb{R}^n} (\partial^{\alpha} u)(x) \overline{(\partial^{\alpha} v)(x)} \, \mathrm{d}x$$

and corresponding norm $||u||_{W^{k,2}} = \sqrt{(u,u)_{W^{k,2}}}$. Because it is complete in the corresponding metric it is an example of a Hilbert space. If you follow Functional Analysis 1 & 2 you will have seen some of their general theory already. Here we will not use this abstract viewpoint.

Lecture 9 (B4.4)

We can characterize the Sobolev space $W^{k,2}(\mathbb{R}^n)$ by use of the Fourier transform. Using the Plancherel theorem and then the differentiation rule we calculate for $\phi \in \mathscr{S}(\mathbb{R}^n)$:

$$\|\phi\|_{W^{k,2}}^{2} = \sum_{|\alpha| \le k} \int_{\mathbb{R}^{n}} |\partial^{\alpha} \phi|^{2} dx$$

$$= (2\pi)^{n} \sum_{|\alpha| \le k} \int_{\mathbb{R}^{n}} |\widehat{\partial^{\alpha} \phi}|^{2} d\xi$$

$$= (2\pi)^{n} \sum_{|\alpha| \le k} \int_{\mathbb{R}^{n}} |(i\xi)^{\alpha} \widehat{\phi}(\xi)|^{2} d\xi$$

$$= (2\pi)^{n} \int_{\mathbb{R}^{n}} \left(\sum_{|\alpha| \le k} |\xi^{\alpha}|^{2}\right) |\widehat{\phi}|^{2} d\xi.$$

Lecture 9 (B4.4) HT21 4/17

Here we record the inequality

$$n^{1-k}|\xi|^{2k} \le \sum_{|\alpha|=k} |\xi^{\alpha}|^2 \le |\xi|^{2k} \quad (k \in \mathbb{N})$$

and consequently

$$(2n)^{1-k} (1+|\xi|^2)^k \le \sum_{|\alpha| \le k} |\xi^{\alpha}|^2 \le (1+|\xi|^2)^k \tag{1}$$

It follows that the Sobolev norm $\|\cdot\|_{W^{k,2}}$ is equivalent to the norm

$$\|\phi\|_{\mathcal{H}^k} = \|(1+|\xi|^2)^{\frac{k}{2}}\widehat{\phi}\|_2.$$

The norm $\|\cdot\|_{H^k}$ also derives from an inner product, namely

$$(\phi, \psi)_{H^k} = \int_{\mathbb{R}^n} \widehat{\phi}(\xi) \overline{\widehat{\psi}(\xi)} (1 + |\xi|^2)^k d\xi$$

Lecture 9 (B4.4) HT21 5 / 17

As indicated in the notation for the norm and inner product one often denotes

$$\mathrm{H}^k(\mathbb{R}^n) := \left\{ u \in \mathscr{S}'(\mathbb{R}^n) : \left(1 + |\xi|^2\right)^{\frac{k}{2}} \widehat{u} \in \mathsf{L}^2(\mathbb{R}^n) \right\}$$

By the equivalence of the norms $\|\cdot\|_{\operatorname{W}^{k,2}}$ and $\|\cdot\|_{\operatorname{H}^k}$ on $\mathscr{S}(\mathbb{R}^n)$ it follows that

$$\mathrm{H}^k(\mathbb{R}^n)=\mathrm{W}^{k,2}(\mathbb{R}^n)$$

and that the norms remain equivalent in this wider context. *Exercise:* Prove it using mollification.

Example If u, $\Delta u \in L^2(\mathbb{R}^n)$, then $u \in H^2(\mathbb{R}^n)$. The proof is another application of the Plancherel theorem and the differentiation rule (see lecture notes for details).

Lecture 9 (B4.4) HT21 6/17

Definition Sobolev spaces of order $s \in \mathbb{R}$ are defined as

$$\mathrm{H}^s(\mathbb{R}^n) := \left\{ u \in \mathscr{S}'(\mathbb{R}^n) : \left(1 + |\xi|^2\right)^{\frac{s}{2}} \widehat{u} \in \mathsf{L}^2(\mathbb{R}^n) \right\}$$

and equipped with the inner product

$$(u, v)_{\mathrm{H}^s} = \int_{\mathbb{R}^n} \widehat{u}(\xi) \overline{\widehat{v}(\xi)} (1 + |\xi|^2)^s d\xi$$

and corresponding norm $\|u\|_{\mathrm{H}^s} := \sqrt{(u,u)_{\mathrm{H}^s}}.$

Remark Note that $H^0(\mathbb{R}^n) = L^2(\mathbb{R}^n)$ and that the scale is nested: when s < t, then

$$\mathrm{H}^t(\mathbb{R}^n) < \mathrm{H}^s(\mathbb{R}^n).$$

To see the latter observe that $\left(1+|\xi|^2\right)^s \leq \left(1+|\xi|^2\right)^t$ holds for all $\xi \in \mathbb{R}^n$ and therefore that

$$\|u\|_{\mathrm{H}^s} \leq \|u\|_{\mathrm{H}^t}$$

when $u \in \mathrm{H}^t(\mathbb{R}^n)$.

Lecture 9 (B4.4) HT21

A special case of the Sobolev embedding theorem

The *regularity* of tempered distributions in $H^s(\mathbb{R}^n)$ increases with $s \in \mathbb{R}$. An instance of this is documented in the following

Proposition Let $u \in H^s(\mathbb{R}^n)$ and assume $s > \frac{n}{2}$. Then $u \in C^k(\mathbb{R}^n)$ for each $k \in \mathbb{N}_0$ with $k < s - \frac{n}{2}$. In fact, $\partial^{\alpha} u \in C_0(\mathbb{R}^n)$ for each $|\alpha| < s - \frac{n}{2}$.

Proof. The proof goes via the Plancherel theorem, the differentiation rule, the Fourier inversion formula and the Riemann-Lebesgue lemma. The assumption $u \in \mathrm{H}^s(\mathbb{R}^n)$ amounts to

$$u \in \mathscr{S}'(\mathbb{R}^n)$$
 and $(1+|\xi|^2)^{\frac{s}{2}}\widehat{u} \in L^2(\mathbb{R}^n)$.

Because s>0 this implies in particular that $\widehat{u}\in L^2(\mathbb{R}^n)$: note that $(1+|\xi|^2)^{-\frac{s}{2}}$ is a bounded C^∞ function and so

$$\widehat{u} = \left(1 + |\xi|^2\right)^{-\frac{s}{2}} \left(\left(1 + |\xi|^2\right)^{\frac{s}{2}} \widehat{u}\right) \in \mathsf{L}^2(\mathbb{R}^n).$$

Lecture 9 (B4.4) HT21

A special case of the Sobolev embedding theorem-proof continued...

Fix a multi-index α of length $|\alpha| < s - \frac{n}{2}$. By the differentiation rule $\widehat{\partial^{\alpha} u} = (\mathrm{i} \xi)^{\alpha} \widehat{u}$. Now

$$|\xi^{\alpha}| = \prod_{j=1}^{n} |\xi_j|^{\alpha_j} \le \prod_{j=1}^{n} |\xi|^{\alpha_j} = |\xi|^{|\alpha|} \le (1 + |\xi|^2)^{\frac{|\alpha|}{2}}$$

for all $\xi \in \mathbb{R}^n$. Consequently

$$|\xi^{\alpha}\widehat{u}(\xi)| \leq (1+|\xi|^{2})^{\frac{|\alpha|}{2}}|\widehat{u}(\xi)|$$

$$= (1+|\xi|^{2})^{\frac{|\alpha|-s}{2}}\left((1+|\xi|^{2})^{\frac{s}{2}}|\widehat{u}(\xi)|\right)$$

Integrate over $\xi \in \mathbb{R}^n$ and use the Cauchy-Schwarz inequality to estimate.

Lecture 9 (B4.4)

A special case of the Sobolev embedding theorem-proof continued...

$$\begin{split} \int_{\mathbb{R}^n} & \left| \xi^{\alpha} \widehat{u}(\xi) \right| \, \mathrm{d} \xi & \leq & \left\| \left(1 + |\cdot|^2 \right)^{\frac{|\alpha| - s}{2}} \right\|_2 \left\| \left(1 + |\cdot|^2 \right)^{\frac{s}{2}} |\widehat{u}| \right\|_2 \\ & = & \left\| \left(1 + |\cdot|^2 \right)^{\frac{|\alpha| - s}{2}} \right\|_2 \|u\|_{\mathrm{H}^s} \end{split}$$

The right-hand side is finite since by integration in polar coordinates:

$$\left\|\left(1+|\cdot|^2\right)^{\frac{|\alpha|-s}{2}}\right\|_2^2=\omega_{n-1}\int_0^\infty\frac{r^{n-1}}{\left(1+r^2\right)^{s-|\alpha|}}\,\mathrm{d}r.$$

Here the exponent $n-1-2(s-|\alpha|)=2(|\alpha|-(s-\frac{n}{2}))-1<-1$ so the integral converges, and thus $\widehat{\partial^{\alpha}u}\in L^1(\mathbb{R}^n)$. Using the Fourier inversion formula in \mathscr{S}' we get

$$\partial^{\alpha} u = (2\pi)^{-n} \widetilde{\mathcal{F}}(\widehat{\partial^{\alpha} u}),$$

and so $\partial^{\alpha} u \in C_0(\mathbb{R}^n)$ by Riemann-Lebesgue.

Lecture 9 (B4.4) HT21

The Fourier transform of a compactly supported distribution

Proposition Let $v \in \mathscr{E}'(\mathbb{R}^n)$. Then \widehat{v} is a moderate C^{∞} function and

$$\widehat{\mathbf{v}}(\xi) = \langle \mathbf{v}, e^{-i\xi \cdot (\cdot)} \rangle.$$

Proof. Take $\chi \in \mathscr{D}(\mathbb{R}^n)$ so $\chi = 1$ near $\mathrm{supp}(v)$. Then we have $\chi v = v$. To check this simply calculate for $\phi \in \mathscr{S}(\mathbb{R}^n)$,

$$\langle \mathbf{v}, \phi \rangle = \langle \mathbf{v}, \chi \phi + (1 - \chi) \phi \rangle = \langle \mathbf{v}, \chi \phi \rangle = \langle \chi \mathbf{v}, \phi \rangle$$

since $(1-\chi)\phi=0$ near $\mathrm{supp}(v)$. But then from previous results we get that $\widehat{v}=(2\pi)^{-n}\widehat{v}*\widehat{\chi}$ is a moderate C^{∞} function and

$$\widehat{v}(\xi) = (2\pi)^{-n} (\widehat{v} * \widehat{\chi})(\xi) = (2\pi)^{-n} \langle \widehat{v}, \widehat{\chi}(\xi - \cdot) \rangle.$$

Lecture 9 (B4.4) HT21 11/17

The Fourier transform of a compactly supported distribution–proof continued..

Here

$$\begin{split} \widehat{v}(\xi) &= (2\pi)^{-n} \big\langle \widehat{v}, \widehat{\chi}(\xi - \cdot) \big\rangle &= (2\pi)^{-n} \big\langle \widehat{v}, \widehat{\widetilde{\chi}}(\cdot - \xi) \big\rangle \\ &\stackrel{\mathsf{FIF}}{=} (2\pi)^{-2n} \big\langle \widehat{v}, \mathcal{F}^3 \chi(\cdot - \xi) \big\rangle \\ &= (2\pi)^{-2n} \big\langle \widehat{v}, \tau_{-\xi} \mathcal{F}^3 \chi \big\rangle \\ &= (2\pi)^{-2n} \big\langle v, \mathrm{e}^{-\mathrm{i}\xi \cdot (\cdot)} \mathcal{F}^4 \chi \big\rangle \\ &\stackrel{\mathsf{FIF}}{=} \big\langle v, \mathrm{e}^{-\mathrm{i}\xi \cdot (\cdot)} \chi \big\rangle \\ &= \big\langle v, \mathrm{e}^{-\mathrm{i}\xi \cdot (\cdot)} \big\rangle \end{split}$$

concluding the proof.

 $FIF = Fourier inversion formula in \mathscr{S}'$

Lecture 9 (B4.4) HT21

The general convolution rule

Theorem Let $u \in \mathscr{S}'(\mathbb{R}^n)$, $v \in \mathscr{E}'(\mathbb{R}^n)$. Then $u * v \in \mathscr{S}'(\mathbb{R}^n)$ and

$$\widehat{u*v} = \widehat{u}\widehat{v}. \tag{2}$$

13 / 17

Proof. We prove the result by use of mollification and the basic convolution rule. First recall from B4.3 that u * v is defined by the rule

$$\langle u * v, \phi \rangle = \langle u, \widetilde{v} * \phi \rangle, \quad \phi \in \mathscr{D}(\mathbb{R}^n).$$

For the standard mollifier $(\rho_{\varepsilon})_{\varepsilon>0}$ we have that $v_{\varepsilon}:=\rho_{\varepsilon}*v\in\mathscr{D}(\mathbb{R}^n)$ and by the basic convolution and the dilation rules

$$\widehat{\mathbf{v}}_{\varepsilon} = \widehat{\rho}_{\varepsilon}\widehat{\mathbf{v}} = \mathbf{d}_{\varepsilon}\widehat{\rho}\widehat{\mathbf{v}}.$$

Here we have for $\phi \in \mathscr{S}(\mathbb{R}^n)$ that $d_{\varepsilon}\widehat{\rho}\phi \to \phi$ in $\mathscr{S}(\mathbb{R}^n)$ as $\varepsilon \searrow 0$. [Exercise: Check it.]

Lecture 9 (B4.4)

The general convolution rule – proof continued...

Another use of the basic convolution rule yields

$$\widehat{u*v_{\varepsilon}}=\widehat{u}\widehat{v_{\varepsilon}}=\widehat{u}\widehat{v}d_{\varepsilon}\widehat{\rho}$$

and we note that $\widehat{uv} \in \mathscr{S}'(\mathbb{R}^n)$ since \widehat{v} is a moderate C^{∞} function. Next, for $\phi \in \mathscr{S}(\mathbb{R}^n)$ we get as $\varepsilon \searrow 0$,

$$\langle \widehat{u * v_{\varepsilon}}, \phi \rangle = \langle \widehat{u}\widehat{v}, d_{\varepsilon}\widehat{\rho}\phi \rangle \rightarrow \langle \widehat{u}\widehat{v}, \phi \rangle.$$

From the Fourier inversion formula in \mathscr{S}' and \mathscr{S}' continuity of the Fourier transform, $u * v_{\varepsilon} \to \mathcal{F}^{-1}(\widehat{uv})$ in $\mathscr{S}'(\mathbb{R}^n)$ as $\varepsilon \searrow 0$. But we also have from B4.3 that $u * v_{\varepsilon} \to u * v$ in $\mathscr{D}'(\mathbb{R}^n)$ as $\varepsilon \searrow 0$, so $\langle u * v, \phi \rangle = \langle \mathcal{F}^{-1}(\widehat{uv}), \phi \rangle$ for $\phi \in \mathscr{D}(\mathbb{R}^n)$. Because the right-hand side is a tempered distribution and because $\mathscr{D}(\mathbb{R}^n)$ is \mathscr{S} dense in $\mathscr{S}(\mathbb{R}^n)$ it follows that $u * v \in \mathscr{S}'(\mathbb{R}^n)$ and (2) holds. This concludes the proof. \square Exercise: Show that $v * \phi \in \mathscr{S}(\mathbb{R}^n)$ when $v \in \mathscr{E}'(\mathbb{R}^n)$ and $\phi \in \mathscr{S}(\mathbb{R}^n)$.

Lecture 9 (B4.4) HT21

14 / 17

Use this to give another proof of the general convolution rule.

An extension of the convolution product

Definition Let $u, v \in \mathscr{S}'(\mathbb{R}^n)$ and assume that \widehat{v} is a moderate C^{∞} function. We then *define* the convolution $u * v \in \mathscr{S}'(\mathbb{R}^n)$ by the rule

$$u * v := \mathcal{F}^{-1}(\widehat{u}\widehat{v}).$$

Remarks It is an extension because \widehat{v} can be a moderate C^{∞} function also when the support of v is not compact. Also note that the general convolution rule ensures it is a consistent extension of the convolution product defined for $u \in \mathscr{S}'(\mathbb{R}^n)$ and $v \in \mathscr{E}'(\mathbb{R}^n)$.

With the obvious definition of v * u, we have u * v = v * u. Furthermore using the rules for the Fourier transform we can also show

$$\partial^{\alpha}(u * v) = (\partial^{\alpha}u) * v = u * (\partial^{\alpha}v)$$

remains true for any multi-index $\alpha \in \mathbb{N}_0$.

Lecture 9 (B4.4) HT21 15 / 17

L² based Sobolev spaces: representation using Bessel kernel

We defined for each $s \in \mathbb{R}$ the Sobolev space of order s by

$$\mathrm{H}^{s}(\mathbb{R}^{n}) = \left\{ u \in \mathscr{S}'(\mathbb{R}^{n}) : \left(1 + |\xi|^{2}\right)^{\frac{s}{2}} \widehat{u} \in \mathsf{L}^{2}(\mathbb{R}^{n}) \right\}$$

The function $\xi\mapsto \left(1+|\xi|^2\right)^{-\frac{1}{2}}$ is a moderate C^∞ function and its inverse Fourier transform

$$g_s := \mathcal{F}_{\xi o x}^{-1}igg(ig(1+|\xi|^2ig)^{-rac{s}{2}}igg)$$

is called the *Bessel kernel of order s*. By the extended convolution rule and the Fourier inversion formula we have for $u \in H^s(\mathbb{R}^n)$ that

$$u = \mathcal{F}^{-1}\bigg(\big(1+|\xi|^2\big)^{-\frac{s}{2}}\big(1+|\xi|^2\big)^{\frac{s}{2}}\widehat{u}\bigg) = g_s * \mathcal{F}^{-1}\bigg(\big(1+|\xi|^2\big)^{\frac{s}{2}}\widehat{u}\bigg)$$

Therefore

$$\mathrm{H}^s(\mathbb{R}^n) = \left\{ g_s * f : f \in \mathrm{L}^2(\mathbb{R}^n)
ight\}$$

and this is why these spaces are also known as Bessel potential spaces.

Lecture 9 (B4.4)

Bessel potential spaces with exponent p [Not examinable]

Let $s \in \mathbb{R}$ and $p \in (1, \infty)$. The corresponding Bessel potential space is then defined as

$$\mathrm{H}^{s,p}(\mathbb{R}^n) := \left\{ g_s * f : f \in \mathsf{L}^p(\mathbb{R}^n)
ight\}$$

equipped with the norm $||u||_{H^{s,p}} := ||f||_p$.

Theorem on Bessel potentials: When $k \in \mathbb{N}_0$ and $p \in (1, \infty)$ we have $H^{k,p}(\mathbb{R}^n) = W^{k,p}(\mathbb{R}^n)$.

The Trace Theorem: The trace operator $\operatorname{Tr}\colon \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^{n-1} \times \{0\})$ is defined by $\operatorname{Tr}(\phi) := \phi(x',0), \ x' \in \mathbb{R}^{n-1}$. If $k \in \mathbb{N}, \ p \in (1,\infty)$ and $k > \frac{1}{p}$, then the trace operator extends by continuity to a continuous linear and surjective map

$$\operatorname{Tr} \colon \operatorname{H}^{k,p}(\mathbb{R}^n) \to \operatorname{H}^{k-\frac{1}{p},p}(\mathbb{R}^{n-1})$$

Lecture 9 (B4.4) HT21