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Chapter 1

Hilbert Spaces

1.1 Inner product

Definition 1.1.1. An inner (scalar) product in a linear vector space X over
R is a real-valued function on X×X, denoted as 〈x, y〉, having the following
properties:

(i) Bilinearity. For fixed y, 〈x, y〉 is a linear function of x, and for fixed x,
〈x, y〉 is a linear function of y.

(ii) Symmetry. 〈x, y〉 = 〈y, x〉 for all x, y ∈ X.

(iii) Posivity. 〈x, x〉 > 0 for x 6= 0.

When X is a vector space over C, 〈x, y〉 is complex-valued and properties
(i) and (ii) are replaced by

(i’) Sesquilinearity. For fixed y, 〈x, y〉 is a linear function of x, and for
fixed x, 〈x, y〉 is a skewlinear function of y, i.e.

〈ax, y〉 = a〈x, y〉 and 〈x, ay〉 = ā〈x, y〉 for all a ∈ C, x, y ∈ X.

(ii’) Skew symmetry. 〈x, y〉 = 〈y, x〉 for all x, y ∈ X.

Caution. In some textbooks, the sesquilinearity property is reversed: 〈x, y〉
is required instead to be skewlinear in x and linear in y.
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The inner product 〈·, ·〉 generates a norm, denoted by ‖ · ‖, as follows:

‖x‖ = 〈x, x〉1/2.

It should be clear that the positivity of the norm ‖ · ‖ follows from the
positivity property (iii), and the homogeneity of ‖·‖ follows from the bi/sequi-
linearity property (i)/(i’). To prove the triangle inequality, we use:

Theorem 1.1.2 (Cauchy-Schwarz inequality). For x, y ∈ X,

|〈x, y〉| ≤ ‖x‖‖y‖.

Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, the conclusion is clear. Assume henceforth that y 6= 0.
Replacing x by ax with |a| = 1 so that a〈x, y〉 is real, we may assume
without loss of generality that 〈x, y〉 is real.

For t ∈ R, we compute using sesquilinearity and skew symmetry:

‖x+ ty‖2 = 〈x+ ty, x+ ty〉 = ‖x‖2 + 2tRe 〈x, y〉+ t2‖y‖2. (1.1)

By positivity, this quadratic polynomial in t is non-negative for all t. This
implies that

(Re 〈x, y〉)2 − ‖x‖2‖y‖2 ≤ 0,

which gives the desired inequality. If equality holds, then there is some t0
such that x+ t0y = 0. The conclusion follows.

If we set t = ±1 in (1.1) and add the resulting identities, we obtain the
so-called parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X. (1.2)

It is a fact that if a norm satisfies the parallelogram law (1.2), then it comes
from an inner product, which can be retrieved from the norm using polari-
sation:

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2)

for real scalar field and

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2) +

1

4
i(‖x+ iy‖2 − ‖x− iy‖2)

for complex scalar field.
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Definition 1.1.3. A linear vector space with an inner product is called an
inner product space. If it is complete with the induced norm, it is called a
Hilbert space.

Given an inner product space, one can complete it with respect to the
induced norm. Since the inner product is a continuous function on its factors,
it can be extended to the completed space. The completed space is therefore
a Hilbert space.

Example 1.1.4. The space Cn or Rn is a Hilbert space with the standard
inner product

〈x, y〉 =
n∑
k=1

xk ȳk.

Example 1.1.5. The space `2 = {(x1, x2, . . .) = (xn) :
∑∞

n=1 |xn|2 < ∞} is
a Hilbert space with the inner product

〈x, y〉 =
∞∑
n=1

xk ȳk.

Example 1.1.6. The space C[0, 1] of continuous functions on the interval
[0, 1] is an incomplete inner product space with the inner product

〈f, g〉 =

∫ 1

0

f ḡ dx.

Example 1.1.7. Let (E, µ) be a measure space, e.g. E is a subset of Rn and
µ is the Lebesgue measure. The space L2(E, µ) of all complex-valued square
integrable functions is a Hilbert space with the inner product

〈f, g〉 =

∫
E

f ḡ dµ.

The completeness of L2(E, µ) is a special case of the Riesz-Fischer theorem
on the completeness of the Lebesgues space Lp(E, µ).

Example 1.1.8. A closed subspace of a Hilbert space is a Hilbert space.

Example 1.1.9 (Bergman space). Let D be the open unit disk in C. The
space A2(D) consists of all functions which are square integrable and holo-
morphic in D is a closed subspace of L2(D) and is thus a Hilbert space.
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Example 1.1.10 (Hardy space). The space H2(T) of all functions f ∈
L2(−π, π) whose Fourier series are of the form

∑
n≥0 an e

inx is a closed sub-
space of L2(−π, π) and is thus a Hilbert space.

Example 1.1.11 (Sobolev space H1(a, b)). We say that u ∈ H1(a, b) if
u ∈ L2(a, b) and there exists a function v ∈ L2(a, b) such that

u(x) = A+

∫ x

a

v(y) dy (1.3)

for some constant A and for almost all x ∈ (a, b).

Note that by (1.3), any u ∈ H1(a, b) has a continuous representation in
[a, b], since

|u(x)− u(x̃)| =
∫ x̃

x

v(y) dy ≤ |x− x̃|1/2 ‖v‖2.

Also, for any given u ∈ H1(a, b), there is only one function v satisfying (1.3).
Indeed, if there are two constants A1, A2 and two functions v1, v2 satisfying
(1.3) then ∫ x̃

x

[v1(y)− v2(y)] dy = A2 − A1 for all x, y ∈ [a, b].

Now, since for almost all x ∈ (a, b), it holds that

lim
δ→0

1

2δ

∫ x+δ

x−δ
[v1(y)− v2(y)] dy = v1(x)− v2(x),

the above implies that A2 = A1 and v1 = v2 a.e. in (a, b).

Next, observe that

lim
δ→0

u(x+ δ)− u(x)

δ
= lim

δ→0

1

δ

∫ x+δ

x

v(y) dy = v(x) for almost all x ∈ (a, b),

i.e. a function u ∈ H1(a, b) is almost everywhere differentiable in (a, b) and
the derivative of u is equal the function v in (1.3) almost everywhere in (a, b).
It then makes sense to call v the ‘weak’ or ‘generalised’ derivative of u and
write v = u′. It should be clear that if u is C1, then v is indeed the classical
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derivative of u. In addition, we note the integration by parts formula: if
ϕ ∈ C1

0([0, 1]), then, by Fubini’s theorem,∫ 1

0

w(x)ϕ′(x) dx =

∫ 1

0

∫ x

0

v(y)ϕ′(x) dy dx =

∫ 1

0

v(y)

∫ 1

y

ϕ′(x) dx dy

= −
∫ 1

0

v(y)ϕ(y) dy.

Theorem 1.1.12 (Not for examination). The space H1(a, b) is a Hilbert
space with the inner product

〈u, v〉 =

∫ b

a

(uv̄ + u′ v̄′) dx.

1.2 Orthogonality

Definition 1.2.1. Two vectors x and y in an inner product space X are said
to be orthogonal if 〈x, y〉 = 0.

Definition 1.2.2. Let Y be a subset of an inner product space X. We define
Y ⊥ as the space of all vectors v ∈ X which are orthogonal to Y , i.e. 〈v, y〉 = 0
for all y ∈ Y .

When Y is a subspace of X, Y ⊥ is called the orthogonal complement of
Y in X.

Proposition 1.2.3. Let Y be a subset of an inner product space X. Then

(i) Y ⊥ is a closed subspace of X.

(ii) Y ⊂ Y ⊥⊥.

(iii) If Y ⊂ Z ⊂ X, then Z⊥ ⊂ Y ⊥.

(iv) (spanY )⊥ = Y ⊥.

(v) If Y and Z are subspaces of X such that X = Y +Z and Z ⊂ Y ⊥, then
Y ⊥ = Z.

Proof. Exercise.
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Theorem 1.2.4 (Closest point in a closed convex subset). Let K be a non-
empty closed convex subset of a Hilbert space X. Then, for every x ∈ X,
there is a unique point y ∈ K which is closer to x than any other points of
K.

Proof. Let

d = inf
z∈K
‖x− z‖ ≥ 0

and yn ∈ K be a minimizing sequence, i.e.

lim
n→∞

dn = d, dn = ‖x− yn‖.

Applying the parallelogram law (1.2) to 1
2
(x− yn) and 1

2
(x− ym) yields∥∥∥x− 1

2
(yn + ym)

∥∥∥2

+
1

4
‖yn − ym‖2 =

1

2
(d2
n + d2

m).

Since K is convex, 1
2
(yn + ym) ∈ K and so

∥∥∥x− 1
2
(yn + ym)

∥∥∥ ≥ d. This and

the above implies that (yn) is a Cauchy sequence. Let y be the limit of this
sequence, which belongs to K as K is closed. We then have by the continuity
of the norm that ‖x − y‖ = lim ‖x − yn‖ = d, i.e. y minimizes the distance
from x.

That y is the unique minimizer follows from the same reasoning above.
If y′ is also a minimizer, we apply the parallelogram law to 1

2
(x − y) and

1
2
(x− y′) to obtain

d2 +
1

4
‖y−y′‖2 ≤

∥∥∥x− 1

2
(y+y′)

∥∥∥2

+
1

4
‖y−y′‖2 =

1

2
(‖x−y‖2 +‖x−y′‖2) = d2.

This implies that y = y′.

Theorem 1.2.5 (Projection theorem). If Y is a closed subspace of a Hilbert
space X, then Y and Y ⊥ are complementary subspaces: X = Y ⊕ Y ⊥, i.e.
every x ∈ X can be decomposed uniquely as a sum of a vector in Y and in
Y ⊥.

Proof. Certainly Y ∩ Y ⊥ = {0}. It remains to show that X = Y + Y ⊥.
Take any x ∈ X and, since Y is a non-empty closed convex subset of

X, there is a point y0 ∈ Y which is closer to x than any other points of Y
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by Theorem 1.2.4. To conclude, we show that x − y0 ∈ Y ⊥. Indeed, for all
y ∈ Y and t ∈ R, we have

‖x− y0‖2 ≤ ‖x− (y0 − ty)︸ ︷︷ ︸
∈Y

‖2 = ‖x− y0‖2 + 2tRe 〈x− y0, y〉+ t2 ‖y‖2.

It follows that 2tRe 〈x − y0, y〉 + t2 ‖y‖2 ≥ 0 for all t ∈ R. This implies
Re 〈x− y0, y〉 = 0. This concludes the proof if the scalar field is real.

If the scalar field is complex, we proceed as before with t replaced by it
to show that Im 〈x− y0, y〉 = 0.

Caution. It follows from Theorem 1.2.5 that every closed subspace of a
Hilbert space has a closed complement. This is not true for all Banach spaces.

Corollary 1.2.6. If Y is a closed subspace of a Hilbert space X, then Y =
Y ⊥⊥.

Definition 1.2.7. The closed linear span of a set S in a Hilbert space X is
the smallest closed linear subspace of X containing S, i.e. the intersection
of all such subspaces.

It is easy to see that the closed linear span of a set S is the closure of the
linear span SpanS.

Proposition 1.2.8. Let S be a set in a Hilbert space X. Then the the closed
linear span Y of S is S⊥⊥.

Proof. Exercise.

Definition 1.2.9. A subset S of a Hilbert space X is called an orthonormal
set if ‖x‖ = 1 for all x ∈ S and 〈x, y〉 = 0 for all x 6= y ∈ S.

S is called an orthonormal basis (or a complete orthonormal set) for X
if S is an orthonormal set and its closed linear span is X.

Theorem 1.2.10. Every Hilbert space contains an orthonormal basis.

Proof. We will only give a proof in the case when the Hilbert space X under
consideration is separable, i.e. it contains a countable dense subset S. The
proof in the more general case draws on more sophisticated arguments such
as Zorn’s lemma.
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Label the elements of S as y1, y2, . . . Applying the Gram-Schmidt process1

we obtain an orthonormal set B = {x1, x2, . . .} such that, for every n, the
span of {x1, . . . , xn} contains y1, . . . , yn. As S̄ = X, this implies that X =
spanB, and so X is the closed linear span of B.

Theorem 1.2.11 (Pythagorean theorem). Let X be a Hilbert space and
S = {x1, x2, . . . , xm} be a finite orthonormal set in X. For every x ∈ X,
there holds

‖x‖2 =
m∑
n=1

|〈x, xn〉|2 +
∥∥∥x− m∑

n=1

〈x, xn〉xn
∥∥∥2

.

The proof of this is a direct computation and is omitted. An immediate
consequence is:

Lemma 1.2.12 (Bessel’s inequality). Let X be a Hilbert space and S =
{x1, x2, . . .} be an orthonormal sequence in X. Then, for every x ∈ X, there
holds

∞∑
n=1

|〈x, xn〉|2 ≤ ‖x‖2.

Theorem 1.2.13. Let X be a Hilbert space and S = {x1, x2, . . .} be an
orthonormal sequence in X. Then the closed linear span of S consists of
vectors of the form

x =
∞∑
n=1

an xn (1.4)

where the sequence of scalar (a1, a2, . . .) belongs to `2. The sum in (1.4)
converges in the sense of the Hilbert space norm. Furthermore

‖x‖2 =
∞∑
n=1

|an|2 (Parserval’s identity)

and

an = 〈x, xn〉.
1The Gram-Schmidt process is usually applied to a set of finitely many linearly inde-

pendent vectors yielding an orthogonal basis of the same cardinality. In our setting, we
will lose the latter property as the vectors yi’s are not necessarily linearly independent.



1.3. LINEAR FUNCTIONALS 13

Proof. Let Y denotes the closed linear span of S. It is clear that, if the
sequence of coefficients (an) belongs to `2, the the sum in (1.4) converges in
the sense of the Hilbert space norm and so defines a vector in Y . Conversely,
assume that x ∈ Y and let an = 〈x, xn〉. By Bessel’s inequality, (an) ∈ `2

and so the vector

x̃ =
∞∑
n=1

an xn ∈ Y ⊂ X.

Now observe that x− x̃ is perpendicular to all xn and thus belongs to Y ⊥, in
view of Proposition 1.2.8. Since Y ∩ Y ⊥ = {0}, we deduce that x = x̃. This
shows that x has the desired form. Parserval’s identity then follows from
Pythagorean theorem.

1.3 Linear functionals

If X is a Hilbert space, and x ∈ X is fixed, then 〈y, x〉 = `(y) is a linear
functional of y, i.e. ` maps X linearly into R or C. Furthermore, ` is bounded,
thanks to the Cauchy-Schwarz inequality, and so ` ∈ X∗. It turns out that
all bounded linear functionals on a Hilbert space arise this way:

Theorem 1.3.1 (Riesz representation theorem). Let X be a real (or com-
plex) Hilbert space and ` : X → R (or C) be a bounded linear functional.
Then ` is of the form

`(y) = 〈y, x〉 for all y ∈ X

for some x ∈ X. Furthermore, the point x is uniquely determined and ‖x‖ =
‖`‖∗.

Remark 1.3.2. In the case of real Hilbert spaces, the above statement means
that there exists an isometric isomorphism π : X → X∗ such that (πx)(y) =
〈y, x〉 for all x, y ∈ X and ‖πx‖∗ = ‖x‖. So the spaces X and X∗ are
topologically equivalent, i.e. they are the same up to isometric isomorphism.
It is notated as X∗ ∼= X or even just X∗ = X.

Proof. If ` = 0, then x = 0. Assume henceforth that ` 6≡ 0. Let Y be
the kernel of `. Then Y is a closed subspace of X. By Theorem 1.2.5,
X = Y ⊕ Y ⊥.
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Since Y ⊥⊥ = Y is a strict subspace of X (as ` 6≡ 0), Y ⊥ contains a
non-zero element, say y⊥. Note that `(y⊥) 6= 0. Then for any z ∈ X, we
have

z − `(z)

`(y⊥)
y⊥ ∈ Y = Ker `

Taking inner product with y⊥ yields

〈z, y⊥〉 − `(z)

`(y⊥)
‖y⊥‖2 = 0 for all z ∈ X.

In other words, x can be chosen as

x =
`(y⊥)

‖y⊥‖2
y⊥.

The uniqueness is obvious.
For the last assertion, we note by the Cauchy-Schwarz inequality that

`(y) = 〈y, x〉 ≤ ‖y‖‖x‖ and so ‖`‖∗ ≤ ‖x‖. On the other hand, we have
‖x‖2 = 〈x, x〉 = `(x) ≤ ‖`‖∗‖x‖ and so ‖x‖ ≤ ‖`‖∗. This completes the
proof.

By inspecting the proof, we obtain the following result which is true for
more general vector spaces.

Lemma 1.3.3. (i) The kernel of a non-trivial linear functional on a Ba-
nach space is a closed linear subspace of codimension one.

(ii) If two linear functionals on a vector space have the same kernel space,
then they are multiples of each other.

Proof. Exercise.

1.4 Adjoint operators

Let X and Y be two Hilbert spaces and B(X, Y ) denotes the Banach space
of bounded linear operators from X to Y . If X = Y , we write B(X) in place
of B(X,X).

Consider A ∈ B(X, Y ). Then for fixed y ∈ Y , 〈Ax, y〉Y defines a bounded
linear functional on X. Thus, by the Riesz representation theorem, there is
some A∗y ∈ X such that 〈Ax, y〉Y = 〈x,A∗y〉X . The map y 7→ A∗y from Y
to X is called the adjoint operator of A.
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Proposition 1.4.1. The adjoint operator satisfies the following properties.

(i) 〈Ax, y〉Y = 〈x,A∗y〉X .

(ii) There is a unique operator A∗ satisfying (i).

(iii) A∗ ∈ B(Y,X).

(iv) ‖A‖B(X,Y ) = ‖A∗‖B(Y,X).

(v) A∗∗ = A.

(vi) If A,B ∈ B(X, Y ) and a, b ∈ C, then (aA+ bB)∗ = ā A∗ + b̄ B∗.

(vii) If T ∈ B(X, Y ) and S ∈ B(Y, Z), then (ST )∗ = T ∗S∗.

If X = Y , we also have that

(viii) I∗X = IX .

(ix) A ∈ B(X) is invertible if and only if A∗ is invertible.

Proof. Exercise.

Example 1.4.2. Let X = Rn, Y = Rm and Ax = Mx where M is some
m × n matrix. Then A∗ is given by A∗y = M∗y where M∗ is the conjugate
transpose of M .

Example 1.4.3. Let X = Y = L2(0, 1) and A be the integral operator

(Af)(x) =

∫ 1

0

k(x, y)f(y) dy

where k : (0, 1)2 → R is a given bounded measurable function. Then A is a
linear operator of L2(0, 1) into itself. The adjoint operator A∗, which is also
linear operator of L2(0, 1) into itself, is given by

(A∗g)(x) =

∫ 1

0

k(y, x)g(y) dy.

This is because, by Fubini’s theorem,

〈Af, g〉 =

∫ 1

0

∫ 1

0

k(x, y) f(y) dy ḡ(x) dx

=

∫ 1

0

f(y)

∫ 1

0

k(x, y) g(x) dx dy = 〈f, A∗g〉.
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Example 1.4.4. Let X = Y = `2 and R be the right-shift R((x1, x2, . . .)) =
(0, x1, x2, . . .). Then R∗ is the left-shift L((x1, x2, . . .)) = (x2, x3, . . .).

Example 1.4.5. Let X = Y = L2(R) and h : R→ C be a bounded measur-
able function. Define the multiplication operator Mh by Mhf(x) = h(x)f(x).
Then Mh ∈ B(X) and M∗

h = Mh̄.

Definition 1.4.6. Let X be a Hilbert space. An operator T ∈ B(X) is said
to be self-adjoint if A = A∗.

Lemma 1.4.7. Let X be a Hilbert space.

(i) If T ∈ B(X), then

‖T‖B(X) = sup{|〈Tx, y〉| : ‖x‖ = ‖y‖ = 1}.

(ii) If T ∈ B(X) and T is self-adjoint, then

‖T‖B(X) = sup{|〈Tx, x〉| : ‖x‖ = 1}.

Proof. The first assertion follows from the definition of the operator norm
and the fact that

‖z‖ = sup
‖y‖=1

|〈y, z〉|.

Let us prove (ii). Set

K = sup{|〈Tx, x〉| : ‖x‖ = 1} ≤ ‖T‖.

Fix some ε > 0. By (i), there are vectors x, y such that ‖x‖ = ‖y‖ = 1 and
|〈Tx, y〉| > ‖T‖ − ε. Replacing y by ay for some scalar a with ‖a‖ = 1, we
may assume that |〈Tx, y〉| = 〈Tx, y〉. This implies that

4(‖T‖ − ε) ≤ 4Re 〈Tx, y〉 = 〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉
≤ K(‖x+ y‖2 + ‖x− y‖2) = K(2‖x‖2 + 2‖y‖2) = 4K,

where we have used the parallelogram law in the second-to-last identity. The
conclusion follows.

Noting that A∗A is self-adjoint for any A ∈ B(X), we obtain the following
result.
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Proposition 1.4.8. Let X be a Hilbert space and A ∈ B(X). Then

‖A∗A‖B(X) = ‖A‖2
B(X).

In particular, if A is self-adjoint, then ‖A2‖B(X) = ‖A‖2
B(X).

We have the following result on the kernel and image of adjoint operators.

Proposition 1.4.9. Let X and Y be Hilbert spaces and A ∈ B(X, Y ). Then

(i) KerA = (ImA∗)⊥.

(ii) (KerA)⊥ = ImA∗.

Proof. Exercise.

Theorem 1.4.10. Let X be a Hilbert space and Y and Z are its closed
subspaces such that X = Y ⊕ Z. Let P : X → Y be the induced direct sum
projection, i.e. P (y + z) = y. Then the following are equivalent.

(i) Z = Y ⊥.

(ii) P ∗ = P .

(iii) ‖P‖ ≤ 1 (and in such case ‖P‖ = 1 or P ≡ 0).

Proof. Exercise.

1.5 Unitary operators

Definition 1.5.1. A linear operator between two Hilbert spaces is called uni-
tary if it is isometric and surjective.

Note that the requirement of linearity can be dropped after compositions
with translation in view of the following result.

Proposition 1.5.2. Let X and Y be Hilbert spaces. If T : X → Y is an
isometry and T (0) = 0, then T is real linear.

For normed vector spaces, the conclusion holds if one has in addition that
T is surjective. This is a result due to Mazur and Ulam.

For complex Hilbert spaces, one is tempted to say that T is some sort
of combinations of linear and skewlinear maps, but this is not clear. Note
that there are complex spaces which are not (complex) isomorphic to their
complex conjugates.
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Proof. It suffices to show that T (1
2
(x+y)) = 1

2
(T (x)+T (y)) for all x, y ∈ X.

If x = y, we are done. Suppose that x 6= y. Write z = 1
2
(x+ y). Then

‖T (x)− T (y)‖ = ‖x− y‖,

‖T (z)− T (x)‖ = ‖z − x‖ =
1

2
‖y − x‖,

‖T (z)− T (y)‖ = ‖z − y‖ =
1

2
‖y − x‖.

So
‖T (x)− T (y)‖ = ‖T (z)− T (x)‖+ ‖T (z)− T (y)‖,

and we have a situation where the triangle inequality is saturated. In view of
the equality case of Cauchy-Schwarz’ inequality, this is possible only if T (x)−
T (z) and T (z)− T (y) are linearly dependent. Without loss of generality, we
assume T (x)− T (z) = λ(T (z)− T (y)) for some (real or complex) scalar λ .
As ‖T (x) − T (z)‖ = ‖T (z) − T (y)‖ 6= 0, we have |λ| = 1. Returning to the
above equation, we then have

|λ+ 1| = 2,

which then implies that λ = 1. We deduce that T (z) = 1
2
(T (x) + T (y)) as

desired.

Remark 1.5.3. In the above proof, we only use the strict subadditivity prop-
erty of the norm on an inner product space: ‖a − b‖ + ‖b − c‖ = ‖a − c‖ if
and only if a, b and c are colinear.

We have the following characterization of isometric and unitary operators.

Proposition 1.5.4. Let T, U : X → Y be bounded linear operators between
Hilbert spaces.

(i) The following are equivalent:

(a) T is isometric.

(b) 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ X.

(c) T ∗T = IX .

(ii) The following are equivalent:
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(a) U is unitary.

(b) U∗U = IX and UU∗ = IY .

(c) Both U and U∗ are isometric.

Proof. Exercise.

There is a well-known decomposition, referred to as the Wold decompo-
sition, which asserts that every isometry of a Hilbert space can be expressed
as a (direct) sum of a unitary operator and copies of the unilateral shift. We
do not pursue this in the present notes.

Example 1.5.5. (i) The right-shift operator on `2 is isometric but not
unitary. The left-shift operator on `2 is not isometric.

(ii) A multiplication operator Mh is unitary on L2(R) if and only if |h| = 1
a.e.

(iii) If g is a non-negative and measurable function on R, then the map
f 7→ g1/2f is isometric from L2(R, g dt) to L2(R). It is unitary if and
only if g > 0 a.e.

Appendix: The Radon-Nikodym theorem

Here we will an application, due to von Neumann, of the Riesz reprensenta-
tion to prove the so-called Radon-Nikodym theorem. For simplicity, let m
denote the Lebesgue measure and A ⊂ Rn be a set of finite Lebesgue mea-
sure. Suppose µ be a finite measure defined on the σ-algebra consisting of
measurable subsets of A. We say that µ is absolutely continuous with respect
to m if every set that has zero Lebesgue measure has zero µ-measure.

Theorem 1.6.1 (Radon-Nikodym). Assume that µ is absolutely continuous
with respect to m. Then dµ = g dm where g is some non-negative integrable
function with respect to m:

µ(E) =

∫
E

g dm.
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Proof. Let X be the real Hilbert space L2(A, µ+m) with the norm ‖f‖2 =∫
A
|f |2d(µ+m). Define

`(f) =

∫
A

f dm for f ∈ X.

By the Cauchy-Schwarz inequality, ` ∈ X∗. Thus, by the Riesz representation
theorem, we can find some h ∈ X such that

`(f) =

∫
A

f h d(µ+m) for all f ∈ X.

This can be rewritten as∫
A

f(1− h) dm =

∫
A

f h dµ for all f ∈ X. (1.5)

We are now tempted to define g = 1−h
h

and conclude. To this end, we need
to show that

0 < h ≤ 1 except on a set of measure zero.

Let F = {h ≤ 0}. Choosing f = χF in (1.5), we get

m(F ) ≤
∫
F

(1− h) dm =

∫
F

h dµ ≤ 0

This implies m(F ) = 0.
Let G = {h > 1}. We choose f = χG in (1.5) and get

0 ≥
∫
G

(1− h) dm =

∫
G

h dµ ≥ 0,

where the first inequality is strict if m(G) > 0. This implies that m(G) =
0. We have thus proved that 0 < h ≤ except on a set of zero Lebesgue
measure. Now setting g = 1−h

h
and choosing f = 1

h
in (1.5), we obtain the

conclusion.



Chapter 2

Bounded linear operators: The
Baire catergory theorem and
its consequences

2.1 The Baire category theorem

Definition 2.1.1. Let S be a subset of a metric space M .

(i) We say that S is dense in M if S̄ = M .

(ii) We say that S is nowhere dense in M if S̄ has empty interior.

Theorem 2.1.2 (The Baire category theorem). A (non-empty) complete
metric space is never the union of a countable number of nowhere dense sets.

Proof. Suppose that M is a complete metric space and suppose, by contradic-
tion, that M = ∪∞n=1An where each An is nowhere dense. We will construct
a Cauchy sequence (xn) whose limit lies out of all these Am’s, which then
leads to a contradiction.

Since A1 is nowhere dense, Ā1 6= M and so M \ Ā1 is non-empty. Pick
x1 ∈M \ Ā1.

Next, since M \ Ā1 is open, there is some closed ball B̄(x1, r1) ⊂M \ Ā1

with r1 < 1. Clearly B(x1, r1) ∩ A1 = ∅. Since A2 is nowhere dense, Ā2 6⊃
B(x1, r1) and so there is some x2 ∈ B(x1, r1) \ Ā2.

We then inductively choose balls B̄(xn, rn) ⊂ B(xn−1, rn−1) \ Ān with
rn <

1
2n−1 .

21
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Now, the sequence (xn) is Cauchy, since if n,m ≥ N , then xn, xm ∈
B(xN , rN) and so d(xm, xn) ≤ 2 rN → 0. Since M is complete, (xn) converges
to some x ∈M . By the above, we have that x ∈ B̄(xn, rn) ⊂ B(xn−1, rn−1) \
Ān for all n, which implies that x /∈ An for any n. This contradicts the
assumption that M is the union of the An’s.

2.2 Principle of uniform boundedness

Theorem 2.2.1 (Principle of uniform boundedness; Banach-Steinhaus the-
orem). Let X be a Banach space and Y be a normed vector space. Let
F ⊂ B(X, Y ), i.e. F is a family of bounded linear operators from X into
Y . If it holds for each x ∈ X that the set {‖Tx‖Y : T ∈ F} is bounded, then
{‖T‖B(X,Y )} is bounded.

Loosely speaking, the principle of uniform boundedness asserts that a
family of bounded linear operators is bounded if and only if it is pointwise
bounded.

Proof. Let An = {x ∈ X : ‖Tx‖Y ≤ n for all T ∈ F}. Then, by hypothesis,
each x ∈ X belongs to some An and so X = ∪∞n=1An. By the Baire category
theorem, there is some n0 such that An0 = Ān0 (since the An’s are closed)
has non-empty interior. We can thus pick a ball B(x0, r0) ⊂ An0 .

Now suppose that ‖x‖X < r0, we proceed to bound ‖Tx‖Y for all T ∈ F .
By triangle inequality, we have x0 + x ∈ B(x0, r0) and so, by the definition
of An0 ,

‖T (x0 + x)‖Y ≤ n0 for all T ∈ F .

We also have ‖T (x0)‖Y ≤ n0 for all T ∈ F . By triangle inequality again, we
thus have

‖Tx‖Y ≤ ‖T (x0 + x)‖Y + ‖Tx0‖Y ≤ 2n0 for all T ∈ F .

Since x is chosen arbitrarily in B(0, r0), we thus conclude that ‖T‖B(X,Y ) ≤
2n0 r

−1
0 for all T ∈ F .

The principle of uniform boundedness has far reaching consequences. We
illustrate here a few such.

Theorem 2.2.2. Let X be a Hilbert space and F be a subset of B(X) such
that supT∈F |〈Tx, y〉| < ∞ for each x, y ∈ X. Then {‖T‖ : T ∈ F} is
bounded.
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Proof. By the principle of uniform boundedness, it suffices to show that, for
each fixed x ∈ X, {‖Tx‖ : T ∈ F} is bounded.

Fix an x ∈ X. Define KT,x ∈ X∗ by KT,x(y) = 〈y, Tx〉. Then, for
each y ∈ X, {|KT,x(y)| : T ∈ F} is bounded. The principle of uniform
boundedness implies then {‖KT,x‖∗ : T ∈ F} is bounded. As ‖KT,x‖∗ =
‖Tx‖, we conclude the proof.

Theorem 2.2.3. Let X and Y be Banach spaces and consider a sequence
Tn ∈ B(X, Y ). The following statements are equivalent.

(i) There exists T ∈ B(X, Y ) such that, for every x ∈ X, Tnx → Tx as
n→∞.

(ii) For each x ∈ X, the sequence (Tnx) is convergent.

(iii) There is a constant M and a dense subset Z of X such that ‖Tn‖ ≤M
and the sequence (Tnz) is convergent for each z ∈ Z.

Caution. In the above theorem, the convergence of Tn to T is in the
pointwise sense. This should not be confused with the convergence in norm,
i.e. under (i), or (ii) or (iii) in the theorem, it needs not be the case that
‖Tn − T‖ → 0. To see this consider for example X = `2, Y = R and
Tn((a1, a2, . . .)) = an. Then, for every x ∈ `2, Tnx→ 0, but ‖Tn‖ = 1 6→ 0.

Proof. It is clear that (i) ⇒ (ii). That (ii) ⇒ (iii) is a direct application of
the principle of uniform boundedness. Let us prove (iii) ⇒ (i).

We claim that, for every x ∈ X, (Tnx) is Cauchy, and hence convergent.
To see this, fix some x ∈ X, ε > 0, and note that, for every z ∈ Z,

‖Tnx− Tmx‖ ≤ ‖Tnz − Tmz‖+ ‖Tn(x− z)‖+ ‖Tm(x− z)‖
≤ ‖Tnz − Tmz‖+ 2M‖x− z‖.

In particular, if we choose z ∈ Z such that ‖x− z‖ ≤ ε
4M

and choose N such
that ‖Tnz − Tmz‖ ≤ ε

2
for n,m ≥ N , we obtain ‖Tnx − Tmx‖ ≤ ε for all

n,m ≥ N . This proves the claim
For x ∈ X, define Tx as the limit of Tnx. It is clear that T is linear.

Also, we have

‖Tx‖ = lim
n→∞

‖Tnx‖ ≤ lim sup
n→∞

‖Tn‖‖x‖ ≤M‖x‖.

Thus T is a bounded linear operator on X. We have established (i).



24 CHAPTER 2. BOUNDED LINEAR OPERATORS

2.3 The open mapping theorem

Theorem 2.3.1 (Open mapping theorem). Let T : X → Y be a bounded
linear operator from a Banach space X onto another Banach space Y . Then
T is an open map, i.e. images of open sets are open.

Proof. Let U be an open subset of X. It suffices to show that T (U) is
a neighborhood of Tx for all x ∈ U . Furthermore, by linearity, we have
T (U) = Tx+T (−x+U). Hence it suffices to show that TU is a neighborhood
of the origin when U is a neighborhood of the origin. In other words, it suffices
to show that, for all r > 0, T (BX(0, r)) contains some ball BY (0, r′). But by
homothety, T (BX(0, r)) = rT (BX(0, 1)), it is enough to show the above for
some r > 0.

Since T is onto, we have Y = ∪∞n=1T (BX(0, n)). By the Baire category
theorem, there is some n0 such that T (BX(0, n0)) has non-empty interior.
Pick BY (y0, r0) ⊂ T (BX(0, n0)). Observe that, by linearity, T (BX(0, n0))
is symmetric and convex. It follows that BY (−y0, r0) ⊂ T (BX(0, n)) and
so BY (0, r0) ⊂ T (BX(0, n0)). To conclude, we show that T (BX(0, n0)) ⊂
T (BX(0, 3n0)).

Let y ∈ T (BX(0, n0)). Select x1 ∈ BX(0, n0) such that

‖y − Tx1‖Y <
1

2
r0.

Then y − Tx1 ∈ BY (0, 1
2
r0) ⊂ T (BX(0, 1

2
n0)). Pick x2 ∈ BX(0, 1

2
n0) such

that

‖y − Tx1 − Tx2‖Y <
1

4
r0.

By induction, we select xk ∈ BX(0, 21−kn0) such that

∥∥∥y − k∑
j=1

Txj

∥∥∥
Y
<

1

2k
r0.

It is readily seen that x =
∑∞

k=1 xk exists, belongs to BX(0, 3n0) and satisfies
y =

∑∞
k=1 Txk = Tx. This shows that y ∈ T (BX(0, 2n0)).

An immediate consequence is:

Theorem 2.3.2 (Inverse mapping theorem). A bounded bijective linear op-
erator of a Banach space onto another has a bounded inverse.
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Proof. Exercise.

Example 2.3.3. Let X be a Banach spaces with respect to two norms ‖ · ‖1

and ‖ ·‖2 and suppose that there is a constant C > 0 such that ‖x‖1 ≤ C‖x‖2

for all x ∈ X. Then the two norms are equivalent, i.e. there is a constant
C ′ such that ‖x‖2 ≤ C ′‖x‖1 for all x ∈ X.

Another consequence of the inverse mapping theorem is:

Theorem 2.3.4. Let T ∈ B(X, Y ) be a bounded linear operators between
Hilbert spaces. Then TX is closed if and only if T ∗Y is closed.

Proof. It suffices to show only one direction, as T ∗∗ = T . Suppose that
W = T ∗Y is closed in X. Let Z = TX ⊂ Y . Then T maps X into Z.
Let us rename this map S, i.e. S ∈ B(X,Z) and Sx = Tx for all x ∈ X.
The adjoint S∗ of S is an operator from Z to X. By Proposition 1.4.9,
Z = ImS = (KerS∗)⊥, so KerS∗ = {0}, i.e. S∗ is injective.

We claim that ImS∗ = W . To this end we let P be the orthogonal
projection from Y onto Z and compute, for x ∈ X and y ∈ Y ,

〈Tx, y〉Y = 〈Sx, Py〉Y = 〈x, S∗Py〉X .

This shows that T ∗ = S∗ ◦ P , and so ImS∗ = W , as claimed.
So, S∗ can be regarded as a bounded bijective linear operator between

between Z and W . To make the notation clearer, we rename it as V ∈
B(Z,W ), V z = S∗z for all z ∈ Z. By the inverse mapping theorem, V has
a bounded inverse V −1 ∈ B(W,Z). This implies that V ∗ is invertible and
(V ∗)−1 = (V −1)∗ ∈ B(Z,W ) (cf. Proposition 1.4.1).

To conclude, we show that T ◦ (V ∗)−1 = IZ . This implies that TX ⊃ Z
and so TX = Z = TX which gives the conclusion. Indeed, pick an arbitrary
z ∈ Z, and let w = (V ∗)−1z. We compute, for y ∈ Y :

〈Tw, y〉Y = 〈Sw, y〉Y = 〈w, S∗y〉X = 〈w, V y〉X = 〈V ∗w, y〉Y = 〈z, y〉Y .

Since this holds for all y ∈ Y , we deduce that Tw = z and so T ◦(V ∗)−1 = IZ
as desired.

2.4 The closed graph theorem

Theorem 2.4.1 (Closed graph theorem). Let X and Y be Banach spaces
and T be a linear operator from X into Y . Then T is bounded if and only if
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its graph
Γ(T ) = {(x, y) ∈ X × Y : y = Tx}

is closed in X × Y .

Proof. If T is bounded, it is easy to see that Γ(T ) is closed.
Conversely, assume that Γ(T ) is closed. Since T is linear, Γ(T ) is a closed

subspace of X×Y . In particular, it is a Banach space with the norm induced
by the norm on X × Y . Consider now the continuous maps P1 : Γ(T ) → X
and P2 : Γ(T )→ Y defined by

P1(x, Tx) = x and P2(x, Tx) = Tx.

It is clear that P1 is a bijection. By the inverse mapping theorem, P1 has
a continuous inverse P−1

1 . The conclusion follows from the fact that T =
P2 ◦ P−1

1 .

Remark 2.4.2. Usually, to show that a map A from a normed vector space
X to another normed vector space Y is continuous, one needs to show that
if xn → x, then A(xn) → A(x). In many situations, one struggles to prove
some kind of convergence for A(xn), let alone the convergence to A(x). Nev-
ertheless, if X and Y are Banach spaces and if A is linear, by virtue of
the closed graph theorem, one may assume from the beginning that A(xn) is
convergent in the sense of norm!

Example 2.4.3. Let X be a Banach space, and Y and Z are closed subspaces
of X such that X = Y ⊕Z. Then the direct sum projection P : X → Y from
X onto the first summand Y is bounded.

Proof. By the closed graph theorem, it suffices to show that if xn → x and
Pxn → y, then y = Px. Let yn = Pxn ∈ Y and zn = xn − yn. Since Y is
closed, y ∈ Y . Also zn → x− y ∈ Z. This implies x = y + z and Px = y, as
desired.

Example 2.4.4. Let X be a Hilbert space and T : X → X be a linear
mapping. If 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ X, then T is bounded and so
self-adjoint.

Proof. As before, we show that if xn → x and Txn → z, then z = Tx.
Indeed, for any y ∈ X, we have

〈Tx, y〉 = 〈x, Ty〉 = lim
n→∞
〈xn, T y〉 = lim

n→∞
〈Txn, y〉 = 〈z, y〉,

which implies z = Tx.
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Example 2.4.5. It is clear that if h ∈ L∞(R), then the multiplication op-
erator f 7→ hf =: Mhf defines a (bounded) linear operator from L1(R) into
itself. The converse of this is true: If h is some measurable function such
that Mhf ∈ L1(R) for all f ∈ L1(R), then h ∈ L∞(R).

Proof. By hypothesis Mh maps L1(R) into itself. We claim that Mh is
bounded. To this end, we show that if fn → f and Mhfn → g, then g = Mhf .
First, fn → f in L1, there is a subsequence, say fnj , which converges to f a.e.
It follows that Mhfnj → Mhf a.e. But since Mhfn → g in L1, this implies
that g = Mhf . We conclude that Mh is a bounded operator on L1(R). In
particular, ∫

|Mhf | dx ≤ ‖Mh‖
∫
|f | dx for all f ∈ L1(R). (2.1)

We claim that
|h| ≤ ‖Mh‖ a.e.

To this end it suffices to show that the set Zε := {x : |h(x)| > ‖Mh‖+ ε} has
zero measure. Fix some n > 0. Taking f = χZε∩[−n,n] in (2.1), we obtain

‖Mh‖
∫
Zε∩[−n,n]

dx ≥
∫
Zε∩[−n,n]

|h| dx ≥ (‖Mh‖+ ε)

∫
Zε∩[−n,n]

dx.

This is possibly only if Zε ∩ [−n, n] has zero measure. Since n is arbitrary,
we conclude that Zε has zero measure.
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Chapter 3

Weak convergence

3.1 Weak convergence

Definition 3.1.1. A sequence (xn) in a normed vector space X is said to
converges weakly to x ∈ X if

lim
n→∞

`(xn) = `(x) for all ` ∈ X∗.

This relation is indicated by a half arrow:

xn ⇀ x.

This weak convergence notion should be contrasted with strong conver-
gence in the sense of norm: yn converges strongly to y (yn → y) if

lim
n→∞

‖yn − y‖ = 0.

It should be clear that if a sequence converges strongly to x, then it also
converges weakly to x. The converse is in general not true.

Example 3.1.2. A sequence in a finite dimensional norm vector spaces con-
verges weakly if and only if it converges strongly.

Proposition 3.1.3. Let X be a Hilbert space, and (xn) be an orthonormal
sequence. Then xn tends weakly, but not strongly, to zero.

Proof. Pick any bounded linear functional ` ∈ X∗. By the Riesz representa-
tion theorem, there exists y ∈ X such that

`(x) = 〈x, y〉 for all x ∈ X.

29
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We thus need to show that

lim
n→0
〈xn, y〉 = 0,

but this is a consequence of Bessel’s inequality:

∞∑
n=1

|〈xn, y〉|2 ≤ ‖y‖2.

We have thus shown that xn ⇀ 0.
Lastly, note that strong convergence implies convergence in norm. Hence,

since ‖xn‖ = 1, we have that xn 6→ 0.

Example 3.1.4. Let X = C[0, 1] and

xn(t) =


nt for 0 ≤ t ≤ 1

n
,

2− nt for 1
n
≤ t ≤ 2

n
,

0 for 2
n
≤ t ≤ 1.

Then xn converges weakly, but not strongly, to zero.

Proof. It is clear that xn 6→ 0 as ‖xn‖ = 1. Fix some ` ∈ X∗, we will show
that `(xn) → 0. Arguing by contradiction, assume that there are infinitely
many n such that

`(xn) > δ for some δ > 0. (3.1)

Select inductively a sequence nk such that the above holds together with
n1 > 2, nk+1 > 2nk.

Define

yK =
K∑
k=1

xnk .

We claim that
0 ≤ yK ≤ 3 in [0, 1].

We proceed by induction on K. The claim is clear for K = 1. Assume
that the claim is true for some K ≥ 0.

Fix some t ∈ [0, 1]. If t ≥ 2
nK+1

, we have yK+1(t) = yK(t), so the claim is

true by induction hypothesis. Assume that t < 2
nK+1

. Then t < 1
nK

and so

yK+1(t) ≤ xnK+1
(t) +

K∑
k=1

nk
nK
≤ 1 +

K∑
k=1

2k−K ≤ 3.
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The claim is proved.

Now by (3.1), we have

Kδ < `(yK) ≤ ‖`‖∗‖yK‖ ≤ 3‖`‖∗,

which is absurd for large K. We therefore have xn ⇀ 0.

Example 3.1.5 (Schur). If a sequence (xn) converges weakly in `1, then it
converges strongly.

Proof. Exercise.

Example 3.1.6. Let X be a Hilbert space. If xn ⇀ x and ‖xn‖ → ‖x‖, then
xn → x.

Proof. Exercise.

3.2 Uniform boundedness of weakly conver-

gent sequences

Theorem 3.2.1. A weakly convergent sequence (xn) in a normed vector space
X is uniformly bounded in the norm.

Proof. Note that each xn defines a linear functional on X∗:

Tn(`) = `(xn) for all ` ∈ X∗.

Furthermore, ‖Tn‖∗∗ = ‖xn‖.
Now for each ` ∈ X∗, `(xn) is convergent, and hence bounded. The

principle of uniform boundedness thus implies that ‖Tn‖ is bounded. (Note
that X∗ is complete regardless whether X is complete or not.) The conclusion
follows.

Theorem 3.2.2. Let (xn) be a sequence in a normed vector space X which
converges weakly to some x ∈ X. Then

‖x‖ ≤ lim inf
n→∞

‖xn‖.
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Proof. By a result in B4.1 (which is a consequence of the Hahn-Banach the-
orem), there is some ` ∈ X∗ such that

‖x‖ = `(x) and ‖`‖∗ = 1.

The conclusion follows from the inequality

|`(xn)| ≤ ‖`‖∗‖xn‖ = ‖xn‖

and the fact that `(xn)→ `(x) = ‖x‖.

In fact, we have the following stronger statement:

Theorem 3.2.3 (Mazur). Let K be a closed convex subset of a normed vector
space X, (xn) be a sequence of points in K converging weakly to x. Then
x ∈ K.

We assume for granted the following result, which can be obtained as a
consequence of the Hahn-Banach theorem.

Theorem 3.2.4 (Extended hyperplane separation theorem). Let X be a
(normed) vector space, A and B be disjoint convex subsets of X, at least
one of which has an interior point. Then A and B can be separated by a
hyperplane, i.e. there is a non-zero linear function ` and a number c such
that

Re `(x) ≤ c ≤ Re `(y) for all x ∈ A, y ∈ B.

In the above theorem, there is no need to assume that X is equipped with
a norm, though in such case one needs to clarify what an interior point of a
set means. This will not be discussed in this set of notes. A closely related
theorem is the following.

Theorem 3.2.5 (Hyperplane separation theorem). Let X be a (normed)
vector space, A be a nonempty convex subsets of X such that all points of A
are interior points. Then A and any other point y not in A can be separated
by a hyperplane, i.e. there is a non-zero linear function ` and a number c
(which might depend on y) such that

Re `(x) < c = Re `(y) for all x ∈ A.
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Proof of Mazur’s theorem. We will only consider the case when X is real.
The complex case is left as an exercise.

Assume by contradiction that x /∈ K. Since K is closed, there is some
r > 0 such that B(x, r) ∩ K = ∅. By the extended hyperplane separation
theorem, there is a non-zero linear functional `0 and a number c ∈ R such
that

`0(y) ≤ c ≤ `0(z) for all y ∈ K and z ∈ B(x, r). (3.2)

Note that the second half of (3.2) implies that, for all w ∈ B(0, r),

`0(w) = `0(x+ w)− `0(x) ≥ c− `0(x),

and so `0 is a bounded linear functional.
The left half of (3.2) implies that `0(xn) ≤ c and so by the weak conver-

gence of (xn) to x, we have `0(x) ≤ c. Returning to (3.2), we obtain

`0(x) ≤ `0(z) for all z ∈ B(x, r).

By linearity, this implies that

`0(w) =
1

r
(`0(x+ rw)− `0(x)) ≥ 0 for all w ∈ B(0, 1).

This is impossible as `0 6= 0.

3.3 Weak sequential compactness

Definition 3.3.1. A subset A of a Banach space X is called weakly sequen-
tially compact if every sequence of A has a subsequence weakly convergent to
a point of A.

Recall that a Banach space is said to be reflexive if it is isometrically
isomorphic to its second dual. The following theorem is a version of the
Bolzano-Weierstrass lemma in infinite dimensional setting.

Theorem 3.3.2 (Weak sequential compactness in reflexive Banach spaces).
The closed unit ball of a reflexive Banach space is weakly sequentially com-
pact. In particular, every bounded sequence in a reflexive Banach space has
a weakly convergent subsequence.
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Proof. We will only prove the theorem in the case of Hilbert spaces, which
are reflexive thanks to the Riesz representation theorem.

Let (xn) be a sequence in the unit ball of a Hilbert space X. The proof
uses a diagonal process to select a subsequence (xnj) of (xn), such that
〈xnj , xm〉 converges for every m.

To begin with, we note that the sequence 〈xn, x1〉 is bounded. By the

Bolzano-Weierstrass lemma, we can extract a subsequence n
(1)
j such that

〈x
n
(1)
j
, x1〉 is convergent.

We then consider 〈x
n
(1)
j
, x2〉 and select a convergent subsequence 〈x

n
(2)
j
, x2〉.

Clearly, 〈x
n
(2)
j
, x1〉 is also convergent.

Proceeding in this way, we constructed nested subsequence (n
(k)
j ) such

that 〈x
n
(k)
j
, xm〉 is convergent (with respect to j) for every m ≤ k.

Let xnj = x
n
(j)
j

. Note that, for every fixed m, (nj)j≥m is a subsequence of

(n
(m)
j )j≥m. It follows that 〈xnj , xm〉 is convergent for every m.
Let Y and Ȳ be respectively the linear span and the closed linear span of

the xn’s. It is clear that, for every y ∈ Y , 〈xnj , y〉 is convergent. Using the
estimate

|〈xnj−xn′j , ȳ〉| ≤ |〈xnj−xn′j , y〉|+|〈xnj−xn′j , ȳ−y〉| ≤ |〈xnj−xn′j , y〉|+2‖ȳ−y‖

for ȳ ∈ Ȳ and y ∈ Y , it is readily seen that 〈xnj , ȳ〉 is Cauchy and thus
convergent for every ȳ ∈ Ȳ .

On the other hand, it is clear that 〈xnj , z〉 = 0 for all z ∈ Y ⊥. Hence, as
X = Ȳ ⊕ Y ⊥ by the projection theorem, we have that 〈xnj , x〉 is convergent
for all x ∈ X.

Define
`(x) = lim

j→∞
〈x, xnj〉, x ∈ X.

It is clear that ` is a bounded linear functional on X. By the Riesz represen-
tation theorem, there is some x∗ ∈ X such that `(x) = 〈x, x∗〉 for all x ∈ X.
By the Riesz representation theorem again, this implies xnj ⇀ x∗.

We note that the converse of Theorem 3.3.2 is true, a result which we will
not prove.

Theorem 3.3.3 (Eberlein). The closed unit ball in a Banach space X is
weakly sequentially compact only if X is reflexive.
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As an application of Theorem 3.3.2, we obtain the following generalization
of Theorem 1.2.4 for Banach spaces.

Theorem 3.3.4 (Closest point in a closed convex subset). Let K be a non-
empty closed convex subset of a reflexive Banach space X. Then, for every
x ∈ X, there is a point y ∈ K such that no other point in K is which is
closer to x than y.

Note that we do not claim uniqueness; compare Theorem 1.2.4.

Proof. Exercise.
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Chapter 4

Introduction to convergence of
Fourier series

We have seen earlier that separable Hilbert spaces have orthonormal bases
which can be obtained via the Gram-Schmidt process. The follow orthogonal
bases are well known:

(a) The trigonometric functions { 1√
2π
, 1√

π
sinnx, 1√

π
cosnx, n = 1, 2, . . .} and

{ 1√
2π
einx, n ∈ Z} in L2(−π, π).

(b) The Legendre polynomials pn(t), indexed by their degrees, in L2(−1, 1).

(c) The Laguerre polynomials Ln(t) in L2((0,∞); e−tdt).

(d) The Hermite polynomials Hn(t) in L2(R; e−t
2
dt).

This chapter examines some introductory aspect of this in the setting of
the trigonometric system.

4.1 Fourier series of an integrable periodic

functions

Recall that the Fourier series of a function f ∈ L1(−π, π) is given by

f(x) ∼ F (f) =
∞∑

n=−∞

ane
inx, an =

1

2π

∫ π

−π
f(x) e−inx dx.

37
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(This can easily be re-expressed in the familiar trigonometric series using
einx = cosnx+ i sinnx.)

Note the system {einx}n∈Z is orthogonal in the complex Hilbert space
L2(−π, π). Hence, when f ∈ L2(−π, π), we have

F (f) =
∞∑

n=−∞

〈f, en〉en

where en = 1√
2π
einx and 〈f, g〉 =

∫ π
−π fḡ dx, and where the infinite sum

converges in the sense of norm. We will see soon that {en}n∈Z is in fact an
orthonormal basis of L2(−π, π) and so f = F (f) as L2 functions.

A questions then arises whether the Fourier series of f converges to f
in any better sense. This is a difficult question and to have a satisfactory
answer to its requires knowledge which goes beyond what this course can
cover. We are content instead with some brief discussion on the subject.

4.2 Term-by-term differentiation and integra-

tions

Theorem 4.2.1 (Termwise differentiation of Fourier series). Suppose that
f ∈ L1

loc(R) and let F be the indefinite integral of f , i.e.

F (x) =

∫ x

a

f(t) dt for some a ∈ R.

If F is 2π-periodic and F ∼
∑
cne

inx, then f ∼
∑
in cn e

inx.

Proof. It is clear that f is 2π-periodic and its zeroth Fourier coefficient is

1

2π

∫ π

−π
f(x) dx =

1

2π
[F (π)− F (−π)] = 0.

For other coefficients, we integrate by parts:

1

2π

∫ π

−π
f(x) e−inx dx =

in

2π

∫ π

−π
F (x) e−inx dx = in cn.

This concludes the proof.
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Theorem 4.2.2 (Termwise integration of Fourier series). Suppose that f ∈
L1(−π, π) is 2π-periodic and let F be the indefinite integral of f , i.e.

F (x) =

∫ x

a

f(t) dt for some a ∈ R.

If f ∼
∑
cne

inx, then F (x) − c0 x is 2π-periodic and F (x) − c0 x ∼ C0 +∑
n6=0

cn
in
einx where C0 is a suitable constant.

Proof. Let G(x) = F (x)− c0 x. We have

G(x+ 2π)−G(x) =

∫ x+2π

x

f(t) dt− 2πc0 = 2πc0 − 2πc0 = 0,

and so G is 2π-periodic. By the previous theorem, the Fourier series of f−c0

can be obtained by termwise differentiation of the Fourier series of G. The
conclusion is readily seen.

4.3 Convergence of Fourier series I

Theorem 4.3.1 (Completeness of the trigonometric system). Assume that
f ∈ L2(−π, π), f is 2π-periodic. Then

lim
N→∞

SNf = f in L2(−π, π).

In other words, the system
{

1√
2π
einx
}
n∈Z

is an orthonormal basis of L2(−π, π).

Proof. Note that if we let f̃ be the limit of SNf , then the Fourier coefficients
of f − f̃ are all zero. Thus, to prove the result, it suffices to show that if the
Fourier coefficients of a function f ∈ L2(−π, π) are all zero, then f = 0 a.e.

We will only consider the case when f is real-valued. The complex-valued
case is left as an excercise.

Suppose first that f is continuous. If f 6= 0, then |f | attains it maximum
value M > 0 at some point, say x0. Replacing f by −f if necessary, we
may assume that f(x0) = M > 0. Using a translation if necessary, we may
further assume that x0 ∈ (−π, π). Select δ > 0 such that |f(x)| > 1

2
M in

(x0 − δ, x0 + δ) ⊂ (−π, π). Consider the function

g(x) = 1 + cos(x− x0)− cos δ.
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Note that g > 1 in (x0 − δ, x0 + δ) and |g| ≤ 1 in (−π, π) \ (x0 − δ, x0 + δ).
This implies that, for any n > 0,∫ π

−π
f(x) gn(x) dx ≥

∫ x0+δ/2

x0−δ/2
f(x) gn(x) dx−

∫
(−π,π)\(x0−δ,x0+δ)

|f(x)||g(x)|n dx

≥ 1

2
M (1 + cos

δ

2
− cos δ)n δ − 2πM 1n

n→∞−→ ∞.

On the other hand, since g is a trigonometric polynomial, the fact that the
Fourier coefficients of f are zero implies that the

∫ π
−π f(x) gn(x) dx = 0 for

all n, which gives a contradiction.
Let us next consider the case when f is merely square integrable. Since

the zeroth Fourier coefficient of f is zero, the indefinite integral of f , say
F (x) =

∫ x
0
f(t) dt is periodic. Note also that F is continuous. Now, using

term-by-term integration, we see that, for some suitable C0, all the Fourier
coefficients of the continuous function F−C0 are zero. Therefore F−C0 ≡ 0,
which implies that f = 0 a.e. as desired.

Remark 4.3.2. The proof above actually shows a stronger statement: if f is
an integrable function and if all Fourier coefficients of f are zero, then f = 0
a.e.

Corollary 4.3.3. Assume that f ∼
∑
cne

inx ∈ L2(−π, π). Then we have
Parseval’s identity

∞∑
−∞

|cn|2 =
1

2π

∫ π

−π
|f |2 dx.

4.4 Partial Fourier sums

The N -th partial Fourier sum of a function f is the finite sum

SNf(x) =
N∑

n=−N

an e
inx =

∫ π

−π
f(t) kN(x− t) dt

where

kN(x) =
1

2π

N∑
n=−N

einx =
1

2π

sin(N + 1
2
)x

sin x
2

.

A simple manipulation gives also that

SNf(x) =

∫ π

0

[f(x+ t) + f(x− t)]kN(t) dt.



4.5. DIVERGENCE OF FOURIER SERIES 41

4.5 Divergence of Fourier series

Theorem 4.5.1. There exists a 2π-periodic continuous function whose Fourier
series diverges at one point.

Proof. The convergence of the Fourier series of a function f at x = 0 means
that

lim
N→∞

SNf(0) = lim
N→∞

∫ π

−π
f(x)kN(x) dx exists.

Let X = {f ∈ C[−π, π] : f(π) = f(−π)} and define AN ∈ X∗ by

AN(f) =

∫ π

−π
f(x) kN(x) dx.

Assume by contradiction that the Fourier series of every continuous function
converges at x = 0. Then AN(f) is bounded for every f . By the principle of
uniform boundedness, this means that ‖AN‖∗ is bounded.

Now (why?)

‖AN‖∗ =

∫ π

−π
|kN(x)| dx.

Using the formula for kN and the inequality sinx ≤ x for x > 0, we hence
get

‖AN‖ ≥
1

π

∫ π

−π

∣∣∣ sin(N +
1

2
)x
∣∣∣dx|x| =

2

π

∫ (N+ 1
2

)π

0

| sinx|dx
|x|
≥ C lnN

for some positive constant C independent of N . This gives a contradiction
and concludes the proof.

Remark 4.5.2. (i) It is clear from the proof that, for any sequence Nj →
∞, there is a continuous functions f such that the subsequence SNj(f)
of its partial Fourier sums diverges at a point.

(ii) One can use the above to build a continuous function whose Fourier
series diverges at any n arbitrarily given points. This is because if two
functions agrees in an open interval around a point, say x0, then their
Fourier series either both converge or both diverge at x0, which is a
consequence of Theorem 4.6.1 below.
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4.6 Convergence of Fourier series II

For some α ∈ (0, 1], we say that a function f is α-Hölder continuous at a
point x if there is some A > 0 and δ > 0 such that

|f(x+ h)− f(x)| ≤ A|h|α for |h| ≤ δ.

When α = 1, we say f is Lipschitz continuous at x.

Theorem 4.6.1. Assume that f ∈ L1(−π, π), f is 2π-periodic and f is
α-Hölder continuous at a point x0 for some α ∈ (0, 1]. Then

lim
N→∞

SNf(x0) = f(x0).

We will use:

Lemma 4.6.2 (Riemann-Lebesgue). Assume that f ∈ L1(−π, π). Then

lim
k→∞

∫ π

−π
f(t) eikt dt→ 0.

Proof. If f ∈ L2(0, π), this is a consequence of Bessel’s inequality, and the
fact that { 1√

2π
eikx}k∈Z is an orthonormal set in L2(−π, π).

For the general case f ∈ L1(0, π), we split f = g+h where g ∈ C[−π, π] ⊂
L2(−π, π) and ‖h‖L1(−π,π) ≤ ε where ε is some positive constant which we
can choose as small as we want. Then

lim
k→∞

∫ π

−π
g(t) eikt dt→ 0

while ∣∣∣ ∫ π

−π
h(t) eikt dt

∣∣∣ ≤ ∫ π

−π
|h(t)| dt ≤ ε.

The conclusion is readily seen.

Proof of Theorem 4.6.1. The theorem holds obviously for f being a constant
function. We can thus assume without loss of generality that f(x0) = 0, so
that |f(x0 + h)| ≤ A|h|α for small h.

For δ > 0 to be fixed, a simple application of the Riemann-Lebesgue
lemma shows that

lim
N→∞

∫ π

δ

[f(x0 + t) + f(x0 − t)] kN(t) dt→ 0.
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On the other hand, using the Hölder continuity of f at x0, we have∣∣∣ ∫ δ

0

[f(x0 + t) + f(x0 − t)] kN(t) dt
∣∣∣ ≤ 2A

∫ δ

0

|t|α |kN(t)| dt

≤ A

π

∫ δ

0

|t|α

sin t
2

dt.

Using the inequality sin t
2
≥ t

π
for 0 ≤ t ≤ π, we see that the right hand side

is bounded from above by A
α
δα. Putting everything together we obtain

lim sup
N→∞

|SNf(x0)| ≤ A

α
δα.

Since δ was arbitrary, this implies SNf(x0)→ 0 = f(x0), as desired.
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Chapter 5

Spectral theory in Hilbert
spaces

5.1 Main definitions

If T is a linear operator on Cn, the the spectrum of T is the set of all
eigenvalues of T , i.e. the complex numbers λ such that the determinant of
λ I − T vanishes. It consists of at most n complex numbers. If λ is not an
eigenvalue of T , then λI − T has an inverse.

The spectral theory for operators on infinite dimensional space is far
richer and of fundamental importance for an understanding the operators
themselves.

Definition 5.1.1. Let X be a complex Banach space and T ∈ B(X).

(i) The spectrum σ(T ) of T is the set of complex numbers λ such that
λI − T has no inverse in B(X).

(ii) The resolvent set ρ(T ) of T is the complement of σ(T ) in C. If λ ∈
ρ(T ), then Rλ(T ) = (λI − T )−1 is called the resolvent of T at λ.

(iii) The point spectrum σp(T ) of T is the set of complex numbers λ such that
Ker(λI −T ) is non-trivial. The elements of σp(T ) are called the eigen-
values of T , and, if λ ∈ σp(T ), the non-trivial elements of Ker(λI −T )
are called the eigenvectors of T .

(iv) The residual spectrum σr(T ) of T is the set of complex numbers λ such
that Ker(λI − T ) = {0} and Im(λI − T ) is not dense in X.

45
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(v) The continuous spectrum σc(T ) of T is the set of complex numbers λ
Ker(λI − T ) = {0} and Im(λI − T ) is a proper dense subset of X.

(vi) The approximate point spectrum σap(T ) of T is the set of complex num-
bers λ such that there is a sequence xn ∈ X such that ‖xn‖ = 1 and
‖Txn − λxn‖ → 0.

It is clear that σ(T ) is the disjoint union of σp(T ), σr(T ) and σc(T ).
We know that σ(T ) is a non-empty closed subset of C, and if λ ∈ σ(T ),

then |λ| ≤ ‖T‖. We also know that

σp(T ) ⊂ σap(T ) ⊂ σ(T ) = σap(T ) ∪ σp(T ′) and σr(T ) ⊂ σap(T
′),

where T ′ is the transpose of T .

Lemma 5.1.2. Let T ∈ B(X) be a bounded linear operator on a Banach
space X. Then σc(T ) ⊂ σap(T ).

Proof. Take λ ∈ σc(T ). Then λI − T is injective and Y := Im(λI − T ) is
a proper dense subspace of X. Arguing indirectly, assume that λ 6∈ σap(T )
and so there is some c > 0 such that

‖(λI − T )x‖ ≥ c for all x ∈ X, ‖x‖ = 1.

This implies that

‖(λI − T )x‖ ≥ c‖x‖ for all x ∈ X. (5.1)

Note that as a map from X into Y , λI − T is bijective and so has an
inverse, say U : Y → X. It is clear that U is linear. By (5.1), we have
‖Uy‖ ≤ c−1‖y‖ for all y ∈ Y . Hence U ∈ B(Y,X). As Y is a dense subspace
of X, U extends to a bounded linear operator on X, say Ū .

Now, pick p ∈ X \Y and pn ∈ Y such that pn → p. Then Upn → Ūp and
so

(λI − T )Ūp = lim
n→∞

(λI − T )Ūpn = lim
n→∞

pn = p.

This shows that p belongs to Y , a contradiction.

When X is a Hilbert space, Lemma 5.1.2 can be proved using Hilbert
space techniques as follows.
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Second proof of Lemma 5.1.2. Let λ ∈ σc(T ) so that Y := Im(λI − T ) is a
dense proper subspace of X. Pick p ∈ X \Y . Then there is some a sequence
xn such that pn := (λI − T )xn → p.

If (xn) is bounded, then, by the weak sequential compactness property
of the unit ball, we may assume without loss of generality that xn converges
weakly to some x. This implies, for z ∈ X, that

〈pn, z〉 = 〈(λI−T )xn, z〉 = 〈xn, (λ̄I−T ∗)z〉 → 〈x, (λ̄I−T ∗)z〉 = 〈(λI−T )x, z〉.

In other words, pn converges weakly to (λI − T )x. By since pn converges
strongly to p, we thus obtain p = (λI − T )x, which contradicts the choice of
p. We thus deduce that (xn) is unbounded. Replacing (xn) by a subsequence
if necessary, we may assume that ‖xn‖ → ∞.

Let zn = ‖xn‖−1 xn. We then have ‖zn‖ = 1 and ‖(λI − T )zn‖ =
‖xn‖−1 ‖yn‖ → 0. Hence λ ∈ σap(T ).

In the rest of the chapter, we will specialize to the case where X is a
Hilbert space (over C). Note that in this case, the notions of dual operator
and adjoint operator can be linked via the Riesz representation theorem.

5.2 Adjoints and spectra

We start with some simple statements.

Proposition 5.2.1. Let X be a complex Hilbert space, T ∈ B(X) and λ ∈ C.
Then the following holds.

(i) (λI − T )∗ = λ̄I − T ∗.

(ii) λI − T is invertible if and only if λ̄I − T ∗ is invertible. In particular,
λ ∈ σ(T ) if and only if λ̄ ∈ σ(T ∗).

(iii) Ker(λI − T ) = Im(λ̄I − T ∗)⊥ and Ker(λI − T )⊥ = Im(λ̄I − T ∗).

Proof. Exercise.

Proposition 5.2.2. Let X be a complex Hilbert space, T ∈ B(X) and λ ∈ C.
Then the following holds.

(i) If T is normal (i.e. TT ∗ = T ∗T ), then Ker(λI − T ) = Ker(λ̄I − T ∗).
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(ii) If T is self-adjoint, then σp(T ) ⊂ R.

Proof. (i) Assume that T is normal. Then S := λI − T is also normal. This
implies that

‖Sx‖2 = 〈Sx, Sx〉 = 〈x, S∗Sx〉 = 〈x, SS∗x〉 = 〈S∗x, S∗x〉 = ‖S∗x‖2

for all x ∈ X. The conclusion follows.

(ii) Assume that T is self-adjoint and λ ∈ σp(T ). Let x be an eigenvector of
T corresponding to λ. We have

λ‖x‖2 = 〈Tx, x〉 = 〈x, Tx〉 = λ̄‖x‖2.

This implies that λ ∈ R.

Theorem 5.2.3. Let X be a complex Hilbert space and T ∈ B(X). Then

σ(T ) = σap(T ) ∪ σ′p(T ∗)

where σ′p(T
∗) = {λ : λ̄ ∈ σp(T ∗)}.

Proof. This was proved in B4.1 for Banach spaces, we recall the proof here.
In view of Proposition 5.2.1(ii), σ(T ) ⊃ σap(T ) ∪ σ′p(T ∗). Consider the

converse. Assume λ ∈ σ(T ) \ σap(T ). Then by Lemma 5.1.2, λ must lie in
the residual spectrum of T . Now, by Proposition 5.2.1(iii), λ̄I − T ∗ has a
non-trivial kernel and so λ̄ ∈ σp(T ∗) as desired.

Theorem 5.2.4. Let X be a complex Hilbert space and T ∈ B(X) be self-
adjoint. Then

(i) σ(T ) ⊂ R,

(ii) T has no residual spectrum, i.e. σ(T ) = σap(T ) = σp(T ) ∪ σc(T ),

(iii) and eigenvectors corresponding to different eigenvalues of T are orthog-
onal.

Proof. (i) By Proposition 5.2.2, σp(T
∗) ⊂ R. Thus, by Theorem 5.2.3, we

only need to show that σap(T ) ⊂ R.
Let λ be an approximate eigenvalue so that there is a sequence (xn) such

that ‖xn‖ = 1 and ‖(λI − T )xn‖ → 0. By the Cauchy-Schwarz equality, we
have

λ− 〈Txn, xn〉 = 〈(λI − T )xn, xn〉 → 0.
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In other words, 〈Txn, xn〉λ. But as T is self adjoint, we have 〈Txn, xn〉 =
〈xn, T ∗xn〉 = 〈xn, Txn〉 = 〈Txn, xn〉 and so 〈Txn, xn〉 ∈ R. Hence λ ∈ R.

(ii) If λ is in the residual spectrum of T , then by Proposition 5.2.1(iii), λ̄ = λ
belongs to the point spectrum of T ∗ = T . But this is not possible since by
definition, the point spectrum and the residual spectrum of T are disjoint.

(iii) Exercise.

Lemma 5.2.5. The spectral radius of a self-adjoint bounded linear operator
T on a complex Hilbert space X is equal to its norm:

rad(σ(T )) = ‖T‖.

Proof. By Proposition 1.4.8, we have ‖T n‖ = ‖T‖n when n = 2k, k ∈ N. The
conclusion then follows from Gelfand’s formula (established in B4.1) which
asserts that rad(σ(T )) is the limit of ‖T n‖1/n.

Theorem 5.2.6. Let X be a complex Hilbert space and T ∈ B(X). If T
is self-adjoint, then the spectrum of T lies in the closed interval [a, b] on the
real axis, where

a = inf
‖x‖=1

〈x, Tx〉 and b = sup
‖x‖=1

〈x, Tx〉.

Furthermore, the endpoints a and b belong to the spectrum of T .

Proof. We know from Theorem 5.2.4 that σ(T ) ⊂ R and σr(T ) = ∅. The
second one implies that σ(T ) = σp(T ) ∪ σc(T ) = σap(T ).

Suppose that λ ∈ σap(T ). Then for a sequence (xn) with ‖xn‖ = 1 we
have λxn − Txn → 0. By the Cauchy-Schwarz inequality, we have

λ− 〈Txn, xn〉 = 〈λxn − Txn, xn〉 → 0.

As a ≤ 〈Txn, xn〉 ≤ b, it follows that λ is real and λ ∈ [a, b]. We have thus
shown that σ(T ) ⊂ [a, b].

We next show that a, b ∈ σ(T ). By definition of a, b, we have |a| ≤ ‖T‖
and |b| ≤ ‖T‖. But as σ(T ) ∈ [a, b], we have rad(σ(T )) ≤ max(|a|, |b|).
Hence at least one of a and b belongs to σ(T ). Now note that, if c is a real
constant, then the spectrum of cI + T is shifted by c and the “a” and “b” of
cI +T are also shifted by c. Applying what we just established to cI +T for
suitable c, we conclude that both a and b belong to σ(T ).
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Alternatively, we can show that σ(T ) ⊂ [a, b] as follows: It suffices to
show that if λ is a real number such that λ > b then λI − T is invertible. (A
similar argument apply to λ < a.) We have

〈x, (λI − T )x〉 = λ‖x‖2 − 〈x, Tx〉 ≥ (λ− b)‖x‖2.

It thus follows that 〈x, y〉λ := 〈x, (λI − T )y〉 defines a scalar product on X
and its associated norm ‖x‖λ := 〈x, (λI − T )x〉1/2 is equivalent to ‖ · ‖.

For every z ∈ X, consider the linear functional

`z(x) = 〈x, z〉.

By the Riesz representation theorem, there is some y depending on z such
that

`z(x) = 〈x, y〉λ i.e. 〈x, z〉 = 〈x, (λI − T )y〉 for every x.

It thus follows that λI − T is surjective. Since λI − T is self-adjoint, this
implies that λI − T is also injective, and hence invertible.

We conclude the section with a result on spectra of unitary operators.

Proposition 5.2.7. Let X be a complex Hilbert space and U ∈ B(X) be
unitary. Then |λ| = 1 for all λ ∈ σ(U).

Proof. By Proposition 1.5.4, U is a surjective isometry and U−1 = U∗. It
follows that |λ| ≤ ‖U‖ = 1 for all λ ∈ σ(U).

Assume by contradiction that there is some λ with |λ| < 1 such that λI−
U is not invertible. It follows that λ̄I−U∗ is also not invertible. Consequently,
λ̄U − I = (λ̄I − U∗)U is also not invertible (since U is invertible), and so
λ̄−1 ∈ σ(U). This amounts to a contradiction as |λ̄−1| > 1.

5.3 Examples

Example 5.3.1. Let X = `2 and T ((a1, a2, a3, . . .)) = (a1, a2/2, a3/3, . . .).
Then σ(T ) = σap(T ) = {0} ∪ {k−1 : k = 1, 2, . . .}, σp(T ) = {k−1 : k =
1, 2, . . .}, σc(T ) = {0}, σr(T ) = ∅.

Example 5.3.2. Let X = `2(Z) (i.e. the set of bi-infinite square summable
sequences) and R be the right shift. Then R is unitary, σ(R) = σap(R) =
σc(R) = S1 and σp(R) = σr(R) = ∅. The same statement holds for the left
shift.
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Example 5.3.3. Let X = L2(R) and consider the multiplication operator
Mh where h is real valued and belongs to L∞(R). Then

σ(Mh) = σap(Mh) = the essential range of h

= {λ ∈ R : h−1((λ− ε, λ+ ε)) has non-zero measure
for all small ε > 0},

σp(Mh) = {λ ∈ R : {h = λ} has non-zero measure},
σr(Mh) = 0,

σc(Mh) = σap(Mh) \ σp(Mh).
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