
Fourier Analysis and PDEs Solutions to Problem Sheet 4 HT/TT20

Problem 1: (a) Write ζ = ξ + iη and note that when η > 0∣∣f(x)e−iζx
∣∣ =∣∣f(x)∣∣eηx
≤ 1

2

(
|f(x)|2 + e2ηx

)
∈ L1(−∞, 0),

so F (ζ) is well-defined for ζ ∈ H. Fix ζ ∈ H and consider for z ∈ C so z ̸= 0 and
z + ζ ∈ H the difference quotient

F (ζ+z)−F (ζ)
z =

∫ 0

−∞
f(x)e−iζx e−izx−1

z dx.

We want to apply Lebesgue’s dominated convergence theorem. Write z = α + iβ
and use the fundamental theorem of calculus to estimate∣∣∣ e−izx−1

z

∣∣∣ ≤ ∫ 1

0

eβxt dt|x|,

hence for a.e. x < 0:∣∣∣f(x)e−iζx e−izx−1
z

∣∣∣ ≤ 1
2 |f(x)|

2 + 1
2e

2ηx

(∫ 1

0

eβxt dt

)2

x2

≤ 1
2 |f(x)|

2 + 1
2e

2ηxe−2|β|xx2

= 1
2 |f(x)|

2 + x2

2 e2(η−|β|)x.

When |β| < η the latter is integrable over (−∞, 0), hence by DCT, f(x)
(
−ix

)
e−iζx ∈

L1(R) and
F (ζ+z)−F (ζ)

z →
∫ 0

−∞
f(x)

(
−ix

)
e−iζx dx as z → 0.

Thus F : H → C is complex differentiable at ζ and since ζ ∈ H was arbitrary F is
holomorphic. [Alternatively you can use Fubini’s and Morera’s theorems.]
Now for η > 0 we have x 7→ f(x)eηx is square integrable (and integrable) over R
(recall: f ≡ 0 on (0,∞)) so by Plancherel’s theorem

Fx→ξ

(
f(x)eηx

)
= lim

j, k→∞

∫ k

−j

f(x)eηxe−iξx dx

with convergence in the sense of L2(R) and by Parseval’s identity

1
2π

∫ ∞

−∞

∣∣Fx→ξ

(
f(x)eηx

)∣∣2 dξ =

∫ ∞

−∞
|f(x)eηx|2 dx.

Here the left-hand side, L, can be rewritten: first note that x 7→ f(x)eηxe−iξx is
integrable over R so by Lebesgue’s DCT

L = 1
2π

∫ ∞

−∞

∣∣∣∣∫ 0

−∞
f(x)eηxe−iξx dx

∣∣∣∣2 dξ = 1
2π

∫ ∞

−∞
|F (ξ + iη)|2.

Combining this with∫ ∞

−∞
|f(x)eηx|2 dx =

∫ 0

∞
|f(x)|2e2ηx dx ≤ ∥f∥22

when η > 0 we conclude with the required bound for F . Finally, because f(x)eηx →
f(x) in L2(R) as η ↘ 0 (for instance from Lebesgue’s monotone convergence theo-

rem), Plancherel’s theorem yields F (·+ iη) → f̂ in L2(R) as ↘ 0.
1
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(b) (Optional) Put Fη(ξ) := F (ξ + iη), ξ ∈ R, for each η > 0. Then Fη ∈ L2(R)
and so by Plancherel’s theorem and Parseval’s identity F̂η ∈ L2(R) and ∥F̂η∥2 =√
2π∥Fη∥2. By the Fourier inversion formula for tempered distributions we have

Fη = 1
2π

˜̂̂
Fη = F

(
1
2π

˜̂
Fη

)
,

where we used that the Fourier transform commutes with the operation (̃·). Con-
sider ˜̂

Fη(x) =

∫ ∞

−∞
Fη(ξ)e

ixξ dξ

=eηx
∫ ∞

−∞
F (ξ + iη)eix(ξ+iη) dξ,

where the integrals must be understood to converge in the L2 sense (according to
Plancherel). Here the function H ∋ ζ 7→ F (ζ)eixζ is holomorphic for each fixed
x ∈ R, so if for a fixed η ∈ (0, 1) ∪ (1,∞) and positive numbers r, s > 0 we denote
by Γr,s the rectangle with corners s + i, s + iη, −r + iη, −r + i traversed counter
clockwise, then we have by Cauchy’s theorem,∫

Γr,s

F (ζ)eixζ dζ = 0.

In order to see that we can choose r, s → ∞ so that the contour integrals over
corresponding vertical parts of Γr,s tend to 0 we must use the assumed L2 bound:
First we have by Hölder’s inequality∣∣∣∣∫ η

1

F (ξ + it) eix(ξ+it)idt

∣∣∣∣2 ≤
∣∣η − 1

∣∣ ∣∣∣∣∫ η

1

|F (ξ + it)|2e−2xt dt

∣∣∣∣
≤ ηe2|x|(1+η)

∫ 1+η

0

|F (ξ + it)|2 dt.(0.1)

By Tonelli’s theorem and our assumption∫ ∞

−∞

∫ 1+η

0

|F (ξ + it)|2 dtdξ =

∫ 1+η

0

∫ ∞

−∞
|F (ξ + it)|2 dξ dt

≤ sup
t>0

∫ ∞

−∞
|F (ξ + it)|2 dξ(1 + η) < ∞.

We can therefore find values r = rj , s = sj → ∞ so∫ 1+η

0

|F (−rj + it)|2 dt → 0 and

∫ 1+η

0

|F (sj + it)|2 dt → 0 as j → ∞

as otherwise the above integrals would be divergent (note that we cannot in general
be sure that we have this for all choices of r, s → ∞). It follows from (0.1) that
the contour integrals over the corresponding vertical parts of Γrj ,sj tend to 0 as
j → ∞. Thus∫ sj

−rj

F (ξ + i)eixξ dξ e−x =

∫ sj

−rj

F (ξ + iη)eixξ dξ e−ηx + o(1)

as j → ∞ for each fixed x ∈ R. Now Plancherel’s theorem ensures that the two
integrals above both converge in the sense of L2 as functions of x ∈ R when j → ∞
and by properties of L2 convergence it follows that for a suitable subsequence, say
(jk) of (j), we have convergence pointwise almost everywhere. Consequently˜̂

F1(x)e
−x =

˜̂
Fη(x)e

−ηx
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holds for almost every x ∈ R, say for all x ∈ R \Nη, where L1(Nη) = 0. Define

f(x) = 1
2π

˜̂
F1(x)e

−x.

This is a measurable function and, provided we have chosen a representative for

the L2 function
˜̂
F1 that is consistent with the above identity, we have˜̂

Fη(x) = 2πf(x)eηx

for x ∈ R \Nη. The left-hand side is in L2, hence so is the right-hand side and so
we get from Parseval’s identity and our assumption∫ ∞

−∞
|f(x)|2e2ηx dx = 1

(2π)2 ∥
˜̂
Fη∥22 = 1

2π∥Fη∥22 ≤ m < ∞

for a constant m (independent of η > 0). It follows that f(x) = 0 for a.e. x > 0:
Fix ε > 0 and put E =

{
x > ε : |f(x)| ≥ ε

}
. Then E is a measurable set and

|f(x)|2e2ηx ≥ ε2e2ηε a.e. on E, so

ε2e2εηL1(E) ≤
∫
E

|f(x)|2e2ηx dx ≤ m

for all η > 0, which is ony possible if L1(E) = 0. Since ε > 0 was arbitrary it
follows that f = 0 a.e. on (0,∞) as asserted. By Lebesgue’s monotone convergence
theorem we find∫ ∞

−∞
|f(x)|2 dx =

∫ 0

−∞
|f(x)|2 dx = sup

η>0

∫ 0

−∞
|f(x)|2e2ηx dx ≤ m < ∞,

so f ∈ L2(R). Finally, we conclude with Fη → f̂ in L2 as η ↘ 0 by use of
Plancherel’s and Fourier’s inversion theorems and the above identities.

Problem 2: (a) f is piecewise C1 so its distributional derivative is

f ′(x) =

 1 if − 1 < x < 0
−1 if 0 < x < 1
0 otherwise.

It follows that f̂ ′(ξ) = 2
iξ

(
cos ξ − 1

)
, so by the differentiation rule,

f̂(ξ) = 2
1− cos ξ

ξ2
,

and using the double-angle formula, cos ξ = cos2
(
ξ/2
)
−sin2

(
ξ/2
)
, and 1−cos2

(
ξ/2
)
=

sin2
(
ξ/2
)
we conclude that f̂(ξ) = sinc2

(
ξ/2
)
. The Poisson summation formula can

be stated as ∑
k∈Z

e−2πikx =
∑
k∈Z

δk

with convergence of the series in S ′(R). Note that the distribution on LHS is

continuous with respect to the norm ϕ 7→ S2,0(ϕ̂) and the one on the RHS with

respect to the norm S2,0. By inspection we see that S2,0(f) = 1, S2,0(f̂) = 4, in
particular that both are finite, so by approximation we may evaluate the above
identity at f , and what is more convenient here, on x 7→ f(x)e−ihx for a parameter
h ∈ R. By the translation rule

f̂(ξ + h) = Fx→ξ

(
f(x)e−ihx

)
,

whereby we find ∑
k∈Z

sinc2(2πk + h) =
∑
k∈Z

(
1− |k|

)+
e−ihk = 1.
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Here we have using the addition formula and assuming h ∈ R \ 2πZ:

sinc2(2πk + h) =
sin2

(
πk + h

2

)(
πk + h

2

)2
=

sin2
(
h
2

)
π2
(
k + h

2π

)2
=
sin2

(
h
2

)
π2

1(
k + h

2π

)2 ,
and so ∑

k∈Z

1(
k + h

2π

)2 =
π2

sin2
(
h
2

) .
The desired formula follows if we take x = h

2π ∈ R \ Z.
(b) Note that for x ∈ R \ Z:

N∑
n=−N

1

n+ x
=

1

x
−

N∑
n=1

2x

n2 − x2
,

and so using Weierstrass’ M -test we see that the LHS converges locally uniformly
on R \Z, and so defines a continuous function there. Denote its restriction to (0, 1)
by T . Clearly T ∈ D′(0, 1) and by D′ continuity of differentiation we get

T ′ = lim
N→∞

N∑
n=−N

−1

(n+ x)2

c =−
∑
k∈Z

1

(k + x)2
.

Therefore we have according to (a), T ′ = − π2

sin2(πx)
= d

dxπ cotπx in D′(0, 1), and so

by the constancy theorem, T = π cotπx + c for some constant c ∈ C. Evaluating
the identity at x = 1/2 we see that c = 0 and so that the identity holds on (0, 1).
However, the two sides are both 1 periodic and so the desired identity then clearly
holds on all of R \ Z.
(c) The argument with the Weierstrass M -test used in (b) also easily gives that∑N

n=−N
1

n+z converges locally uniformly in z ∈ C \ Z as N → ∞. It therefore

follows from Morera’s theorem that z 7→ limN→∞
∑N

n=−N
1

z+n is holomorphic on

C \ Z. Since also π cotπz is holomorphic on C \ Z and the two functions agree on
R \ Z it follows from the identity theorem that

(0.2) lim
N→∞

N∑
n=−N

1

x+ z
= π cotπz

holds for all z ∈ C\Z. In order to prove Lipschitz’s formula we proceed by induction
on k. However, we first note that when k ≥ 2 we have for each z ∈ H that∣∣e2πiz∣∣ = e−2πIm(z) < 1,

so the series on the right-hand side of the Lipschitz formula converges locally uni-
formly in z ∈ H. It is clear that the series on the left-hand side also converges
locally uniformly in z ∈ H when k ≥ 2. Both sides therefore in particular define
regular distributions that can be differentiated distributionally term-by-term. This
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is also true of (0.2) that will be our starting point: Indeed expressing cot in terms
of complex exponentials and recognizing a geometric series we find

π cotπz = −πi
1 + e2πiz

1− e2πiz
= −πi

(
1 + 2

∞∑
n=1

e2πinz

)
,

and hence

lim
N→∞

N∑
n=−N

1

n+ z
= −πi

(
1 + 2

∞∑
n=1

e2πinz

)
locally uniformly in z ∈ H. Differentiating with respect to z in the sense of distri-
butions (precisely we apply the Cauchy-Riemann differential operator ∂

∂z ) we get
Lipschitz’s formula for k = 2 in the sense of distributions on H. But since both
sides are regular distributions, in fact represented by holomorphic functions, we
have established the formula for this special case. Now assume that Lipschitz’s
formula holds for some k ≥ 2. Differentiating it we see that the formula also holds
for k + 1 in the sense of distributions on H. But again both sides are represented
by holomorphic functions so the formula holds also for all z ∈ H. The Lipschitz
formula therefore follows by induction on k ≥ 2.

Problem 3: (Optional) The function g : R → C is clearly piecewise C∞ with jump
discontinuities at points of 2πZ. In particular we record that g is locally square
integrable, so Plancherel’s theorem for Fourier series applies and we have

g(x) =
∑
n∈Z

cne
inx in L2.

We calculate the Fourier coefficients:

cn = 1
2π

∫ 2π

0

g(x)e−inx dx = 1
2 sinπα

∫ 2π

0

eiπα−i(n+α)x dx

=
eiπα

2 sinπα

1− e−i(n+α)2π

i(n+ α)

=
1

n+ α
,

where we skipped some straight forward routine calculation in the last line. Con-
sequently we have

g(x) =
∑
n∈Z

1

n+ α
einx

where the doubly infinite series converges in L2. If we use Parseval’s identity for
Fourier series we recover (1) on the problem sheet:

π2

sin2 πα
= 1

2π

∫ 2π

0

|g(x)|2 dx

=
∑
n∈Z

|cn|2

=
∑
n∈Z

1
(n+α)2

for α ∈ R \ Z. In order to deduce (2) on the problem sheet we would have liked
to take x = 0 in the Fourier expansion of g. However, this is not permitted by the
theory we have developed so far since g has a jump discontinuity at x = 0:

g(0) = π
sinπαe

iπα ̸= π
sinπαe

−iπα = g(2π−)

because α ∈ Z.
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Problem 4: (a) That the periodisation Pφ is a 2π periodic C∞ function follows
as in the lecture notes page 50: Fix n ∈ N0 and note that the derivative φ(n) is
again a Schwartz test function on R, so that by prelims analysis it suffices to prove
that the series defining Pφ is locally uniformly convergent on R. For that we note
that when |x| ≤ π and k ∈ Z \ {0}:∣∣φ(x− 2πk)

∣∣ = 1 + (x− 2πk)2

1 + (x− 2πk)2
∣∣φ(x− 2πk)

∣∣ ≤ 2

1 + (x− 2πk)2
S2,0(φ)

≤ 2

1 + (2π|k| − π)2
S2,0(φ),

hence the series converges uniformly in x ∈ [−π, π] by Weierstrass’ M -test, and so
Pφ is a 2π-periodic C∞ function. Next, for each k ∈ Z we calculate (using uniform
convergence to justify swapping order of integration and summation):

ck = 1
2π

∫ 2π

0

Pφ(x)e−ikx dx =
∑
n∈Z

1
2π

∫ 2π

0

φ(x+ 2πk)e−ikx dx

=
∑
n∈Z

1
2π

∫ 2π(n+1)

2πn

φ(x)e−ikx+i2πn dx

=
∑
n∈Z

1
2π

∫ 2π(n+1)

2πn

φ(x)e−ikx dx

= 1
2π

∫ ∞

−∞
φ(x)e−ikx dx = 1

2π φ̂(k),

and so ∑
k∈Z

1
2π φ̂(k)e

ikx = lim
n→∞

n∑
k=−n

cke
ikx

holds for each x ∈ R (and in fact it is not difficult to see that the convergence is
uniform, and even much better). Now note that

n∑
k=−n

cke
ikx =

∫ 2π

0

Pφ(x)Dn(x− y) dy,

where

Dn(t) =

n∑
k=−n

1
2π e

ikt

is Dirichlet’s kernel. For t ∈ R \ 2πZ we have by summing a geometric series and
then rewriting in terms of sine:

Dn(t) =
1
2π

1− ei(2n+1)t

1− eit
= 1

2π

sin(n+ 1
2 )t

sin t
2

.

We check that ∫ 2π

0

Dn(t) dt = 1

and that, for each δ ∈ (0, π),∫ 2π−δ

δ

Dn(t) dt → 0 as n → ∞

by the Riemann-Lebesgue lemma (note 1/ sin(t/2) is integrable over (δ, 2π − δ)).
Put L = max

∣∣(Pφ)′
∣∣ and note that∣∣Pφ(x)− Pφ(x− t)

∣∣ ≤ Lmin
k∈Z

|t− 2πk|
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holds for all x, t ∈ R. For δ ∈ (0, π) we have∣∣∣∣Pφ(x)−
∫ 2π

0

Pφ(x− t)Dn(t) dt

∣∣∣∣ = ∣∣∣∣∫ 2π

0

(
Pφ(x)− Pφ(x− t)

)
Dn(t) dt

∣∣∣∣
≤

∣∣∣∣∣
∫ 2π−δ

δ

(
Pφ(x)− Pφ(x− t)

)
Dn(t) dt

∣∣∣∣∣
+

∣∣∣∣∣
(∫ δ

0

+

∫ 2π

2π−δ

)(
Pφ(x)− Pφ(x− t)

)
Dn(t) dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 2π−δ

δ

(
Pφ(x)− Pφ(x− t)

)
Dn(t) dt

∣∣∣∣∣
+ 4L

∫ δ

0

t/2

sin(t/2)
dt.

For fixed δ the first integral tends to 0 by the Riemann-Lebesgue lemma:

I :=

∫ 2π−δ

δ

(
Pφ(x)− Pφ(x− t)

)
Dn(t) dt → 0 as n → ∞,

whereas

II := 4L

∫ δ

0

t/2

sin(t/2)
dt → 0 as δ ↘ 0.

Thus given ε > 0 we take δ ∈ (0, π) so II < ε and then for this fixed δ we obtain

lim sup
n→∞

∣∣∣∣Pφ(x)−
∫ 2π

0

Pφ(x− t)Dn(t) dt

∣∣∣∣ ≤ ε.

Consequently we have shown that Pφ(x) =
∑

k∈Z
1
2π φ̂(k)e

ikx for all x ∈ R. Taking
x = 0 we deduce the Poisson summation formula.

(b) If G(x) = e−
x2

2 , x ∈ R, then Ĝ(ξ) =
√
2πe−

ξ2

2 (see Lemma 1.38 in the lecture

notes) and so for t > 0 we have d√2tG(x) = e−tx2

, hence by the dilation rule

d̂√2tG(ξ) =
(
Ĝ
)
√
2t
(ξ) =

√
π

t
e−

ξ2

4t .

The Poisson summation formula applied to φ = d√2tG now gives the desired for-
mula.

Problem 5: If φ ∈ S(R), then also φ̂ ∈ S(R) and the continuity of the Fourier
transform is most conveniently expressed through the Fourier bounds: for k, l ∈ N0

there exists a constant c = ck,l so

Sk,l(φ̂) ≤ cSl+2,k(φ).

Thus we have in particular for m ∈ N and ξ ∈ R \ {0} that

∣∣φ̂∣∣ = |ξ|m+1

|ξ|m+1

∣∣φ̂(ξ)∣∣ ≤ Sm+1,0(φ̂)

|ξ|m+1

≤ cS2,m+1(φ)

|ξ|m+1
.
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For N > 0 we apply the Poisson summation formula to the L1 dilation φ2πN

whereby we get, using also the dilation rule,

1
N

∑
k∈Z

φ
(

k
N

)
=
∑
k∈Z

φ̂(2πNk)

=φ̂(0) +
∑
k ̸=0

φ̂(2πNk),

hence ∫ ∞

−∞
φ(x) dx = 1

N

∑
k∈Z

φ
(

k
N

)
+RN ,

where

|RN | =

∣∣∣∣∣∣−
∑
k ̸=0

φ̂(2πNk)

∣∣∣∣∣∣ ≤
∑
k ̸=0

cS2,m+1(φ)

|2πNk|m+1

= 2cS2,m+1(φ)

∞∑
k=1

1

(2πNk)m+1

≤ cS2,m+1(φ)

Nm+1
.

Problem 6: (a) We have for n ̸= 0 using 2π periodicity and properties of the
complex exponential:

2πcn =

∫ π

−π

f(x)e−inx dx

= −
∫ π

−π

f(x)e−in(x−π
n ) dx

= −
∫ π−π

n

−π−π
n

f(x+ π
n )e

−inx dx

= −
∫ π

−π

f(x+ π
n )e

−inx dx,

and so

cn = 1
4π

∫ π

−π

(
f(x)− f(x+ π

n )
)
e−inx dx

as required. If
(
ρε
)
ε>0

is the standard mollifier on R and fε = ρε ∗ f , then

4π|cn| ≤
∫ π

−π

∣∣f(x)− f(x+ π
n )
∣∣dx

≤
∫ π

−π

∣∣f(x)− fε(x)
∣∣ dx

+

∫ π

−π

∣∣fε(x)− fε(x+ π
n )
∣∣dx

+

∫ π

−π

∣∣fε(x+ π
n )− f(x+ π

n )
∣∣ dx

= 2

∫ π

−π

∣∣f(x)− fε(x)
∣∣dx

+

∫ π

−π

∣∣fε(x)− fε(x+ π
n )
∣∣dx.
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The conclusion follows from this.
(b) Since tn → 0 as n → ∞ given k ∈ N we can find nk ∈ N so |tnk

| ≤ 2−k.
Proceeding inductively we can arrange that also nk < nk+1, and hence defining

f(x) =

∞∑
k=1

tnk
einkx

we see, using the Weierstrass M -test, that the series is uniformly convergent in
x ∈ R, and so f is continuous. The desired conclusion follows from this.
(c) This is easy since from (a) we have for n ̸= 0:

4π|cn| ≤
∫ π

−π

∣∣f(x)− f(x+ π
n )
∣∣dx

≤
∫ π

−π

c
∣∣∣π
n

∣∣∣α dx

=2cπ1+α|n|−α

as required.
(d) Let cn(f

′), cn(f) be the Fourier coefficients for f ′, f , respectively. Using similar
notation for the mollified function fε = ρε ∗ f and its derivative f ′

ε = ρε ∗ f ′ we find
by partial integration:

cn(f
′
ε) =

1
2π

∫ π

−π

f ′
ε(x)e

−inx dx

= 1
2π

∫ π

−π

fε(x)ine
−inx dx

=cn(fε)in.

Because cn(fε) → cn(f) and cn(f
′
ε) → cn(f

′) as ε ↘ 0 it follows that also

cn(f) =
cn(f

′)

in
for n ̸= 0.

Because
|cn(f)| ≤ 1

2

(
|cn(f ′)|2 + 1

n2

)
for n ̸= 0,

and
(
cn(f

′)
)
n∈Z ∈ ℓ2(Z) by Plancherel’s theorem for Fourier series it follows from

the Weierstrass M -test that the Fourier series for f is absolutely and uniformly
convergent.


