B4.4 Fourier Analysis HT21

Lecture 16: The Hilbert transform revisited

We follow up on examples from lectures 7 and 8 about the Hilbert transform. The material should be covered in Week 8.

The Hilbert transform was defined for each $\phi \in \mathscr{S}(\mathbb{R})$ in lecture 7 as

$$\mathcal{H}(\phi) := \frac{1}{\pi} \left(\operatorname{pv}\left(\frac{1}{y}\right) * \phi \right)(x) = \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right) \frac{\phi(x-y)}{\pi y} \, \mathrm{d}y.$$

Hereby $\mathcal{H}: \mathscr{S}(\mathbb{R}) \to \mathscr{S}'(\mathbb{R})$ is linear and it is the most basic example of a *singular integral operator*. The distribution

$$\frac{1}{\pi} \operatorname{pv}\left(\frac{1}{x}\right)$$

is tempered and of order 1. Its Fourier transform is $-i \operatorname{sgn}(\xi)$ and so we can use the extended convolution rule to define the Hilbert transform of a tempered distribution u whose Fourier transform \hat{u} is a moderate C^{∞} function:

$$\mathcal{H}(u) = \mathcal{F}_{\xi \to x}^{-1} \left(-i \operatorname{sgn}(\xi) \widehat{u}(\xi) \right).$$
(1)

In fact, we can use this definition for all $u \in \mathscr{S}'(\mathbb{R})$ for which $-i \operatorname{sgn}(\xi) \widehat{u}(\xi)$ is a well-defined tempered distribution. But the question of its natural and maximal *domain* is subtle.

The Hilbert transform

An example where we can use (1) to define $\mathcal{H}(u)$ is when $u \in L^1(\mathbb{R})$ since then Riemann-Lebesgue ensures \hat{u} is continuous. However, its Hilbert transform will not be integrable in general. In fact, in lecture 7 we saw examples where the Hilbert transform of Schwartz test functions are not integrable (we used the Riemann-Lebesgue lemma).

In this connection we also record:

Example 1 For any $a, b \in \mathbb{R}$ with a < b we calculate

$$\mathcal{H}(\mathbf{1}_{(a,b)})(x) = \frac{1}{\pi} \log \left| \frac{x-a}{x-b} \right|$$

and this also is not integrable on \mathbb{R} . Note that it is not bounded either. But you can check that it is in $L^{p}(\mathbb{R})$ for each $p \in (1, \infty)$.

You might recall why this is not surprising when p = 2.

The Hilbert transform on L^2

Using Plancherel's theorem we proved in lecture 8 that \mathcal{H} extends by continuity to $L^2(\mathbb{R})$ and that hereby the extended map

$$\mathcal{H}\colon \,\mathsf{L}^2(\mathbb{R}) o \mathsf{L}^2(\mathbb{R})$$

is unitary (isometric and onto). We can use (1) as definition again because $\widehat{u} \in L^2(\mathbb{R})$ and so

$$-\mathrm{i}\operatorname{sgn}(\xi)\widehat{u}(\xi)\in\mathsf{L}^2(\mathbb{R})\subset\mathscr{S}'(\mathbb{R}).$$

Because $\mathbf{1}_{(a,b)} \in L^2(\mathbb{R})$ we therefore confirm our calculation that $\mathcal{H}(\mathbf{1}_{(a,b)}) \in L^2(\mathbb{R})$.

The Hilbert transform on $L^2(\mathbb{R})$ satisfies $\mathcal{H}^2 = -I$, that is, minus the identity on $L^2(\mathbb{R})$. *Proof.* We use that for $\phi \in \mathscr{S}(\mathbb{R})$,

$$\widehat{\mathcal{H}(\phi)} = -\mathrm{i}\operatorname{sgn}(\xi)\widehat{\phi}(\xi), \qquad (2)$$

and since both the Hilbert and Fourier transforms are continuous on $L^2(\mathbb{R})$, density of $\mathscr{S}(\mathbb{R})$ in $L^2(\mathbb{R})$ allows us to extend (2) to $\phi \in L^2(\mathbb{R})$. But then we get for $\phi \in L^2(\mathbb{R})$ that

$$\begin{aligned} \widehat{\mathcal{H}^{2}(\phi)}(\xi) &= -\mathrm{i}\operatorname{sgn}(\xi)\widehat{\mathcal{H}(\phi)}(\xi) \\ &= -\mathrm{i}\operatorname{sgn}(\xi)\bigg(-\mathrm{i}\operatorname{sgn}(\xi)\widehat{\phi}(\xi)\bigg) \\ &= -\widehat{\phi}(\xi) \end{aligned}$$

concluding the proof.

The Hilbert transform on L^p [Not examinable]

It can be shown that for each $p \in (1,\infty)$ there exists a constant $c_p > 0$ such that

$$\left\|\mathcal{H}(\phi)\right\|_{p} \le c_{p} \left\|\phi\right\|_{p} \tag{3}$$

holds for all $\phi \in \mathscr{S}(\mathbb{R})$. We can therefore extend \mathcal{H} to $L^{p}(\mathbb{R})$ by continuity (recall the abstract extension theorem from lecture 8). Note that Example 1 shows that (3) cannot hold for p = 1 nor for $p = \infty$.

Can we use the formula (1) to calculate $\mathcal{H}(\phi)$ when $\phi \in L^{p}(\mathbb{R})$?

The Hilbert transform on L^p [Not examinable]

We can use the formula (1) as definition of $\mathcal{H}(\phi)$ when $\phi \in L^{p}(\mathbb{R})$ and $p \in [1,2]$. This is so because in these cases $\widehat{\phi}$ is a regular distribution and so we can make sense of

 $-i \operatorname{sgn}(\xi) \widehat{\phi}(\xi)$

as a tempered distribution. We have already mentioned this for p = 1 and for p = 2. In the remaining cases $p \in (1, 2)$ we have by Hausdorff-Young (that we quoted but didn't prove) that $\phi \in L^q(\mathbb{R})$, where q is the Hölder conjugate exponent q = p/(p-1). Thus

$$-\mathrm{i}\operatorname{sgn}(\xi)\widehat{\phi}(\xi)\in\mathsf{L}^q(\mathbb{R})\subset\mathscr{S}'(\mathbb{R}).$$

However, when p > 2 the Fourier transform $\widehat{\phi} \in \mathscr{S}'(\mathbb{R})$ of $\phi \in L^{p}(\mathbb{R})$ can be a distribution of higher order making it impossible to directly use (1) as definition of $\mathcal{H}(\phi)$. But obviously the abstract extension theorem and (3) still allow us to define the Hilbert transform in this situation – we just cannot rely on the formula (1).

For this we rely on the formula

$$\frac{1}{x+\mathrm{i}0} = -\pi\mathrm{i}\delta_0 + \mathrm{pv}\left(\frac{1}{x}\right). \tag{4}$$

Proof. Recall that we calculated the Fourier transform of Heaviside's function in lecture 6, example 2:

$$\widehat{H} = -\mathrm{ipv}\left(\frac{1}{x}\right) + \pi\delta_0.$$

We will now calculate it in a different manner: put $H_{\varepsilon}(t) = e^{-\varepsilon t}H(t)$ for $\varepsilon > 0$. Then $H'_{\varepsilon} = -\varepsilon H_{\varepsilon} + \delta_0$ in $\mathscr{S}'(\mathbb{R})$, so using the differentiation rule we get by Fourier transformation:

$$\widehat{H_{\varepsilon}}(x) = rac{1}{arepsilon+\mathrm{i}x} = rac{-\mathrm{i}}{x-\mathrm{i}arepsilon}.$$

Because $H_{\varepsilon} \to H$ in $\mathscr{S}'(\mathbb{R})$ as $\varepsilon \searrow 0$ we get by \mathscr{S}' continuity of the Fourier transform that

$$\frac{-\mathrm{i}}{x-\mathrm{i}0} = -\mathrm{i}\mathrm{pv}\left(\frac{1}{x}\right) + \pi\delta_0.$$

To arrive at the formula (4) we apply the reflection in origin operation (\cdot) on the previous identity.

Now let $\phi \in \mathscr{S}(\mathbb{R})$ be *real-valued*. Define

$$\Phi(z) = \frac{\mathrm{i}}{\pi} \int_{-\infty}^{\infty} \frac{\phi(t)}{x - t + \mathrm{i}y} \,\mathrm{d}t$$

for $z = x + iy \in \mathbb{H}$, where \mathbb{H} is the open upper half-plane in \mathbb{C} . It is not difficult to check that $\Phi \colon \mathbb{H} \to \mathbb{C}$ is holomorphic and that we can rewrite it as

$$\Phi(z) = \frac{\mathrm{i}}{\pi} \left\langle \frac{1}{t + \mathrm{i}y}, \phi(x - \cdot) \right\rangle$$
(5)

Consider its real and imaginary parts. They clearly are a pair of conjugate harmonic functions on $\mathbb{H}.$

We have

$$\operatorname{Re}(\Phi(z)) = (P_y * \phi)(x) \text{ and } \operatorname{Im}(\Phi(z)) = (Q_y * \phi)(x)$$

where P_y is the *Poisson kernel* obtained by an L¹ dilation of

$$P(x) = \frac{1}{\pi (1+x^2)}$$

and Q_{y} is the conjugate Poisson kernel obtained by an L¹ dilation of

$$Q(x) = \frac{x}{\pi (1+x^2)}.$$

Note that $P(x) \ge 0$ and $\int_{\mathbb{R}} P(x) dx = 1$, so $(P_y)_{y>0}$ is an approximate identity and we have $P_y * \phi \to \phi$ uniformly on \mathbb{R} as $y \searrow 0$. What is the limit of $Q_y * \phi$? Complication: Q is *not* integrable on \mathbb{R} .

To find the limit as $y \searrow 0$ we return to (5) and (4):

$$\Phi(z) = (P_y * \phi)(x) + i(Q_y * \phi)(x) = \frac{i}{\pi} \left\langle \frac{1}{t + iy}, \phi(x - \cdot) \right\rangle$$
$$\rightarrow \frac{i}{\pi} \left\langle -\pi i \delta_0 + pv(\frac{1}{t}), \phi(x - \cdot) \right\rangle$$
$$= \phi(x) + i\mathcal{H}(\phi)(x)$$

pointwise in $x \in \mathbb{R}$.