

B4.2 Functional Analysis II Consultation Session 4

Luc Nguyen luc.nguyen@maths

University of Oxford

TT 2021

Paper 2012 – Q1

The problem is not directly related to spectral theory and could have been included in Session 1. However, it's a good warm up exercise for spectral theory.

... Some bookwork part ...

Let X be a Hilbert space, $S : X \to X$ be a bounded linear operator with ||S|| = 1, and let

$$T_N=\frac{1}{n}\sum_{r=0}^{n-1}S^r.$$

Prove that

(a)
$$T_n x \to x$$
 for $x \in \text{Ker}(I-S)$;
(b) $T_n x \to 0$ for $x \in \text{Im}(I-S)$;
(c) $\text{Im}(I-S)^{\perp} = \text{Ker}(I-S^*)$;
(c) $\text{Ker}(I-S^*) = \text{Ker}(I-S)$.

Deduce that T_n converges strongly to an operator T which you should identify. Luc Neuven (University of Oxford) B4.2 FA II - Session 4 TT 202

Paper 2012 – Q1

- Part (iii) is bookwork and we saw in the course that this has some importance in the discussion of spectral theory on Hilbert spaces.
- Let us start with (i). If $x \in \text{Ker}(I S)$, then x = Sx and so $T_n x = x$.
- Consider now (ii). If $x \in \text{Im}(I S)$, then x = y Sy for some y. It follows that

$$T_n x = \frac{1}{n} (x + Sx + \ldots + S^{n-1}x)$$

= $\frac{1}{n} (y - Sy + Sy - S^2y + \ldots + S^{n-1}y - S^ny)$
= $\frac{1}{n} (y - S^ny).$

Since $||y - S^n y|| \le ||y|| + ||S^n|| ||y|| \le ||y|| + ||S||^n ||y|| = 2||y||$, we then have that $T_n x \to 0$.

Paper 2012 – Q1

- Now consider (iv). We need to show $\operatorname{Ker}(I S^*) = \operatorname{Ker}(I S)$.
- We have to use the fact that ||S|| = 1. (Without this, in general, $\text{Ker}(I S^*) \neq \text{Ker}(I S)$.)
- It suffices to show $\operatorname{Ker}(I S^*) \subseteq \operatorname{Ker}(I S)$. The converse follow by applying this to S^* .
- Indeed, take $x \in \operatorname{Ker}(I S^*)$ so that $x = S^*x$. Then

 $||x||^2 = |\langle x, S^*x \rangle| = |\langle Sx, x \rangle| \le ||Sx|| ||x|| \le ||S|| ||x||^2.$

Since ||S|| = 1, this implies that by the equality case of Cauchy-Schwarz' inequality that Sx = λx with |λ| = 1. Noting also that the above gives (Sx, x) = ||x||² which is real and non-negative. We thus have that Sx = x, i.e. x ∈ Ker(I - S).
The last part follows from the early bookwork part with

 $Y = \text{Ker}(I - S) = \text{Ker}(I - S^*), Z = \text{Ker}(I - S^*) + \text{Im}(I - S),$ and T being the orthogonal projection operator onto Ker(I - S).

Paper 2016 – Q3

Let $X \neq 0$ be a complex Hilbert space and $T \in \mathscr{B}(X)$.

- Bookwork.
- - **(**) Show that $\lambda \in V(T)$ implies $|\lambda| \leq ||T||$.
 - **(**) Show that if T is self-adjoint, then $V(T) \subset \mathbb{R}$.
- Suppose now T is self-adjoint, $M = \sup V(T)$ and $m = \inf V(T)$.
 - **(**) Show that for any $w \in X$, $m \|w\|^2 \le \langle Tw, w \rangle \le M \|w\|^2$.
 - … Show that *M* belongs to the approximate point spectrum of *T*.
 - In Express ||T|| in terms of *m* and *M*. Deduce that either ||T|| or -||T|| belongs to $\sigma(T)$.

Paper 2016 – Q3(b)

Let $X \neq 0$ be a complex Hilbert space and $T \in \mathscr{B}(X)$. Let $V(T) = \{\lambda \in \mathbb{C} : \exists x \in X \text{ with } ||x|| = 1 \text{ and } \langle Tx, x \rangle = \lambda \}.$

- **(**) Show that $\lambda \in V(T)$ implies $|\lambda| \leq ||T||$.
- **(**) Show that if T is self-adjoint, then $V(T) \subset \mathbb{R}$.

This whole part is straightforward.

• (i) is follows from Cauchy-Schwarz' inequality: For a suitable x,

$$|\lambda| = |\langle Tx, x \rangle| \le ||Tx|| ||x|| \le ||T|| ||x||^2 = ||T||.$$

• For (ii), if T is self-adjoint and $\lambda \in V(T)$, then for a suitable x,

$$\lambda = \langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle} = \overline{\lambda},$$

and so λ is real.

Let $X \neq 0$ be a complex Hilbert space and $T \in \mathscr{B}(X)$. Suppose now T is self-adjoint, $M = \sup V(T)$ and $m = \inf V(T)$.

- **(**) Show that for any $w \in X$, $m \|w\|^2 \le \langle Tw, w \rangle \le M \|w\|^2$.
- Take $\varepsilon > 0$ and x be an element of X with ||x|| = 1 such that $\langle Tx, x \rangle \ge M \varepsilon$. Write Tx as $\lambda x + y$ where $\lambda = \langle Tx, x \rangle$ and $\langle y, x \rangle = 0$. By considering elements of the form w = x + ty where $t \in \mathbb{R}$, show that $||y||^2 \le (M m)\varepsilon$. Hence show that M belongs to the approximate point spectrum of T.
- State without a proof a formula for ||T|| in terms of the inner product and hence express ||T|| in terms of *m* and *M*. Deduce that either ||T|| or -||T|| belongs to σ(T).

Show that for any $w \in X$, $m \|w\|^2 \le \langle Tw, w \rangle \le M \|w\|^2$.

- As in (b)(ii), since T is self-adjoints, ⟨Tw, w⟩ is real for all w ∈ X. It follows that V(T) is non-empty and hence M and m are well-defined.
- If w = 0, the assertion is clear.
- Otherwise, let x = w/||w|| so that ||x|| = 1. Then $\langle Tx, x \rangle \in V(T)$ and so $m \leq \langle Tx, x \rangle \leq M$. Returning to w, we get $m||w||^2 \leq \langle Tw, w \rangle \leq M||w||^2$ as wanted.

Take $\varepsilon > 0$ and x be an element of X with ||x|| = 1 such that $\langle Tx, x \rangle \ge M - \varepsilon$. Write Tx as $\lambda x + y$ where $\lambda = \langle Tx, x \rangle$ and $\langle y, x \rangle = 0$. By considering elements of the form w = x + ty where $t \in \mathbb{R}$, show that $||y||^2 \le (M - m)\varepsilon$. Hence show that M belongs to the approximate point spectrum of T.

 Before going to the solution, let me remark that the assertion M ∈ σ_{ap}(T) follows from what we did in the course: T is self-adjoint so σ(T) = σ_{ap}(T) ⊂ ℝ, σ(T) ⊂ [m, M] and both m, M ∈ σ(T), where to this last fact we use the fact that rad(σ(T)) = ||T|| for a self-adjoint operator (which is itself a consequence of Gelfand's formula). This leg of the question gives a different way of proving this.

Paper 2016 – Q3(c)(ii)

- Proceeding as instructed we take x with ||x|| = 1 such that $\langle Tx, x \rangle \ge M \varepsilon$.
- Let $\lambda = \langle Tx, x \rangle$ and $y = Tx \lambda x$, we have that $\langle y, x \rangle = \langle Tx, x \rangle \lambda ||x||^2 = 0.$
- Now consider w = x + ty for $t \in \mathbb{R}$. We have

$$\langle Tw, w \rangle = \langle Tx, x \rangle + t^2 \langle Ty, y \rangle + 2tRe \langle Ty, x \rangle \geq M - \varepsilon + t^2 m ||y||^2 + 2tRe \langle y, \underbrace{Tx}_{=\lambda x + y} \rangle = M - \varepsilon + t^2 m ||y||^2 + 2t ||y||^2.$$

• Using also $\langle Tw, w \rangle \leq M \|w\|^2 = M(1 + t^2 \|y\|^2)$, we deduce that $(M - m) \|y\|^2 t^2 - 2t \|y\|^2 + \varepsilon \geq 0.$

• Now if M = m, this is possible only if y = 0. If M > m, we choose $t = \frac{1}{M-m}$ and obtain $||y||^2 \le (M-m)\varepsilon$ as wanted.

- Now, to show that $M \in \sigma_{ap}(T)$, we show that there exists (x_n) with $||x_n|| = 1$ such that $Tx_n Mx_n \to 0$ as $n \to \infty$.
- Let ε = 1/n in the previous computation, and relabel the corresponding x as x_n, y as y_n and λ as λ_n. We then have M 1/n ≤ λ_n ≤ M, ||x_n|| = 1.

$$Tx_n = \lambda_n x_n + y_n$$
 and $\|y_n\|^2 \leq rac{M-m}{n}$.

Clearly this implies that $||x_n|| = 1$ and $Tx_n - Mx_n = (\lambda_n - M)x_n + y_n \rightarrow 0$. We conclude that $M \in \sigma_{ap}(T)$.

State without a proof a formula for ||T|| in terms of the inner product and hence express ||T|| in terms of *m* and *M*. Deduce that either ||T|| or -||T|| belongs to $\sigma(T)$.

• Since T is self-adjoint,

$$|T|| = \sup\{|\langle Tx, x\rangle| : ||x|| = 1\}.$$

- This implies that $||T|| = \max\{|m|, |M|\} = \max\{-m, M\}$.
- Applying part (ii) to T, we have $M \in \sigma(T)$. Applying part (ii) to -T instead, we have $-m \in \sigma(-T)$ and so $m \in \sigma(T)$.
- Now if ||T|| = M, we have $||T|| = M \in \sigma(T)$. If ||T|| = -m, we have $-||T|| = m \in \sigma(T)$.

Let V be a complex Hilbert space, $T \in \mathscr{B}(V)$ is self-adjoint. For $\lambda \in \mathbb{C} \setminus \mathbb{R}$ and $v \in V$, prove that

$$\|\lambda \mathbf{v} - T\mathbf{v}\| = \|\bar{\lambda}\mathbf{v} - T^*\mathbf{v}\| \ge |\mathrm{Im}\lambda|\|\mathbf{v}\|. \tag{(\star)}$$

Deduce that $\lambda I - T$ and $(\lambda I - T)^*$ are injective. Prove that $\operatorname{Im}(\lambda I - T)$ is closed in V, and by considering the orthogonal complement $[(\lambda I - T)(V)]^{\perp}$, show that $\lambda I - T$ is surjective. Show that $\lambda I - T$ has a bounded inverse $(\lambda I - T)^{-1}$ with $\|(\lambda I - T)^{-1}\| \leq |\operatorname{Im}\lambda|^{-1}$. Deduce that $\sigma(T) \subset \mathbb{R}$.

Suppose for the moment that (*) has been shown.
 It is clear that (*) implies that λI – T and (λI – T)* are injective.

Furthermore, this coercivity implies that the range $\text{Im}(\lambda I - T)$ is closed (see Session 1).

Since $[(\lambda I - T)(V)]^{\perp} = \text{Ker}(\overline{\lambda}I - T^*) = 0$, we thus have that $\lambda I - T$ is surjective and hence bijective.

Recalling (*) again, we have $\|(\lambda I - T)^{-1}\| \le |\text{Im}\lambda|^{-1}$, and so $\lambda \notin \sigma(T)$.

Since $\lambda \in \mathbb{C} \setminus \mathbb{R}$ is arbitrary, we have $\sigma(T) \subset \mathbb{R}$. So the main issue is to show (*).

Paper 2008 – Q8(a)

- Switching the role of λ and $\overline{\lambda}$, it is enough to estimate $\|\lambda v Tv\|$.
- Write $\lambda = a + ib$. We compute

$$\begin{aligned} \|\lambda v - Tv\|^2 &= \|av - Tv + ibv\|^2 \\ &= \|av - Tv\|^2 + b^2 \|v\|^2 \\ \underbrace{-ib\langle av - Tv, v \rangle + ib\langle v, av - Tv \rangle}_{=0 \text{ as } al - T \text{ is self-adjoint}} \\ &= \|av - Tv\|^2 + b^2 \|v\|^2 \ge |Im\lambda|^2 \|v\|^2, \end{aligned}$$

which proves (\star) .

Paper 2010 – Q5

...Bookwork...

Let X be a complex Hilbert space and $T \in \mathscr{B}(X)$ be self-adjoint and positive (i.e. $\langle Tx, x \rangle \geq 0$ for all $x \in X$). Prove that

 $\ \, \textcircled{o} \ \, \sigma(T) \subset \mathbb{R}_{\geq 0}.$

$$\ \ \, |\langle Tx,y\rangle|^2\leq \langle Tx,x\rangle\langle Ty,y\rangle \ \, \text{for all} \ \, x,y\in X.$$

Let $S, T \in \mathscr{B}(X)$ be self-adjoint and positive.

- **O** Prove that if $x \in \text{Ker}(S + T)$, then $\langle Tx, x \rangle = 0$.
- O Prove that if Tx = Sx = 0 for all $x \in Ker(S + T)$.
- **Prove that if** ST = TS and $S^2 = T^2$, then S = T.
 - The only spectral theory part is (iii), which is bookwork!
 - One should probably use the adjective 'semi-positive' instead of 'positive'.

Paper 2010 – Q5(iv)

Let X be a complex Hilbert space and $T \in \mathscr{B}(X)$ be self-adjoint and positive (i.e. $\langle Tx, x \rangle \geq 0$ for all $x \in X$). Prove that

 $|\langle Tx, y \rangle|^2 \leq \langle Tx, x \rangle \langle Ty, y \rangle$ for all $x, y \in X$.

- This resembles Cauchy-Schwarz' inequality. The proof is the same. Here are some key steps:
- Replacing y by $e^{i\theta}y$ for some suitable θ , we may assume that $\langle Tx, y \rangle$ is real and non-negative.
- Now, for any $t \in \mathbb{R}$, we have

$$0 \leq \langle T(x + ty), x + ty \rangle$$

= $\langle Tx, x \rangle + t(\langle Tx, y \rangle + \langle Ty, x \rangle) + t^2 \langle Ty, y \rangle$
= $\langle Tx, x \rangle + t(\langle Tx, y \rangle + \langle y, Tx \rangle) + t^2 \langle Ty, y \rangle$ (self-adjointness)
= $\langle Tx, x \rangle + 2t \langle Tx, y \rangle + t^2 \langle Ty, y \rangle$ ($\langle Tx, y \rangle \in \mathbb{R}$).

Let X be a complex Hilbert space and $S, T \in \mathscr{B}(X)$ be self-adjoint and positive.

Prove that if $x \in \text{Ker}(S + T)$, then $\langle Tx, x \rangle = 0$. Deduce that Tx = 0.

- Suppose (S + T)x = 0. Then $0 \le \langle Tx, x \rangle = -\langle Sx, x \rangle \le 0$. Hence $\langle Tx, x \rangle = 0$.
- Now take $y \in X$. By (iv) and the fact that $\langle Tx, x \rangle = 0$,

$$|\langle Tx, y \rangle|^2 \leq \langle Tx, x \rangle \langle Ty, y \rangle = 0$$

and so $\langle Tx, y \rangle = 0$. It follows that Tx = 0.

Let X be a complex Hilbert space and $S, T \in \mathscr{B}(X)$ be self-adjoint and positive.

Prove that if ST = TS and $S^2 = T^2$, then S = T.

• Note that $0 = S^2 - T^2 = (S - T)(S + T)$. Thus S - T is trivial in Im(S + T) and so in $\overline{\text{Im}(S + T)} = \text{Ker}(S + T)^{\perp}$.

• By (vi),
$$\operatorname{Ker}(S + T) \subseteq \operatorname{Ker} S \cap \operatorname{Ker} T \subseteq \operatorname{Ker}(S - T)$$
.

• Therefore S - T vanishes on both $\text{Ker}(S + T)^{\perp}$ and Ker(S + T). The conclusion follows from the projection theorem.