

B4.2 Functional Analysis II Consultation Session 2

Luc Nguyen luc.nguyen@maths

University of Oxford

TT 2021

Paper 2014–Q2(c)

Let X be a Banach space.

- Bookwork: Boundedness of projection map.
- **(**) For $n \ge 1$, let Y_n and Z_n be closed subspaces of X such that

$$Y_n \subseteq Y_{n+1}, \quad Z_n \supseteq Z_{n+1}, \quad X = Y_n \oplus Z_n$$

Let P_n be given by $P_n(y_n + z_n) = y_n$ for $y_n \in Y_n$ and $z_n \in Z_N$. Assume that for each $x \in X$, the limit $\lim_{n\to\infty} P_n x$ exists and denote this limit by Px. Prove that P is a bounded projection and that

$$\operatorname{Im} P = \overline{\bigcup_{n \ge 1} Y_n} \quad \text{and} \quad \operatorname{Ker} P = \bigcap_{n \ge 1} Z_n.$$

Paper 2014–Q2(c)

- It is straightforward to check that P is linear. Also since $P_n^2 = P_n$, we have $P^2 = P$.
- For each x, {P_nx} is bounded (since it's convergent), we have by the principle of uniform boundedness that {P_n} is bounded in B(X), i.e. there exists M ≥ 0 such that ||P_n|| ≤ M for all n;
- It follows that

$$||Px|| \leq \underbrace{||(P_nx - Px)||}_{\to 0} + \underbrace{||P_nx||}_{\leq M||x||}$$
 and so $||Px|| \leq M||x||$.

This means P is bounded.

Now let Y = ∪Y_n and Z = ∩Z_n which are closed subspaces of X. We need to show Im P = Y and Ker P = Z.

Paper 2014–Q2(c)

Let us show that Ker P = Z. For each z ∈ Z, we have z ∈ Z_n for all n and so P_nz = 0 for all n. In particular, Pz = lim P_nz = 0.

Conversely, suppose Pz = 0. Then $z = \lim(I - P_n)z$. Note that $(I - P_n)z \in Z_n \subseteq Z_m$ if $n \ge m$. It follows that the sequence $((I - P_n)z)$ eventually belongs to Z_m for each m. Since Z_m are closed, we have that $z = \lim(I - P_n)z$ belongs to all Z_m , i.e. $z \in Z$.

• Next, we show $\operatorname{Im} P = Y$.

If $y = Px = \lim P_n x$, then since $(P_n x) \subset \bigcup Y_n$ we have $y \in \operatorname{Im} P$. So $\operatorname{Im} P \subseteq Y$. Take $y \in \bigcup Y_n$ so that $y \in Y_m$ for some m. This implies that $y \in Y_n$ for all $n \ge m$. It follows that $P_n y = y$ for $n \ge m$ and so Py = y. By continuity, we have Py = y for all $y \in Y$ and so $Y \subseteq \operatorname{Im} P$. Let X be a Hilbert space.

Prove that a subset *E* of *X* is norm-bounded if for each $x \in X$ there exists a constant M_x such that

 $|\langle x, y \rangle| \leq M_x$ for all $y \in E$.

- Let T : X → X be a bijective continuous linear operator. Prove that there is a constant m > 0 such that y ∈ X and ||T*y|| = 1 together imply ||y|| ≤ m. Hence prove that T has a continuous inverse.
- Deduce that a surjective bounded linear operator from X to X maps open sets to open sets.

Let X be a Hilbert space. Prove that a subset E of X is norm-bounded if for each $x \in X$ there exists a constant M_x such that

$$|\langle x, y \rangle| \le M_x \text{ for all } y \in E.$$
 (*)

- For y ∈ X, define a linear functional l_y ∈ X* by l_y(x) = ⟨x, y⟩. Note that ||l_y|| = ||y|| in view of the Cauchy-Schwarz inequality (why?).
- Let 𝒴 = {ℓ_y : y ∈ E}. Clearly E is bounded iff 𝒴 is bounded in X*.

On the other hand, by the principle of uniform boundedness, \mathscr{F} is bounded in X^* iff (*) holds. The conclusion follows.

Paper 2015–Q2(b)

Let X be a Hilbert space and $T: X \to X$ be a bijective continuous linear operator. Prove that there is a constant m > 0 such that $y \in X$ and $||T^*y|| = 1$ together imply $||y|| \le m$. Hence prove that T has a continuous inverse.

- Let $E = \{y : ||T^*y|| = 1\}$. We need to show that E is bounded.
- By (a), we need to show that for every $x \in X$, the set $\{\langle x, y \rangle : y \in E\}$ is bounded.
- Fix x ∈ X. To make T*y shows up, we write x = Tz which is possible as T is bijective. Then

$$|\langle x,y\rangle| = |\langle Tz,y\rangle| = |\langle z,T^*y\rangle$$

which by the Cauchy-Schwarz inequality is bounded from above by

$$\leq ||z|| ||T^*y|| = ||z||.$$

We conclude from (a) that E is bounded.

Paper 2015–Q2(b)

Let X be a Hilbert space and $T : X \to X$ be a bijective continuous linear operator. Prove that there is a constant m > 0 such that $y \in X$ and $||T^*y|| = 1$ together imply $||y|| \le m$. Hence prove that T has a continuous inverse.

• From the above, we have that, for every $y \in X$, $||T^*(y/||T^*y||)|| = 1$ and so $||y||/||T^*y|| \le m$ i.e.

$$\|T^*y\| \ge m^{-1}\|y\|$$
 for all $y \in X$. (**)

- We knew that this implies Im T* is closed. Since (Im T*)[⊥] = Ker T = 0, we have that Im T* = X. Also Ker T* = (Im T)[⊥] = 0. So T* is invertible with bounded inverse (in view of (**)).
- Properties of adjoints imply that T has bounded inverse.

Paper 2015–Q2(c)

Let X be a Hilbert space and $T : X \to X$ be a surjective continuous linear operator. Prove that T maps open sets to open sets.

• We know (from lectures) that T is open if there exists $\delta_0 > 0$ such that

$$T(B(0,1)) \supseteq B(0,\delta_0).$$

- Let Y = Ker T and $Z = Y^{\perp}$. Both of these are Hilbert subspaces of X.
- Let S = T|_Z : Z → X which is a bijective bounded linear operator. Though the domain and target spaces are different, the same proof of (b) gives that S has a bounded inverse.
- This means that there exists $\delta > 0$ so that $||Tz|| = ||Sz|| \ge \delta ||z||$ for all $z \in Z$.
- Now if $||x|| < \delta$ and x = Tz, then $||z|| \le \delta^{-1} ||x|| = 1$, i.e. $B(0, \delta) \subseteq T(B(0, 1))$.

Paper 2017–Q2

- Let X = C([0,1]). Define $A_n : X \to X$ so that $(A_n x)(t) = x(t^{1+\frac{1}{n}})$. Show that A_n converges strongly to the identity operator on X (i.e. $A_n x \to x$ for all $x \in X$.)
 - () Let X be a Banach space, Y be a normed space, $T \in \mathscr{B}(X, Y)$. Assume $\overline{T(B_X(0,1))} \supseteq B_Y(0,\varepsilon)$ for some $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that $T(B_X(0,1)) \supseteq B_Y(0,\delta)$.
 - [●] Let X and Y be Banach spaces and $T \in \mathscr{B}(X, Y)$. Prove that if T(X) is not closed in Y, then T(X) is a countable union of nowhere dense subsets of Y.
 - Show that C([0,1]) is a countable union of nowhere dense subsets of $L^2(0,1)$.

Paper 2017–Q2(a)(ii)

Let X = C([0,1]). Define $A_n : X \to X$ so that $(A_n x)(t) = x(t^{1+\frac{1}{n}})$. Show that A_n converges strongly to the identity operator on X (i.e. $A_n x \to x$ for all $x \in X$.)

• Fix $x \in X$. We need to show

$$\sup_{t\in [0,1]} |x(t^{1+rac{1}{n}})-x(t)| o 0$$
 as $n o\infty.$

• By uniform continuity of x, it suffices to show

$$\sup_{t\in[0,1]}|t^{1+\frac{1}{n}}-t|\to 0 \text{ as } n\to\infty.$$

• Fix some small
$$\epsilon > 0$$
.
+ If $t \le \epsilon$, then $|t^{1+\frac{1}{n}} - t| < \epsilon$ for all n .
+ If $t > \epsilon$, then $|t^{1+\frac{1}{n}} - t| \le |t^{\frac{1}{n}} - 1| \le 1 - \epsilon^{\frac{1}{n}} < \epsilon$ for all large n .

Let X be a Banach space, Y be a normed space, $T \in \mathscr{B}(X, Y)$. Assume $\overline{T(B_X(0,1))} \supseteq B_Y(0,\varepsilon)$ for some $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that $T(B_X(0,1)) \supseteq B_Y(0,\delta)$.

• We prove the statement with $\delta=\varepsilon/2.$

- As $\overline{T(B_X(0,1))} \supset B_Y(0,\varepsilon)$, we have $\overline{T(B_X(0,r))} \supset B_Y(0,\varepsilon r)$.
- Take $y \in B_Y(0, \epsilon/2) \subset T(B_X(0, 1/2))$.

• Take $x_1 \in B_X(0,1/2)$ such that $\|y - Tx_1\| < \varepsilon/4$. Then

$$y - Tx_1 \in B_Y(0, \varepsilon/4) \subset \overline{T(B_X(0, 1/4))}.$$

• Take $x_2 \in B_X(0, 1/4)$ such that $||(y - Tx_1) - Tx_2|| < \varepsilon/8$.

• Inductively, we obtain $x_k \in B_X(0, 2^{-k})$ such that

$$\|y-T(x_1+\ldots+x_k)\|<\varepsilon\,2^{-k-1}$$

• Easy to check: The series $\sum x_k$ converges to some *s* satisfying y = Ts and

$$\|s\| < \sum_{k=1}^{\infty} \|x_k\| \le \sum_{k=1}^{\infty} 2^{-k} = 1, \text{ i.e. } s \in B_X(0,1).$$

We have thus shown that $B_Y(0, \varepsilon/2) \subset T(B_X(0, 1))$.

Paper 2017–Q2(b)(iii)

Let X and Y be Banach spaces and $T \in \mathscr{B}(X, Y)$. Prove that if T(X) is not closed in Y, then T(X) is a countable union of nowhere dense subsets of Y.

- As $TX = \bigcup_n T(B_X(0, n))$, it suffices to show that $T(B_X(0, 1))$ is nowhere dense.
- Suppose by contradiction that $\overline{T(B_X(0,1))}$ has non-empty interior, i.e. $\overline{T(B_X(0,1))} \supset B_Y(y_0, r_0)$ for some $r_0 > 0$.
- Then we also have that $\overline{T(B(0,1))} \supset B_Y(-y_0,r_0)$, which in turns implies that

$$\overline{T(B_X(0,1))} \supset B_Y(0,r_0) = \frac{1}{2}(B_Y(y_0,r_0) + B_Y(-y_0,r_0)).$$

- By (i), we then have $T(B_X(0,1)) \supset B_Y(0,\delta)$ for some $\delta > 0$.
- This implies that $T(B_X(0, n)) \supset B_Y(0, \delta n)$ and so TX = Y, contradicting the fact that TX is not closed.

Show that C([0, 1]) is a countable union of nowhere dense subsets of $L^2(0, 1)$.

- Let X = C[0, 1] and $Y = L^2(0, 1)$ and equip them with their standard norms to make them Banach spaces.
- Let $T : X \to Y$ be the natural injection, which is clearly bounded linear.
- Clearly T is not surjective and so, by (iii), X = TX is a countable union of nowhere dense sets in $L^2(0, 1)$.