B4.2 Functional Analysis II - Sheet 1 of 4

Read Sections 1.1-1.3 and prove the few statements whose proofs were left out as an exercise. (Not to be handed in.)

Do:

Q1. Let $(X, \|\cdot\|)$ be a real norm vector space satisfying the parallelogram law:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
 for all $x, y \in X$.

Define

$$f(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2) \text{ for } x, y \in X.$$

Show that

- (a) f(x, y) = f(y, x).
- (b) f(x+z,y) = f(x,y) + f(z,y).
- (c) $f(\alpha x, y) = \alpha f(x, y)$ for all $\alpha \in \mathbb{R}$.

Conclude that f(x, y) defines an inner product on X.

[*Hint:* The tricky part is (c). Prove it, successively, for α being an integer, a rational number, and finally a real number.]

Q2. Let $A^2(\mathbb{D})$ be the Bergman space of functions which are holomorphic and square integrable on the unit disk $\mathbb{D} \subset \mathbb{C}$. Let $f \in A^2(\mathbb{D}), 0 < s < 1$, and |z| < s. Cauchy's integral formula gives

$$rf(z) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z + re^{i\theta}) rd\theta$$

for any 0 < r < 1 - s.

(a) Integrating the above formula in 0 < r < 1 - s, show that

$$f(z) = \frac{1}{\pi (1-s)^2} \langle f, \chi_{D(z,1-s)} \rangle_{L^2(\mathbb{D})},$$

where D(z, 1-s) is the disk of radius 1-s with the centre z.

(b) Deduce that

$$|f(z)| \le \frac{\|f\|_{L^2(\mathbb{D})}}{\sqrt{\pi}(1-s)}.$$

- (c) Deduce that if f_n is a Cauchy sequence in $A^2(\mathbb{D})$ then f_n converges uniformly on compact subsets of \mathbb{D} .
- (d) Deduce that $A^2(\mathbb{D})$ is closed in $L^2(\mathbb{D})$.
- **Q**3. Let K be a non-empty convex set of a real Hilbert space X. Suppose that $x \in X$ and $y \in K$. Prove that the following are equivalent:
 - (1) $||x y|| \le ||x z||$ for all $z \in K$;
 - (2) $\langle x y, z y \rangle \leq 0$ for all $z \in K$.
- **Q**4. Let Y be a subspace of a Hilbert space X over \mathbb{C} and $\ell : Y \to \mathbb{C}$ be a bounded linear functional on Y.
 - (a) Using the Riesz representation theorem, show that there is a unique extension of ℓ to a bounded linear functional $\tilde{\ell}$ on X with $\|\tilde{\ell}\|_{X^*} = \|\ell\|_{Y^*}$.
 - (b) By examining the behavior of $\tilde{\ell}$ on the orthogonal complement of Y, reprove (a) without using the Riesz representation theorem.
- **Q**5. For each of the cases below, determine in any order (i) the orthogonal complement of Y in X, (ii) if Y is dense in X, and (iii) if Y is closed in X. Here all spaces are over the real.
 - (i) $X = L^2(-1, 1), Y = \{f \in X : \int_{-1}^1 f(x) \, dx = 0\}.$
 - (ii) $X = \ell^2, Y = \{(a_n) \in X : a_2 = a_4 = \ldots = 0\}.$
 - (iii) $X = L^2(0, 1), Y = C[0, 1].$

In (a) and (b) you may find it useful to rewrite the identities defining the space Y as an orthogonal relation e.g. $a_2 = 0$ means $\langle a, e_2 \rangle = 0$.

Q6. Let Y be the set of all $g \in L^2(-\pi,\pi)$ such that $g(t-\pi) = g(t)$ for almost all $t \in (0,\pi)$. Show that Y is a closed subspace of $L^2(-\pi,\pi)$ and identify Y^{\perp} . Assume that $f \in L^2(-\pi,\pi)$ and supposed $f = g + g^{\perp}$, where $g \in Y$ and $g^{\perp} \in Y^{\perp}$. Find g and g^{\perp} . Calculate

$$d := \inf\{\|h - g\|_{L^2(-\pi,\pi)} : g \in Y\},\$$

where h(t) = t and specify the element g at which the infimum is attained.