Fourier Analysis and PDEs  Solutions to Problem Sheet 4 HT/TT20

Problem 1: (a) Write ¢ = £ + in and note that when n > 0
|f(x)e™ 7| =|f(2)]e"
<3 ([f@)]* +¢*™7) € L (=00,0),

so F(¢) is well-defined for ¢ € H. Fix ¢ € H and consider for z € C so z # 0 and
z + ¢ € H the difference quotient

0
F(C+2)=F(Q) :/ Fla)emiCr et gy
—00

We want to apply Lebesgue’s dominated convergence theorem. Write z = a + i3
and use the fundamental theorem of calculus to estimate
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hence for a.e. x < 0:
2
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When |§| < 7 the latter is integrable over (—oo, O), hence by DCT, f(z)(—iz)e ¢ €
LY(R) and

0
7F(<+2_F(O —>/ f(x)(—ix)e_ica’ dz as z — 0.
— 00

Thus F': H — C is complex differentiable at ¢ and since ( € H was arbitrary F is
holomorphic. [Alternatively you can use Fubini’s and Morera’s theorems.]

Now for n > 0 we have z — f(x)e" is square integrable (and integrable) over R
(recall: f =0 on (0,00)) so by Plancherel’s theorem

Fooe(f(x)e™) = lim /f )ee i dy

7, k—oo

with convergence in the sense of L?(R) and by Parseval’s identity
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Here the left-hand side, L, can be rewritten: first note that z — f(z)e"%e™1¢ is
integrable over R so by Lebesgue’s DCT

o'} 0 2
L= ‘/ f(z)e"e 1% dg
Combining this with
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— 00

when 7 > 0 we conclude with the required bound for F'. Finally, because f(x)e™ —
f(z) in L2(R) as n \, 0 (for instance from Lebesgue’s monotone convergence theo-
rem), Plancherel’s theorem yields F(- +in) — f in L2(R) as \, 0.
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(b) (Optional) Put F,(¢) := F(£+1n), £ € R, for each n > 0. Then F, € L*(R)
and so by Plancherel’s theorem and Parseval’s identity F,, € L%(R) and | F),|2 =
V27 ||Fyl|2. By the Fourier inversion formula for tempered distributions we have

Fy =g Fy = F(Fy).

where we used that the Fourier transform commutes with the operation Zv) Con-

sider
oo

B = [ Fy@da

w”/‘F@+me“m%,
— o0

where the integrals must be understood to converge in the L? sense (according to
Plancherel). Here the function H > ¢ — F({)e'* is holomorphic for each fixed
xz € R, so if for a fixed n € (0,1) U (1,00) and positive numbers r, s > 0 we denote
by I'; s the rectangle with corners s + i, s +in, —r +in, —r + i traversed counter
clockwise, then we have by Cauchy’s theorem,

/ F(¢)e*¢d¢ = 0.
T s

In order to see that we can choose r, s — oo so that the contour integrals over
corresponding vertical parts of ', s tend to 0 we must use the assumed L? bound:
First we have by Hoélder’s inequality
2
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/ F(& +it) e®EH0iqg
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n
In—1 ’/ |F (& +it)|?e™ 2t dt
1

(0.1)

IN

14+n
ne2‘zl(1+”)/ F(€ +it)[2 dt.
0

By Tonelli’s theorem and our assumption

e’} 1+n 1+n roo
F it)|2 ded¢ = F it)|2ded
KWA F(€ +it) i de A /;|@+m|£t

gsup/ (¢ +it)2 de(1 4+ n) < oo,
t>0 J -0

We can therefore find values r =r;, s = s; = 00 so
1+n 1+n
/ |F(—7r; +it)[*dt — 0 and / |F(s; +it)|*dt — 0 as j — oo
0 0

as otherwise the above integrals would be divergent (note that we cannot in general
be sure that we have this for all choices of r, s — 00). It follows from (0.1) that
the contour integrals over the corresponding vertical parts of I';, s, tend to 0 as
j — oo. Thus

sj 5j
/ F(E+1)e™ dge™ = / F(¢ +in)e™ dge™ + o(1)
- -

as j — oo for each fixed x € R. Now Plancherel’s theorem ensures that the two
integrals above both converge in the sense of L? as functions of 2 € R when j — co
and by properties of L2 convergence it follows that for a suitable subsequence, say
(jr) of (j), we have convergence pointwise almost everywhere. Consequently

Fi(z)e™™ = Fy(x)e ™



holds for almost every = € R, say for all z € R\ N,;,, where £!(N,;) = 0. Define

fz) = 5-Fi(x)e™".
This is a measurable function and, provided we have chosen a representative for

the L2 function E that is consistent with the above identity, we have

Fy(x) = 2nf(x)e™

for z € R\ N,. The left-hand side is in L?, hence so is the right-hand side and so
we get from Parseval’s identity and our assumption

| 1@ do = Gl Fy I = & IF ) < m < oo
—o0
for a constant m (independent of n > 0). It follows that f(z) = 0 for a.e. > 0O:

Fix ¢ > 0 and put £ = {& > e : [f(z)| > e}. Then E is a measurable set and
|f(x)|?e?1® > 2 a.e. on E, so

EQezm’El(E) < / |f($)|262"x de <m
E

for all n > 0, which is ony possible if £}(E) = 0. Since ¢ > 0 was arbitrary it
follows that f = 0 a.e. on (0, 00) as asserted. By Lebesgue’s monotone convergence
theorem we find

o 0 0
/ (@) da = / (@) dz = sup / (@)% dz < m < oo,

—oc0 —o0 n>0J -0

so f € L2(R). Finally, we conclude with F, — f in L2 as n \, 0 by use of
Plancherel’s and Fourier’s inversion theorems and the above identities.

Problem 2: (a) f is piecewise C' so its distributional derivative is
1 if —1<x<0
fllzy=¢ -1 if0<z<1
0 otherwise.

It follows that f’({) = %(Cosﬁ - 1), so by the differentiation rule,
~ 1—cosé
Fley = 2=,
and using the double-angle formula, cos & = cos® (5/2) —sin? (5/2), and 1—cos? (5/2) =

sin®(£/2) we conclude that 7€) = sinc? (£/2). The Poisson summation formula can

be stated as
2672771]@93 _ Z 5k

kEZ keZ
with convergence of the series in S’(R). Note that the distribution on LHS is
continuous with respect to the norm ¢ — 3270(@ and the one on the RHS with
respect to the norm Ss . By inspection we see that Soo(f) = 1, ggp(f) =4, in
particular that both are finite, so by approximation we may evaluate the above
identity at f, and what is more convenient here, on  + f(z)e™""* for a parameter
h € R. By the translation rule

FE+h) = Fose(f(a)e™™),
whereby we find

Zsin02(27rk +h)= Z(l — |k|)+e_ihk =1.

kEZ keZ
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Here we have using the addition formula and assuming h € R\ 27Z:
sin® (rk + &)

(wk +5)°
B sin’ (%)
(kg
sin(y) 1

2
™ (k)

sinc?(2nk 4 h) =

and so
2

Z 1 _ ™
i (ot g5)" sinf(3)

The desired formula follows if we take z = 4~ € R\ Z.
(b) Note that for z € R\ Z:

N 1 XL
PO D D

and so using Weierstrass’ M-test we see that the LHS converges locally uniformly
on R\ Z, and so defines a continuous function there. Denote its restriction to (0,1)
by T. Clearly T € D’(0,1) and by D’ continuity of differentiation we get

/T
T'=ym ZN (n+x)?

1
c=- —.
kez; (k+ z)?
Therefore we have according to (a), T/ = —% =4
by the constancy theorem, T" = 7 cot mx + ¢ for some constant ¢ € C. Evaluating
the identity at x = 1/2 we see that ¢ = 0 and so that the identity holds on (0, 1).
However, the two sides are both 1 periodic and so the desired identity then clearly
holds on all of R\ Z.
(¢) The argument with the Weierstrass M-test used in (b) also easily gives that

weot mx in D’(0,1), and so

25:7 N n%_z converges locally uniformly in 2z € C\ Z as N — oo. It therefore

follows from Morera’s theorem that z — limy_so ij:_ N Z_%n is holomorphic on
C\ Z. Since also 7 cot 7z is holomorphic on C\ Z and the two functions agree on
R\ Z it follows from the identity theorem that

N

1
0.2 li = t
( ) Nl—Igon;Nﬂﬁ-I-z mcotmz

holds for all z € C\Z. In order to prove Lipschitz’s formula we proceed by induction
on k. However, we first note that when k > 2 we have for each z € H that

|eZ7riz’ _ e—27rIm(z) < 17

so the series on the right-hand side of the Lipschitz formula converges locally uni-
formly in z € H. It is clear that the series on the left-hand side also converges
locally uniformly in z € H when k > 2. Both sides therefore in particular define
regular distributions that can be differentiated distributionally term-by-term. This



is also true of (0.2) that will be our starting point: Indeed expressing cot in terms
of complex exponentials and recognizing a geometric series we find

1 eQﬂ'iz 0o .
meotmz = —7Ti+7 = —7i (1 +92 ZQZWm,z) :
n=1

1— eZﬂ'iz

and hence
N

1 o
lim = —7i (1 +2 § e2m2>
N—oo n-+z
N n=1

locally uniformly in z € H. Differentiating with respect to z in the sense of distri-
butions (precisely we apply the Cauchy-Riemann differential operator %) we get
Lipschitz’s formula for £ = 2 in the sense of distributions on H. But since both
sides are regular distributions, in fact represented by holomorphic functions, we
have established the formula for this special case. Now assume that Lipschitz’s
formula holds for some k > 2. Differentiating it we see that the formula also holds
for k + 1 in the sense of distributions on H. But again both sides are represented
by holomorphic functions so the formula holds also for all z € H. The Lipschitz
formula therefore follows by induction on k > 2.

Problem 3: (Optional) The function g: R — C is clearly piecewise C* with jump
discontinuities at points of 27Z. In particular we record that g is locally square
integrable, so Plancherel’s theorem for Fourier series applies and we have

g(x) = Z cne™ in L2
neL

We calculate the Fourier coefficients:

2sinTa

2m . 2m . .
Cn = i g(x)efma: dz = L / emoz71(n+o¢)m dx
0 0

elma 1 _ e—i(7z+a)27r

2sinta i(n+ )
1
n+ao’

where we skipped some straight forward routine calculation in the last line. Con-
sequently we have

1 inx
x) = e
9(x) Z n+a
nez

where the doubly infinite series converges in L2. If we use Parseval’s identity for
Fourier series we recover (1) on the problem sheet:

71_2 . 27

2 ~onm

sin® T 0
=2 leal?

nez

_ 1

o Z (n+a)?
nez

for « € R\ Z. In order to deduce (2) on the problem sheet we would have liked
to take x = 0 in the Fourier expansion of g. However, this is not permitted by the
theory we have developed so far since g has a jump discontinuity at x = 0:

g(O) = sinﬂ—ﬂ'aeiﬂ-a ;é sinﬂ‘n'oze_iﬂ-a = g(27’(’—)

lg(@)|? da

because o € Z.
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Problem 4: (a) That the periodisation Py is a 27 periodic C* function follows
as in the lecture notes page 50: Fix n € Ny and note that the derivative (™) is
again a Schwartz test function on R, so that by prelims analysis it suffices to prove
that the series defining Py is locally uniformly convergent on R. For that we note
that when |z| <7 and k € Z\ {0}:

1+ (z — 27k)? 2

|gp(x— 27rk)| = mkﬁ@ - 27Tk)| = m
3 Sa0(e).

< =
— 14 (2nlk| —m)

hence the series converges uniformly in « € [—m, 7] by Welerstrass’ M-test, and so
Py is a 2m-periodic C™ function. Next, for each k € Z we calculate (using uniform
convergence to justify swapping order of integration and summation):

A

Sa.0(¢)

2 2m
k= 5 Py(z)e " dx = Z + / o(x + 2rk)e % dg
0 neL 0
27 (n+1)
_ Z 1 So(x)efikm+i27rn dx
nez °m 2mn
27 (n+1)
= Z = o(x)e ™ dx
nez 2mn
o0
=5 | plx)e " dr = L 5(k),
— 00

and so

kEZ
holds for each x € R (and in fact it is not difficult to see that the convergence is
uniform, and even much better). Now note that
n 27
> e = [ Po(x)Dy(x —y) dy,
e 0
where
n
D,(t) = Z elkt
k=—n

is Dirichlet’s kernel. For t € R\ 27Z we have by summing a geometric series and
then rewriting in terms of sine:

Du(t) = L 1 — el@nt1)t _ y sin(n+ 3t

2m ] — it 27 gin %

We check that

2m
D,(t)dt=1
0
and that, for each 6 € (0,7),

27 —6
/ D,(t)dt =0 as n — o0
5

by the Riemann-Lebesgue lemma (note 1/sin(¢/2) is integrable over (4,21 — J)).
Put L = max|(Py)’| and note that

_ _ < i _
|Po(z) — Po(x t)’_LIgIGI%H 27k



holds for all z, t € R. For 6 € (0,7) we have

2m

’Pgo(x) — [ Po@—)D, (1) dt‘ - /O " (Po(a) - Pl — ) Dalt) dt‘

0

2m—9§
< / (P(p(x) — Po(x — t))Dn (t)dt
5

</06 i /:J (Po(w) = Piplw — ) Da(t) dt

2w —4§
/5 (Pe(z) — Po(x — 1)) Dy(t) dt

)2
+4L /O /7] dt.

For fixed § the first integral tends to 0 by the Riemann-Lebesgue lemma:

_|_

<

I:= /Qﬁ_é(Pcp(m) — Po(z — t))Dy(t)dt — 0 as n — oo,
0

whereas

H~—4L/6 U2 41 50 as 65,0
=, sin(t/2) s '

Thus given € > 0 we take § € (0,7) so II < ¢ and then for this fixed § we obtain

lim sup
n—oo

27
Po(x) 7/0 Po(x —t)D,(t)dt| <e.

Consequently we have shown that Po(z) = Y, ., 5=@(k)e'*® for all € R. Taking
x = 0 we deduce t;le Poisson summation formula,

~ £
(b) If G(x) = e_%, x € R, then G(§) = v2me™ 2 (see Lemma 1.38 in the lecture
notes) and so for t > 0 we have d 5;G(r) = e~***hence by the dilation rule

T = (€) ;56 = |/ T .

The Poisson summation formula applied to ¢ = d G now gives the desired for-
mula.

Problem 5: If ¢ € S(R), then also @ € S(R) and the continuity of the Fourier
transform is most conveniently expressed through the Fourier bounds: for k, [ € Ny
there exists a constant ¢ = Ck,1 SO

Ska(@) < cSiya.k(p).

Thus we have in particular for m € N and £ € R\ {0} that

Sm11,0(P)

18] = A7 )
|£Vn+1 — ‘€Vn+1

< cS2m+1()
€|+t
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For N > 0 we apply the Poisson summation formula to the L' dilation (orn
whereby we get, using also the dilation rule,

i Z (L) = Z P27 Nk)

kEZ kEZ
0)+ > @(2nNk),
k0
hence -
| ewrde =43 o(k) + R
> keZ
where
Ryl = |- 3 @2nNE) Z ¢S2.m 1
|27rNk:\m+1
k£0
__2d§ ( >§§i44444£444,
=2¢S2,m+1(p £ (2mNk)m+!
< C§2,m+1(<ﬁ)
- ]Vw1+1

Problem 6: (a) We have for n # 0 using 27 periodicity and properties of the
complex exponential:

2me, = f(z)e ™ dg

f(;zc)efm(g“%) dz

32

- /W: fa+ D) da

— =

SRE

T

= — fz+ E)eﬂm dz,

—T

and so

us

=gz [ (fl@) = flz+F))e " da

—T

as required. If (p5)6>0 is the standard mollifier on R and f. = p. * f, then

trleal < :If(fv) ~ flo+T)|dz
[ |#@) - o] da
7;!]2( — fe(z+ I)|da
el t 3= ot D) ds
[ |#@) - o] da

+[|f€( ~fola+ T)|da.



The conclusion follows from this.
(b) Since t, — 0 as n — oo given k € N we can find nj, € N so |t,, | < 27F.
Proceeding inductively we can arrange that also ny < ngy1, and hence defining

oo
f(:r) _ Z tnkeinkw
k=1

we see, using the Weierstrass M-test, that the series is uniformly convergent in
x € R, and so f is continuous. The desired conclusion follows from this.
(c) This is easy since from (a) we have for n # 0:

drlenl < [ @) = fla+ 5)|da

s
ﬂ-a
g/c— dz
_x In

1+a|n|fa

=2cT
as required.
(d) Let ¢,,(f), cn(f) be the Fourier coefficients for f’, f, respectively. Using similar
notation for the mollified function f. = p. * f and its derivative f. = p. * f’ we find
by partial integration:

() =2 [ ) do
:% fe (x)inefi"z dx

=cn(fe)in.
Because ¢, (fe) = ¢en(f) and ¢, (fL) = cn(f) as € N\, 0 it follows that also
!
en(f) = M for n # 0.

in

Because
len (N < 5(lea(f)P + 55) for n#0,

and (cp( f’))n ez € (2(Z) by Plancherel’s theorem for Fourier series it follows from
the Weierstrass M-test that the Fourier series for f is absolutely and uniformly
convergent.



