B4.4 Fourier Analysis HT21

Lecture 15: Fourier series for tempered distributions

- 1. Definition of Fourier series and examples
- 2. Characterisation of Fourier coefficients in two cases
- 3. Plancherel's theorem for Fourier series

The material corresponds to pp. 53–57 in the lecture notes and should be covered in Week 8.

Lecture 15 (B4.4) HT21 1/11

Recap from lecture 14 and a definition

If $u \in \mathscr{D}'(\mathbb{R})$ is 2π periodic, then it is tempered and

$$\widehat{u} = \sum_{k \in \mathbb{Z}} 2\pi c_k \delta_k \text{ in } \mathscr{S}'(\mathbb{R})$$
 (1)

with

$$c_k = \frac{1}{2\pi} \langle u, \Psi e^{-ik(\cdot)} \rangle, \quad \Psi = \frac{\chi}{P\chi}, \quad \chi = \rho * \mathbf{1}_{(-1,2\pi+1]}.$$

By the Fourier inversion formula in $\mathscr{S}'(\mathbb{R})$ we then get

$$u = \sum_{k \in \mathbb{Z}} c_k e^{ikx} \text{ in } \mathscr{S}'(\mathbb{R}).$$
 (2)

2/11

Definition The series (2) is called the Fourier series for u and the numbers c_k are called the Fourier coefficients for u.

Lecture 15 (B4.4) HT21

Convergence of Fourier series for a tempered distribution

In what sense does the Fourier series (2) converge?

Definition Let $v_k \in \mathscr{S}'(\mathbb{R})$ and $v \in \mathscr{S}'(\mathbb{R})$. Then we write

$$v = \sum_{k \in \mathbb{Z}} v_k$$
 in $\mathscr{S}'(\mathbb{R})$

provided

$$\sum_{k=-l}^{k=m} v_k \to v \text{ in } \mathscr{S}'(\mathbb{R}) \text{ as } l, m \to \infty.$$

This is the same as saying that

$$\begin{split} &\sum_{k=1}^{I} v_{-k} \to a \text{ in } \mathscr{S}'(\mathbb{R}) \text{ as } I \to \infty, \\ &\sum_{k=1}^{m} v_{k} \to b \text{ in } \mathscr{S}'(\mathbb{R}) \text{ as } m \to \infty. \end{split}$$

and v = a + b.

Fourier series for regular distributions

Example Assume $u \in L^1_{loc}(\mathbb{R})$ is 2π periodic. Then for $k \in \mathbb{Z}$:

$$2\pi c_{k} = \langle u, \Psi e^{-ik(\cdot)} \rangle = \int_{-\infty}^{\infty} u(x) \Psi(x) e^{-ikx} dx$$

$$= \sum_{j \in \mathbb{Z}} \int_{2\pi j}^{2\pi (j+1)} u(x) \Psi(x) e^{-ikx} dx$$

$$= \sum_{j \in \mathbb{Z}} \int_{0}^{2\pi} u(x+2\pi j) \Psi(x+2\pi j) e^{-ik(x+2\pi j)} dx$$

$$= \sum_{j \in \mathbb{Z}} \int_{0}^{2\pi} u(x) \Psi(x+2\pi j) e^{-ikx} dx$$

$$= \int_{0}^{2\pi} u(x) e^{-ikx} P\Psi(x) dx = \int_{0}^{2\pi} u(x) e^{-ikx} dx$$

Thus c_k are in this case the usual Fourier coefficients that some of you have seen in prelims.

Lecture 15 (B4.4) HT21

Characterization of Fourier coefficients in two cases

Proposition Let $(c_k)_{k\in\mathbb{Z}}$ be a doubly infinite sequence of complex numbers.

(1) Then $(c_k)_{k\in\mathbb{Z}}$ are the Fourier coefficients for a 2π periodic C^∞ function if and only if

$$k^m c_k \to 0$$
 as $|k| \to \infty$.

In this case the Fourier series converges in the C^{∞} sense: the series, together with all its term-by-term differentiated series, converge uniformly. (2) Then $(c_k)_{k\in\mathbb{Z}}$ are the Fourier coefficients for a 2π periodic distribution if and only if the sequence has moderate growth: there exist constants $C\geq 0$ and $M\in\mathbb{N}_0$ such that

$$\left|c_{k}\right| \leq C\left(1+k^{2}\right)^{\frac{M}{2}}$$

holds for all $k \in \mathbb{Z}$.

The proof of (1) is left as an exercise and we proved (2) in lecture 14.

Lecture 15 (B4.4) HT21

Example Recall that we have shown that the periodisation of a test function

$$P\phi(x) = \sum_{k \in \mathbb{Z}} \phi(x + 2\pi k)$$

gives rise to a linear map $P \colon \mathscr{S}(\mathbb{R}) \to \mathsf{C}^{\infty}_{2\pi}(\mathbb{R})$, the space of 2π periodic C^{∞} functions. By the Poisson summation formula we have

$$P\phi(x) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \widehat{\phi}(k) e^{ikx}.$$

Given a 2π periodic C^{∞} function f, its Fourier coefficients c_k satisfy $k^m c_k \to 0$ as $|k| \to \infty$ for any $m \in \mathbb{N}_0$. The function

$$\psi(x) = \sum_{k \in \mathbb{Z}} c_k (\rho_{\varepsilon} * \mathbf{1}_{(k-2\varepsilon,k+2\varepsilon)})(x)$$

is therefore for $\varepsilon \in (0, \frac{1}{10})$ a Schwartz test function, so by the Fourier inversion formula its inverse Fourier transform is also a Schwatz test function, say ϕ . It follows that $P\phi(x) = f(x)$, so that the map P is onto. **Exercise** What is the kernel of $P \colon \mathscr{S}(\mathbb{R}) \to C^\infty_{2\pi}(\mathbb{R})$?

Theorem If $u: \mathbb{R} \to \mathbb{C}$ is a 2π periodic $\mathsf{L}^2_{\mathrm{loc}}(\mathbb{R})$ function with Fourier coefficients c_k , then

$$u = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$$
 in $L^2(0, 2\pi]$

and

$$\frac{1}{2\pi} \int_0^{2\pi} |u(x)|^2 dx = \sum_{k \in \mathbb{Z}} |c_k|^2$$
 (3)

7 / 11

The identity (3) is called Parseval's identity and can also be expressed as $\|u\|_2^2 = 2\pi \|(c_k)_{k \in \mathbb{Z}}\|_{\ell_2}^2$.

Conversely, if $(C_k)_{k\in\mathbb{Z}} \in \ell_2(\mathbb{Z})$, then

$$u = \sum_{k \in \mathbb{Z}} C_k e^{ikx}$$

with convergence in $L^2(0, 2\pi]$ (and u is a 2π periodic $L^2_{loc}(\mathbb{R})$ function with Fourier coefficients C_k).

Lecture 15 (B4.4) HT21

Proof. Assume first that u is a 2π periodic C^{∞} function. Then we have in particular that its Fourier series converges uniformly:

$$u(x) = \sum_{k \in \mathbb{Z}} c_k \mathrm{e}^{\mathrm{i} k x}$$
 holds uniformly in $x \in \mathbb{R}$.

In particular it therefore also holds in $L^2(0,2\pi]$ and

$$\int_{0}^{2\pi} |u(x)|^{2} dx = \int_{0}^{2\pi} \sum_{k,l \in \mathbb{Z}} c_{k} e^{ikx} \overline{c_{l} e^{ilx}} dx$$

$$= \sum_{k,l \in \mathbb{Z}} c_{k} \overline{c_{l}} \int_{0}^{2\pi} e^{i(k-l)x} dx$$

$$= 2\pi \sum_{k \in \mathbb{Z}} |c_{k}|^{2}.$$

Lecture 15 (B4.4) HT21

Next, we consider the general case where $u\colon \mathbb{R}\to \mathbb{C}$ is 2π periodic and $\mathsf{L}^2_{\mathrm{loc}}(\mathbb{R})$. Put $u_t=\rho_t*u$, where $\left(\rho_t\right)_{t>0}$ is the standard mollifier on \mathbb{R} . Then u_t is a 2π periodic C^∞ function and

$$\int_0^{2\pi} \bigl| u - u_t \bigr|^2 \, \mathrm{d} x \to 0 \ \text{as} \ t \searrow 0.$$

Now for each t > 0 the Fourier series of u_t converges uniformly, say

$$u_t(x) = \sum_{k \in \mathbb{Z}} c_k(t) \mathrm{e}^{\mathrm{i} k x}$$
 uniformly in $x \in \mathbb{R}$.

It is not difficult to see that $c_k(t) \to c_k$ as $t \searrow 0$ for each $k \in \mathbb{Z}$. We clearly also have for s, t>0 that u_s-u_t is a 2π periodic C^∞ function with Fourier coefficients $c_k(s)-c_k(t)$ and according to what we just proved,

$$\int_0^{2\pi} \left| u_s - u_t \right|^2 \mathrm{d}x = \sum_{k \in \mathbb{Z}} \left| c_k(s) - c_k(t) \right|^2.$$

Because $(u_t)_{t>0}$ is Cauchy in $L^2(0,2\pi]$ as $t \searrow 0$, also $(c_k(t))_{k\in\mathbb{Z}}$ is Cauchy in $\ell_2(\mathbb{Z})$ as $t \searrow 0$. But the latter is complete by the Riesz-Fischer theorem so for some $(a_k)_{k\in\mathbb{Z}}\in\ell_2(\mathbb{Z})$ we have

$$\left\| \left(c_k(t) \right) - \left(a_k \right) \right\|_{\ell_2} o 0$$
 as $t \searrow 0$.

It follows that $c_k = a_k$ for all $k \in \mathbb{Z}$, hence that $(c_k)_{k \in \mathbb{Z}} \in \ell_2(\mathbb{Z})$ and that

$$\int_0^{2\pi} |u|^2 dx = \lim_{t \searrow 0} \int_0^{2\pi} |u_t|^2 dx$$
$$= \lim_{t \searrow 0} 2\pi \sum_{k \in \mathbb{Z}} |c_k(t)|^2$$
$$= 2\pi \sum_{k \in \mathbb{Z}} |c_k|^2.$$

Lecture 15 (B4.4) HT21

Finally in order to see that we also have convergence in $L^2(0, 2\pi]$ we consider for $m, n \in \mathbb{N}$:

$$\int_0^{2\pi} \left| u(x) - \sum_{k=-m}^{k=n} c_k e^{ikx} \right|^2 dx = \int_0^{2\pi} |u(x)|^2 dx - 2\pi \sum_{k=-m}^{k=n} |c_k|^2 \to 0$$

as $m, n \to \infty$. This concludes the proof in one direction. Concersely suppose $(C_k)_{k \in \mathbb{Z}} \in \ell_2(\mathbb{Z})$, that is, $C_k \in \mathbb{C}$ and $\sum_{k \in \mathbb{Z}} |C_k|^2 < \infty$. Define

$$u(x) = \sum_{k \in \mathbb{Z}} C_k e^{ikx}.$$

Clearly the sequence $(C_k)_{k\in\mathbb{Z}}$ is in particular of moderate growth, so by an earlier result $u\in \mathscr{S}'(\mathbb{R})$ is a 2π periodic distribution with Fourier coefficients C_k . By the previous part of the proof it follows that the convergence is in $L^2(0,2\pi]$ and so that $u\in L^2_{loc}(\mathbb{R})$.

Lecture 15 (B4.4) HT21