
B4.4 Fourier Analysis HT21

Lecture 10: The Paley-Wiener theorem for compactly supported test
functions

1. The Fourier transform of a compactly supported test function
2. The Fourier-Laplace transform
3. The Paley-Wiener theorem for test functions
4. An example

The material corresponds to pp. 38–41 in the lecture notes and should be
covered in Week 5.
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What is the Fourier transform of ϕ ∈ D(Rn)?

When ϕ ∈ D(Rn) its Fourier transform

ϕ̂(ξ) =

∫
Rn

ϕ(x)e−iξ·x dx

is a Schwartz test function, but does it have other additional properties
that reflect it has compact support? The Paley-Wiener theorem we discuss
and prove in this lecture characterizes the Fourier transforms of functions
from D(Rn).

The starting point is the observation that the function

x 7→ ϕ(x)e−iζ·x

remains integrable over x ∈ Rn when ζ ∈ Cn. Note that this is clear
exactly because ϕ has compact support.
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The Fourier-Laplace transform of ϕ ∈ D(Rn)

Definition The Fourier-Laplace transform of ϕ ∈ D(Rn) is

ϕ̂(ζ) =

∫
Rn

ϕ(x)e−iζ·x dx , ζ ∈ Cn.

Note that the Fourier-Laplace transform is denoted by the same symbol as
the Fourier transform and that it will be clear from context in which
capacity we consider ϕ̂.

Write ζ ∈ Cn as ζ = ξ + iη with ξ, η ∈ Rn and consider the function

R2n ∋ (ξ, η) 7→ ϕ̂(ξ + iη)

A standard application of Lebesgue’s dominated convergence theorem
shows that ϕ̂ is C1 and its partial derivatives can be computed by
differentiation behind the integral sign.
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The Fourier-Laplace transform of ϕ ∈ D(Rn)

Denote ζj = ξj + iηj ∈ C corresponding to j ∈ {1, . . . , n}. Then we can
check the Cauchy-Riemann equation in the variables ζj :

∂

∂ζj
ϕ̂(ζ) =

∫
Rn

ϕ(x)
∂

∂ζj
e−iζ·x dx = 0.

It follows that C ∋ ζj 7→ ϕ̂(ζ) is holomorphic, where the remaining
variables ζk for k ̸= j are kept fixed. The function ϕ̂(ζ) is therefore
separately holomorphic in the variables ζ = (ζ1, . . . , ζn) and we refer to
such functions as simply holomorphic (or entire) functions on Cn. We can
quantify the fact that the support of ϕ is compact as follows. Take R > 0
so ϕ is supported in BR(0). Then∣∣ϕ̂(ζ)∣∣ ≤ ∫

BR(0)
|ϕ(x)|eη·x dx ≤ ∥ϕ∥1eR|η|

holds for all ζ = ξ + iη ∈ Cn. So the size of the ball centered at 0
containing the support is giving a bound on the growth of the
Fourier-Laplace transform.
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The Fourier-Laplace transform of ϕ ∈ D(Rn)

We can improve on this by a calculation similar to the proof for the
differentiation rule: let α ∈ Nn

0 and calculate using integration by parts to
get

∂̂αϕ(ζ) =
(
iζ
)α ∫

Rn

ϕ(x)e−iζ·x dx =
(
iζ
)α

ϕ̂(ζ)

and so
|ζα|

∣∣ϕ̂(ζ)∣∣ = ∣∣∂̂αϕ(ζ)
∣∣ ≤ ∥∂αϕ∥1eR|η|

holds for all ζ = ξ + iη ∈ Cn. We combine this estimate with the following
bound (a consequence of the bound (1) derived in lecture 9):(

1 + |ζ|2
)m ≤ (2n)m−1

∑
|α|≤m

|ζα|2

where ζ ∈ Cn, m ∈ N. Here we write |ζ| =
√
ζ · ζ =

√
|ξ|2 + |η|2 and

|ζα|2 =
∣∣ n∏
j=1

ζ
αj

j

∣∣2 =
n∏

j=1

|ζj |2αj .
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The Fourier-Laplace transform of ϕ ∈ D(Rn)

Combination of the bounds yields:(
1 + |ζ|2

)m∣∣ϕ̂(ζ)∣∣2 ≤ (2n)m−1
∑
|α|≤m

∣∣ζαϕ̂(ζ)∣∣2
≤ (2n)m−1

∑
|α|≤m

∥∂αϕ∥2
1e

2R|η|

and so, taking square roots, we arrive at(
1 + |ζ|2

)m
2
∣∣ϕ̂(ζ)∣∣ ≤ ceR|η|

for all ζ = ξ + iη ∈ Cn, where c = c(n,m, ϕ) ≥ 0 is a constant. By
inspection it follows that we can take

c = (2n)
m−1

2 ∥ϕ∥Wm,1 .
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The Paley-Wiener theorem for test functions

Theorem (1) If ϕ ∈ D(Rn) has support in the closed ball BR(0), then the
Fourier transform ϕ̂ admits an extension to Cn as an entire function
(denoted ϕ̂(ζ) and called the Fourier-Laplace transform of ϕ) satisfying the
boundedness condition: for each m ∈ N there exists a constant
cm = cm(n, ϕ) ≥ 0 such that∣∣ϕ̂(ζ)∣∣ ≤ cm

(
1 + |ζ|2

)−m
2 eR|η| (1)

holds for all ζ = ξ + iη ∈ Cn.
(2) If Φ: Cn → C is an entire function satisfying the boundedness
condition (1) for some R ≥ 0, then there exists (a unique) ϕ ∈ D(Rn)
supported in BR(0) such that Φ = ϕ̂.

We have established the first part (1) and we turn to (2).
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The Paley-Wiener theorem for test functions–proof of (2)

We focus on the case n = 1. [The proof of (2) for n > 1 is not examinable]

Assume Φ: C → C is an entire function satisfying the boundedness
condition (1): there exists an R ≥ 0 with the property that for each m ∈ N
there exists a constant cm ≥ 0 such that∣∣Φ(ζ)∣∣ ≤ cm

(
1 + |ζ|2

)−m
2 eR|η|

holds for all ζ = ξ + iη ∈ C. Put φ := Φ|R. Then φ ∈ C∞(R).
Our first aim is to prove that φ ∈ S (R) because then we can use the
Fourier inversion formula in S to say that φ is the Fourier transform of a
Schwartz test function. Let k , m ∈ N0. We must show that

Sk,m(φ) = sup
ξ∈R

∣∣ξkφ(m)(ξ)
∣∣

is finite.
Lecture 10 (B4.4) HT21 8 / 16



The Paley-Wiener theorem for test functions–proof of (2)

Since Φ is holomorphic we have that φ(m)(ξ) = Φ(m)(ξ) for ξ ∈ R and
m ∈ N, where the derivative on the right-hand side is the m-th complex
derivative. We have a growth condition on Φ and use the Cauchy integral
formula to get bounds on its derivatives:

Φ(m)(ζ) =
m!

2πi

∫
|z−ζ|=1

Φ(z)

(z − ζ)m+1 dz .

Indeed in combination with the estimation lemma we find∣∣Φ(m)(ζ)
∣∣ ≤ m! max

z∈∂B1(ζ)

∣∣Φ(z)∣∣.
These inequalities are sometimes called Cauchy inequalities.
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The Paley-Wiener theorem for test functions–proof of (2)

We now invoke the growth condition satisfied by Φ and corresponding to
k ∈ N we find ck ≥ 0 such that

|Φ(z)| ≤ ck
(
1 + |z |2

)− k
2 eR|y |

holds for all z = x + iy ∈ C.

If ζ = ξ ∈ R and |z − ξ| = 1, then |y | ≤ 1 and |z | ≥
∣∣|ξ| − 1

∣∣, hence∣∣φ(m)(ξ)
∣∣ = ∣∣Φ(m)(ξ)

∣∣ ≤ m! max
z∈∂B1(ξ)

∣∣Φ(z)∣∣
≤ m! max

z∈∂B1(ξ)

(
ck
(
1 + |z |2

)− k
2 eR|y |

)
≤ ckm!

(
1 + (|ξ| − 1)2

)− k
2 eR
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The Paley-Wiener theorem for test functions–proof of (2)

Consequently,

∣∣ξkφ(m)(ξ)
∣∣ ≤ ckm!

(
ξ2

1 + (|ξ| − 1)2

) k
2

eR

≤ 2kckm!eR

holds for all ξ ∈ R, and thus Sk,m(φ) < ∞. Because k , m ∈ N0 were
arbitrary it follows that φ ∈ S (R).

We can now use the Fourier inversion formula in S and find ϕ ∈ S (R)
such that φ = ϕ̂. Indeed, the function

ϕ(x) =
1
2π

∫ ∞

−∞
φ(ξ)eixξ dξ =

1
2π

∫ ∞

−∞
Φ(ξ)eixξ dξ , x ∈ R

will do the job!
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The Paley-Wiener theorem for test functions–proof of (2)

A key trick that we will use now is that in the formula for ϕ(x) we can
deform the integration contour using Cauchy’s theorem.

We start by noting that for each fixed x ∈ R the function ζ 7→ Φ(ζ)eixζ is
entire so for r > 0 and η ∈ R \ {0} we have by Cauchy’s theorem∫

Γr

Φ(ζ)eixζ dζ = 0

where Γr is the rectangular contour traversed anti-clockwise and with
vertices ±r , ±r + iη.

We seek to pass to the limit r → ∞ and in order to estimate the integrals
over the two vertical sides we invoke the boundedness property with k = 2.
Hereby we find a constant c = c2 ≥ 0 such that∣∣Φ(ζ)∣∣ ≤ c

1 + |ζ|2
eR|η| (2)

holds for all ζ = ξ + iη ∈ C.
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The Paley-Wiener theorem for test functions–proof of (2)

Using the bound (2) and the estimation lemma it is easy to show that the
integrals over the two vertical sides vanish in the limit r → ∞:∣∣∣∣∫ 1

0
Φ
(
±r + iηt

)
eix(±r+iηt)iη dt

∣∣∣∣ ≤
∫ 1

0

c

1 + | ± r + iηt|2
eR|η|−xηt |η| dt

≤ c |η|e(R+|x |)|η|

1 + r2 → 0.

Consequently we get

ϕ(x) =
1
2π

∫
R+iη

Φ(ζ)eixζ dζ , x ∈ R

for each η ∈ R. We shall use this formula with the freedom in the choice of
η to show that ϕ is supported in [−R,R].
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The Paley-Wiener theorem for test functions–proof of (2)

We estimate for x ∈ R and η ∈ R:

∣∣ϕ(x)∣∣ ≤ 1
2π

∫ ∞

−∞

∣∣∣∣Φ(ξ + iη
)
eix(ξ+iη)

∣∣∣∣ dξ
(2)

≤ c

2π

∫ ∞

−∞

dξ
1 + ξ2 + η2 e(R−|x |)|η|

≤ c

2
e(R−|x |)|η|

If we take |x | > R , then we get as η → ∞ that ϕ(x) = 0, that is, ϕ is
supported in [−R,R]. □
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Example: The Fourier transform of a distribution supported in {0}

Assume u ∈ E ′(Rn) is supported in {0}. By a result from B4.3 we have
that

u ∈ span
{
∂αδ0 : α ∈ Nn

0
}
,

that is, for some d ∈ N0 and cα ∈ C we have

u =
∑
|α|≤d

cα∂
αδ0.

Now δ̂0 = 1 and so by the differentiation rule

û =
∑
|α|≤d

cα
(
iξ
)α

=: p(ξ),

a polynomial. By the Fourier inversion formula we see that any polynomial
is the Fourier transform of a distribution supported in {0}.
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Example: The Fourier transform of a distribution supported in {0}

When u has Fourier transform û = p, then it clearly admits an extension as
an entire function on Cn. Furthermore, with c = max|α|≤d |cα|, we have

∣∣û(ζ)∣∣ ≤ c
(
1 + |ζ|2

) d
2 (3)

for all ζ ∈ Cn.

In fact, the converse is also true: Assume Φ: Cn → C is an entire function
satisfying (3) (so is of polynomial growth). Then by Liouville’s theorem Φ
is a polynomial of degree at most d and using the Fourier inversion formula
in S ′ there exists u ∈ E ′(Rn) supported in {0} and such that û = Φ.

The Paley-Wiener theorem we discuss in the next lecture will address the
situation when the distribution is supported in the ball BR(0).
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