

B4.2 Functional Analysis II Consultation Session 1

Luc Nguyen luc.nguyen@maths

University of Oxford

TT 2021

- Projection theorem + Pythagoras' theorem.
- Let H be a Hilbert space, C ⊂ K ⊂ H be non-empty closed convex subsets and P_C and P_K be the projections to those convex sets. Show that, if K is a subspace, then P_C = P_C ∘ P_K, but this need not hold otherwise.

• Let
$$H = L^2(\mathbb{R})$$
 and

$$egin{aligned} &\mathcal{K}=\{g\in\mathcal{H}:g(t)=0 \mbox{ for almost all } t\in(-\infty,0)\},\ &\mathcal{C}=\{g\in\mathcal{K}:g(t)\geq 0 \mbox{ for almost all } t\in\mathbb{R}\}, \end{aligned}$$

Let f be a real-valued function in H. Find $P_{\mathcal{K}}(f)$ and $P_{\mathcal{C}}(f)$.

Paper 2013–Q2(b)

K is a closed subspace.

 Fix x ∈ H. We need to show that P_C(P_K(x)) = P_C(x), i.e.

$$||x-z|| \ge ||x-P_C(P_K(x))||$$
 (1)

for all $z \in C$.

Let y = P_K(x). By Pythagoras' theorem, ||x - z||² = ||x - y||² + ||y - z||².
By definition of P_C, ||y - z|| ≥ ||y - ||P_C(y)||.
So, ||x - z||² = ||x - y||² + ||y - z||² ≥ ||x - y||² + ||y - P_C(y)||² = ||x - P_C(y)||², where we have used Pythagoras' theorem once more time. This gives (1). Example of K (not a subspace) and C for which $P_C \neq P_C \circ P_K$. Many such examples e.g.

$${\cal K}=[0,1]^2\subset {\mathbb R}^2, \qquad {\cal C}=\{(a,b): a+b=1, 0\leq a, b\leq 1\}.$$

Paper 2013–Q2(c)

Let $H = L^2(\mathbb{R})$ and

$$egin{aligned} \mathcal{K} &= \{ g \in \mathcal{H} : g(t) = 0 ext{ for almost all } t \in (-\infty, 0) \}, \ \mathcal{C} &= \{ g \in \mathcal{K} : g(t) \geq 0 ext{ for almost all } t \in \mathbb{R} \}, \end{aligned}$$

Let f be a real-valued function in H. Find $P_{\mathcal{K}}(f)$ and $P_{\mathcal{C}}(f)$.

- *H* and *K* are clearly closed and convex. Hence *P_C* and *P_K* are well-defined.
- Let $g \in K$, then

$$\|f-g\|^2 = \int_{-\infty}^0 |f(t)|^2 dt + \int_0^\infty |f(t)-g(t)|^2 dt.$$

In order for this to be smallest, we need g(t) = f(t) for all most all $t \ge 0$. This means

$$P_{\mathcal{K}}(f) = f\chi_{[0,\infty)}$$

Paper 2013–Q2(c)

. . .

 $C = \{g \in K : g(t) \ge 0 \text{ for almost all } t \in \mathbb{R}\},$... Find ... $P_C(f)$. • Let $g \in C$, then $\|f - g\|^2 = \int_{-\infty}^0 |f(t)|^2 dt + \int_0^\infty |f(t) - g(t)|^2 dt$ • If we minimize $|f(t) - g(t)|^2$ for each t under the constraint that $g(t) \ge 0$, we get $g(t) = f^+(t)$. This gives

$$\|f-g\|^2 \ge \int_{-\infty}^0 |f(t)|^2 dt + \int_0^\infty |f(t)-f^+(t)|^2 dt.$$

From here we see that

$$P_C(f) = f^+ \chi_{[0,\infty)}$$

Paper 2013–Q3

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$.

Definition of adjoint operator T^* . Show $\|T\| = \|T^*\| = \|T^*T\|^{1/2}, \ (T^*T)^* = T^*T \text{ and}$ Ker $T = \text{Ker } T^*T$. Show for a projection P on H,

$$P = P^* \Rightarrow \operatorname{Ker} P = (\operatorname{Im} P)^{\perp} \Rightarrow ||P|| \le 1.$$

- **()** Definition of T being an isometry. Show that if this is the case then $\langle Tx, Tw \rangle = \langle x, w \rangle$ for all $x, w \in H$.
- T is said to be a partial isometry if there exist closed subspaces H_1 and K_1 of H and K such that T maps H_1 isometrically into K_1 while T = 0 on H_1^{\perp} . Show that if T is a partial isometry, then so is T^* and that both T^*T and TT^* are projections. Conversely, show that if T^*T is a projection, then T is a partial isometry.

Paper 2013–Q3(a)(i)-(iii)

Let *H* and *K* be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Define T^* . Show $||T|| = ||T^*|| = ||T^*T||^{1/2}$, $(T^*T)^* = T^*T$ and Ker $T = \text{Ker } T^*T$.

- I'll not go over bookwork. But I'd like to point out that the underlying identity that defines *T*^{*} is ⟨*Tx*, *y*⟩ = ⟨*x*, *T*^{*}*y*⟩. The reason for the existence and uniqueness of *T*^{*} is a consequence of the Riesz representation theorem. It also gives ||*T*|| = ||*T*^{*}||. In practice, one rearranges ⟨*Tx*, *y*⟩ as the inner product of *x* with something else, and read off *T*^{*}.
- For $x \in H$, we have $||T^*Tx|| \le ||T^*|| ||Tx|| \le ||T^*|| ||T|| ||x|| = ||T||^2 ||x||$ and so $||T^*T|| \le ||T||^2$. Conversely

$$\|Tx\|^{2} = \langle Tx, Tx \rangle = |\langle x, T^{*}Tx \rangle| \le \|x\| \|T^{*}Tx\| \le \|T^{*}T\| \|x\|^{2}.$$

This gives $\|Tx\| \le \|T^{*}T\|^{1/2} \|x\|$ and so $\|T\| \le \|T^{*}T\|^{1/2}$. We thus have $\|T\| = \|T^{*}T\|^{1/2}.$
Luc Nguyen (University of Oxford) B4.2 FA II - Session 1 TT 2021 8/1

Let *H* and *K* be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Define T^* . Show $||T|| = ||T^*|| = ||T^*T||^{1/2}$, $(T^*T)^* = T^*T$ and Ker $T = \text{Ker } T^*T$.

- The proof of $(T^*T)^* = T^*T$ is routine.
- Let us now show that Ker $T = \text{Ker } T^*T$. Clearly if Tx = 0 then $T^*Tx = 0$ and so Ker $T \subset \text{Ker } T^*T$. Conversely, suppose $T^*Tx = 0$. Then

$$0 = \langle x, T^*Tx \rangle = \langle Tx, Tx \rangle = \|Tx\|^2,$$

which implies Tx = 0. This proves Ker $T \supset$ Ker T^*T , whence Ker T = Ker T^*T .

Let H be a Hilbert space. Show for a projection P on H,

$$P = P^* \Rightarrow \operatorname{Ker} P = (\operatorname{Im} P)^{\perp} \Rightarrow ||P|| \le 1.$$

- Recall that $P \in \mathscr{B}(H)$ is a projection if $P^2 = P$.
- We know that for every bounded linear operator P,

$$\operatorname{Ker} P = (\operatorname{Im} P^*)^{\perp}$$
 and $\overline{\operatorname{Im} P} = (\operatorname{Ker} P^*)^{\perp}$.

(Proof?) The first stated deduction is clear from the above.

Suppose now that Ker P = (Im P)[⊥] and we would like to show that ||P|| ≤ 1, i.e. ||Px|| ≤ ||x|| for all x ∈ H.

Paper 2013–Q3(a)(iv)

Let H be a Hilbert space. Show for a projection P on H,

$$P = P^* \Rightarrow \operatorname{Ker} P = (\operatorname{Im} P)^{\perp} \Rightarrow ||P|| \le 1.$$

How may we use Ker P = (Im P)[⊥]? By the projection theorem, this implies that every x ∈ H is written uniquely as

$$x = y + z$$
 where $Py = 0$ and $z \in \operatorname{Im} P$.

(Note the closure.)

- Claim: Im P is closed. To see this observe that P² = P implies that Im P = Ker (I P) which is closed.
- Hence every $x \in H$ is written uniquely as

$$x = y + z$$
 where $Py = 0$ and $z \in \text{Im } P$.

Applying P to both side, we have Px = Pz = z (since z = Pw for some w and $P^2 = P$).

Paper 2013–Q3(a)(iv)

Let H be a Hilbert space. Show for a projection P on H,

$$P = P^* \Rightarrow \operatorname{Ker} P = (\operatorname{Im} P)^{\perp} \Rightarrow ||P|| \le 1.$$

• Putting things together, we see that every x is written as

$$x = y + z = y + Px$$
 where $Py = 0$

where $y \perp z = Px$.

• By Pythagoras' theorem, we have

$$||Px||^2 \le ||Px||^2 + ||y||^2 = ||x||^2,$$

i.e. $||P|| \le 1$. (Note we have actually proved that P is the orthogonal projection onto Im P (which is closed).) Let *H* and *K* be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Show that if *T* is an isometry then $\langle Tx, Tw \rangle = \langle x, w \rangle$ for all $x, w \in H$.

- This uses a standard polarisation argument.
- We start with $||T(x + w)||^2 = ||x + w||^2$, ||Tx|| = ||x|| and ||Tw|| = ||w||. Expanding gives

$$\langle Tx, Tw \rangle + \langle Tw, Tx \rangle = \langle x, w \rangle + \langle w, x \rangle,$$

which means $\operatorname{Re} \langle Tx, Tw \rangle = \operatorname{Re} \langle x, w \rangle$.

• If the field is real, we are done. If the field is complex, we apply the above to *ix* and *w* to get that $\operatorname{Re} \langle T(ix), Tw \rangle = \operatorname{Re} \langle ix, w \rangle$. This means $\operatorname{Im} \langle Tx, Tw \rangle = \operatorname{Im} \langle x, w \rangle$ and so we are done.

Let *H* and *K* be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Show that if *T* is a partial isometry, then so is T^* and that both T^*T and TT^* are projections.

- By definition, there exist closed subspaces $H_1 \subset H$ and $K_1 \subset K$ such that $T|_{H_1} : H_1 \to K_1$ is a surjective isometry and $T|_{H_1^{\perp}} = 0$.
- Claim $T^*|_{K_1} : K_1 \to H_1$ is a surjective isometry and $T^*|_{K_1^{\perp}} = 0$. This gives that T^* is a partial isometry.
- Indeed, we have $\operatorname{Ker} T^* = (\operatorname{Im} T)^{\perp} \stackrel{\text{why?}}{=} K_1^{\perp}$. This implies that $T^*|_{K_1^{\perp}} = 0$.
- We also have Im T* = (Ker T)[⊥] = (H₁[⊥])[⊥] = H₁ (as H₁ is closed). In particular Im (T*|_{K1}) = Im T* is a dense subset of H₁.

Paper 2013–Q3(b)(i)

Let *H* and *K* be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Show that if *T* is a partial isometry, then so is T^* and that both T^*T and TT^* are projections.

• Now suppose $k \in K_1$, we have k = Th for some $h \in H_1$ and

$$|T^*k||^2 = \langle T^*k, T^*k \rangle = \langle TT^*k, k \rangle = \langle TT^*k, Th \rangle$$

using that T is isometric, we can continue this identity:

$$=\langle T^*k,h
angle =\langle k,Th
angle =\langle k,k
angle =\|k\|^2.$$

So $T^*|_{K_1}: K_1 \to H_1$ is isometric.

• To see that $Im(T^*|_{K_1}) = H_1$, we take $h \in H_1$ and aim to show that $h = T^*k$ for some $k \in K_1$. Let $(h_n) \subset Im(T^*|_{K_1})$ be such that $h_n \to h$ (note $Im(T^*|_{K_1})$ is dense in H_1). Write $h_n = T^*k_n$ with $k_n \in K_1$, then $||k_n - k_m|| = ||h_n - h_m|| \to 0$ and so (k_n) is Cauchy, hence convergent to some $k \in K_1$ (since K_1 is closed). By continuity $h = T^*k$.

Paper 2013–Q3(b)(i)

Let *H* and *K* be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Show that if *T* is a partial isometry, then so is T^* and that both T^*T and TT^* are projections.

- For the last statement, it suffices to show T*T is a projection.
 The other part is obtained by swapping the role of T and T*.
- Take $x, y \in H$. We have $\langle T^*TT^*Tx, y \rangle = \langle TT^*Tx, Ty \rangle$. Write y = a + b where $a \in H_1$ and $b \in H_1^{\perp}$ so that Ty = Ta. Then

$$\langle T^*TT^*Tx, y \rangle = \langle T \underbrace{T^*Tx}_{\in H_1}, T \underbrace{a}_{\in H_1} \rangle = \langle T^*Tx, a \rangle$$
$$= \langle \underbrace{T^*Tx}_{\in H_1}, a + \underbrace{b}_{\in H_1^{\perp}} \rangle = \langle T^*Tx, y \rangle.$$

Since x, y are arbitrary, this means $(T^*T)^2 = T^*T$ and so T^*T is a projection.

Paper 2013–Q3(b)(ii)

Let *H* and *K* be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Conversely, show that if T^*T is a projection then *T* is a partial isometry.

- We know that T^*T is self-adjoint. By (a), Ker $T = \text{Ker } T^*T$ and Ker $T^*T = (\text{Im } T^*T)^{\perp}$. In fact, we also know that $\text{Im } T^*T$ is closed and T^*T is the orthogonal projection on to $\text{Im } T^*T$.
- Let $H_1 = \operatorname{Im} T^* T$ so that $H_1^{\perp} = \operatorname{Ker} T$ (hence $T|_{H_1^{\perp}} = 0$).
- Claim: $T|_{H_1}$ is isometric. Let $h \in H_1$. Since T^*T is the orthogonal projection onto H_1 , $h = T^*Th$. Hence

$$\langle Th, Th \rangle = \langle T^*Th, h \rangle = \langle h, h \rangle = ||h||^2,$$

i.e. T is isometric.

• Finally, let $K_1 = \overline{\operatorname{Im} T|_{H_1}}$. Claim: $\operatorname{Im} (T|_{H_1})$ is actually K_1 . This can be done as in the proof of $\operatorname{Im} (T^*|_{K_1}) = H_1$ which we did earlier on in (i).

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$.

- Prove that if there exists $\delta > 0$ such that $||Tx|| \ge \delta ||x||$ for all $x \in X$, then T is injective and Im T is closed. Prove further that if T is self-adjoint, then T is invertible in $\mathscr{B}(X)$.
- Suppose that T is self-adjoint. Prove that i I + T has an inverse and that $(i I + T)^{-1}(i I T)$ is unitary.

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$. Prove that if there exists $\delta > 0$ such that $||Tx|| \ge \delta ||x||$ for all $x \in X$, then T is injective and Im T is closed. Prove further that if T is self-adjoint, then T is invertible in $\mathscr{B}(X)$.

- The injectivity is clear. We have seen the part about the closedness of Im T when T is isometric. The proof now is the same.
- Suppose $(y_n = Tx_n) \subset \text{Im } T$ and $y_n \to y$ in X.
- Then ||x_n x_m|| ≤ δ⁻¹ ||y_n y_m||. So (x_n) is Cauchy, hence converges to some x ∈ X. Continuity gives y = Tx. This proves Im T is closed.

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$. Prove that if there exists $\delta > 0$ such that $||Tx|| \ge \delta ||x||$ for all $x \in X$, then T is injective and Im T is closed. Prove further that if T is self-adjoint, then T is invertible in $\mathscr{B}(X)$.

- Suppose now T is self-adjoint. Then $0 = \text{Ker } T = \text{Ker } T^* = (\text{Im } T)^{\perp}$ and so Im T is dense in X. Since Im T is closed, we have that Im T = X, i.e. T is surjective.
- It follows that T is a bijection and has an inverse T⁻¹. It is clear that T⁻¹ is linear. One also has
 ||T⁻¹y|| ≤ δ⁻¹||TT⁻¹y|| = δ⁻¹||y|| and so T⁻¹ is bounded.
 Comment: There is no need to use inverse mapping theorem.

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$. Suppose that T is self-adjoint. Prove that i I + T has an inverse and that $(i I + T)^{-1}(i I - T)$ is unitary.

 \bullet We attempt to use (c). We compute

$$\|(i I + T)x\|^2 = \|x\|^2 + \|Tx\|^2 - 2i \operatorname{Im} \langle x, Tx \rangle.$$

• Since T is self-adjoint, $\langle x, Tx \rangle = \langle Tx, x \rangle = \overline{\langle x, Tx \rangle}$ and so $\langle x, Tx \rangle$ is real. Thus

$$\|(i I + T)x\|^2 = \|x\|^2 + \|Tx\|^2 \ge \|x\|^2.$$

• By (c), iI + T is invertible.

Paper 2014–Q1(d)

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$. Suppose that T is self-adjoint. Prove that i I + T has an inverse and that $(i I + T)^{-1}(i I - T)$ is unitary.

- Let $U = (i I + T)^{-1}(i I T)$. Applying what we just proved to -T, we have also that i I T is invertible and hence U is invertible.
- To conclude, we show that U is isometric by showing $U^*U = I$. First,

$$U^* = (-iI - T^*)(-iI + T^*)^{-1} = (iI + T)(iI - T)^{-1}.$$

• Next, since i I + T and i I - T commute, so do their inverses. It follows that

$$U^*U = (i I + T)(i I - T)^{-1}(i I + T)^{-1}(i I - T)$$

= (i I + T)(i I + T)^{-1}(i I - T)^{-1}(i I - T) = I.