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In the last lecture

Weak convergence: Examples and basic properties.

Luc Nguyen (University of Oxford) B4.2 FA II – Lecture 9 HT 2021 2 / 15



In this lecture

Mazur’s theorem.
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Recap

Suppose that X is a normed vector space and (xn) ⊂ X converges
weakly to x . We knew:

(xn) is bounded.

‖x‖ ≤ lim inf ‖xn‖.
In particular, if xn ∈ B(0,R), then x ∈ B(0,R).
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Mazur’s theorem

Theorem (Mazur’s theorem)

Let K be a closed convex subset of a normed vector space X , (xn) be
a sequence of points in K converging weakly to x . Then x ∈ K .

Corollary
The weak limit x belong to the closure of the convex hull of
S = {x1, x2, . . .}. In other words, a sequence of finite linear convex
combinations of the xn’s converges strongly to x .

Luc Nguyen (University of Oxford) B4.2 FA II – Lecture 9 HT 2021 5 / 15



Extended hyperplane separation theorem

Theorem (Extended hyperplane separation theorem)

Let X be a normed vector space, A and B be disjoint convex subsets
of X . Suppose that at least one of them has an interior point. Then
A and B can be separated by a hyperplane, i.e. there is a non-zero
linear function ` and a number c such that

Re `(a) ≤ c ≤ Re `(b) for all a ∈ A, b ∈ B .

A B

R
e
`
=

c
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Extended hyperplane separation theorem

Remark
The linear function ` is in fact bounded.

Proof

Since one of the set, say B , has non-empty interior, we can find
a ball B(x0, r0) such that Re `(x) ≥ c for x ∈ B(x0, r0).

It follows that for every z ∈ B(0, 1),

Re `(z) =
1

r0
(Re `(x0+rz)−Re `(x0)) ≥ 1

r0
(c−Re `(x0)) =: −M .

Using −z in place of z , we have −Re `(z) ≥ −M , and so

|Re `(z)| ≤ M .

This proves the boundedness of ` when the field is real. The
complex case is dealt with by using iz in the above.
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Proof of Mazur’s theorem

Let K ⊂ X be closed and convex and suppose by contradiction
that (xn) ⊂ K converges weakly to some x /∈ K .
Since K is closed, its complement is open. Hence there is some
r > 0 such that B(x , r) ∩ K = ∅.
Applying the extended hyperplane separation theorem to the set
K and B(x , r), we find a bounded linear functional `0 ∈ X ∗,
`0 6= 0 and a number c ∈ R such that

Re `0(a) ≤ c ≤ Re `0(b) for all a ∈ K and b ∈ B(x , r).

Taking a = xn gives Re `0(xn) ≤ c . As xn ⇀ x , we have
Re `0(x) ≤ c .
So we have Re `0(x) ≤ Re `0(z) for all z ∈ B(x , r) , and so, for
w ∈ B(0, 1),

Re `0(w) =
1

r
(Re `0(x + rw)− Re `0(x)) ≥ 0.

As seen on the previous slide, this implies `0 = 0, which is a
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Banach-Saks’ theorem

By the corollary to Mazur’s theorem, if xn ⇀ x then a finite convex
linear combination of the xn’s converges strongly to x . In Hilbert
spaces, this can be improved substantially:

Theorem (Banach-Saks)

Let X be a Hilbert space. Then every weakly convergent sequence
(xm) in X has a subsequence (xmk

) which converges in the Cesaro
sense , i.e.

1

n

n∑
k=1

xmk
converges as j →∞.

A difficult result of Kakutaki asserts that the conclusion hold if X is a
uniformly convex Banach space.
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Banach-Saks’ thereom

Sketch of proof:

WLOG, we assume that xm ⇀ 0 and ‖xm‖ ≤ 1.

Claim: There is a sequence m1 = 1 < m2 < . . . such that

‖xm1 + . . . + xmn‖2 ≤ 3n.

This can be done by induction. For the inductive step, you will
need to select xmn+1 such that |〈xm1 + . . . + xmn , xmn+1〉| ≤ 1,
which is attainable as 〈a, xm〉 → 0 for all a ∈ X .

But then we have

‖1

n
(xm1 + . . . + xmn)‖2 ≤ 3

n
→ 0.
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Example 1

Example

Let X = Lp(−π, π), 1 < p <∞ and xn(t) = sin nt. Determine if
(xn) converges strongly or weakly and, if so, identify its limit.

If p = 2, X is a Hilbert space, and (xn) is an orthogonal
sequence. Hence (xn) does not converge strongly and converge
weakly to zero (by Bessel’s inequality).

For p 6= 2, one can show that (xn) doesn’t converge strongly by
doing a direct computation to show that it is not Cauchy. But
this is messy.

We claim xn ⇀ 0, i.e.
∫ π

−π sin nt g(t) dt → 0 for all

g ∈ Lp
′
(−π, π) ∼= X ∗. We have seen this before in Lecture 5. It

suffices to check the convergence for g being the characteristic
function of an open interval, which is straightforward.
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Example 1

If (xn) converges strongly, its strong limit must be the same as
its weak limit, which is zero. But the sequence (xn) have
constant positive norm:

‖xn‖p =

∫ π

−π
| sin nt|p dt=

2

n

∫ nπ

0

| sin s|p ds

= 2

∫ π

0

| sin s|p ds 6→ 0!

So (xn) does not converge strongly.
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Example 2

Example

Let X = L1(Rn). Let E1,E2, . . . are disjoint measurable subsets of
finite positive measure of Rn, and fk = 1

|Ek |
χEk

. Determine if (fk)
converges strongly or weakly and, if so, identify its limit.

It is easy to see that ‖fk‖ = 1 and ‖fk − fm‖ = 2 if k 6= m. So
(fk) is not Cauchy and hence not strongly convergent.
If all Ek has measure 1, the sequence (fk) is actually orthonormal
in L2(Rn) and so converges weakly to 0 in L2(Rn). One may
therefore be tempted to say that (fk) converges weakly to 0 in
L1(Rn). This isn’t true!
We claim that (fk) doesn’t converge weakly.
Suppose by contradiction that fk ⇀ f , i.e.∫

Rn

fkg →
∫
Rn

fg for all g ∈ L∞(Rn) ∼= (L1(Rn))∗.
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Example 2

... Suppose by contradiction that
∫
Rn fkg →

∫
Rn fg for all

g ∈ L∞(Rn).
Using g = sign(f )χE1 , g = sign(f )χE2 , . . . , we obtain∫
Em
|f | = 0, i.e. f = 0 a.e. in ∪Ek .

Similarly, using g = sign(f )χRn\(∪Ek ), we have f = 0 a.e. in
Rn \ (∪Ek). So f = 0.
On the other hand, by Mazur’s theorem, there is a sequence
(hk), each of which is a finite convex linear combination of fk ’s,
which converges to f strongly.
To reach a contradiction, we show that ‖h‖ = 1 for any finite
convex linear combination h of fk ’s. Indeed, let h =

∑N
m=1 cmfm

with 0 ≤ cm ≤ 1 and
∑N

m=1 cm = 1. Then

‖h‖ =
N∑

m=1

∫
Em

|h| =
N∑

m=1

∫
Em

cm|fm| =
N∑

m=1

cm = 1.
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Summary

We have exhibited a sequence with constant and positive norm
in Lp which converges weakly to 0 for 1 < p <∞.

We have exhibited a sequence with constant norm in L1 which
does not converge weakly.
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