B4.2 Functional Analysis II - Sheet 2 of 4

Read the remaining of Chapter 1, Chapter 2 and prove the few statements whose proofs were left out as an exercise. (Not to be handed in.)

Do:

- **Q**1. Let X be a Hilbert space and $A \in \mathscr{B}(X)$.
 - (a) Prove that $\operatorname{Ker} A = (\operatorname{Im} A^*)^{\perp}$ and $(\operatorname{Ker} A)^{\perp} = \overline{\operatorname{Im} A^*}$.
 - (b) Assume that A is a projection, i.e. $A^2 = A$. Show that Im A is closed. Prove that

$$A = A^* \iff (\operatorname{Im} A)^{\perp} = \operatorname{Ker} A \iff ||A|| \le 1.$$

Deduce that either ||A|| = 1 or A = 0 provided that one of the above statements is true.

[Hint: To prove that $||A|| \leq 1$ implies $A = A^*$, show that, for every given point in Im(A), the origin is the point in Im(I-A) which is closest to that given point, and then use Q3 of Sheet 1 to show that ImA and Im(I-A) are orthogonal complementary spaces.]

- **Q**2. Let X be a Hilbert space and $U: X \to X$ be a unitary operator.
 - (a) Show that $\operatorname{Ker}(I U) = \operatorname{Ker}(I U^*);$
 - (b) Show that $X = \overline{\text{Im}(I U)} \oplus \text{Ker}(I U);$
 - (c) Show that $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x = x$ if $x \in \operatorname{Ker}(I-U)$ and $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x = 0$ if $x \in \overline{\operatorname{Im}(I-U)};$
 - (d) Deduce that, for each $x \in X$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N-1} U^n x = Px,$$

where P is the orthogonal projection onto $\operatorname{Ker}(I-U)$.

- **Q**3. Let X be a Hilbert space and let $T \in \mathscr{B}(X)$.
 - (a) Prove that $\operatorname{Ker} TT^* = \operatorname{Ker} T^* = (\operatorname{Im} T)^{\perp}$.
 - (b) Assume that T is normal, i.e. $T^*T = TT^*$. Prove that $\overline{\operatorname{Im} T} = \overline{\operatorname{Im} T^*}$.
 - (c) Prove that T is normal if and only if $||Tx|| = ||T^*x||$ for all $x \in X$.

Q4. Let M be a complete metric space and, for each $n \in \mathbb{N}$, let A_n be a nowhere dense subset of M and G_n be a dense open subset of M. Show that $\bigcap_{n \in \mathbb{N}} G_n$ is not contained in $\bigcup_{n \in \mathbb{N}} A_n$.

Deduce that \mathbb{Q} is not the intersection of a countable number of open subsets of \mathbb{R} .

- **Q**5. In this question, all sequence spaces are real.
 - (a) Consider a double sequence $(a_{n,j})$ such that for every fixed n, the sequence $(a_{n,j})_{j=1}^{\infty}$ belongs to c_0 . Suppose that

$$\sup_{n} \sum_{j} a_{n,j} \, b_j < \infty \text{ for every } b = (b_j) \in \ell^1.$$

Show that $\sup_{n,j} |a_{n,j}| < \infty$.

- (b) Suppose that (a_j) is a scalar sequence such that ∑_j a_jb_j converges for all b = (b_j) ∈ c₀. Prove that ∑_j |a_j| converges.
 [*Hint: Consider the sequences T_n with entries T_n(j) = a_j if j ≤ n and T_n(j) = 0 if j > n. Use the principle of uniform boundedness to show that (T_n) is bounded in ℓ¹.]*
- (c*) (*Optional*) Let $2 and let <math>(c_{m,n})$ be a double sequence such that, for every fixed m,

$$\sum_{n} c_{m,n} a_n b_n \text{ converges for every } a = (a_n), b = (b_n) \in \ell^p$$

and

$$\sup_{m} \sum_{n} c_{m,n} a_{n} b_{n} < \infty \text{ for every } a = (a_{n}), b = (b_{n}) \in \ell^{p}.$$

Prove that, for $q = \frac{p}{p-2}$,

$$\sup_{m}\sum_{n}|c_{m,n}|^{q}<\infty.$$

Q6. (a) Let X be a real Banach space, Y and Z be real normed vector spaces, and $B: X \times Y \to Z$ be bilinear (i.e., linear in each variable). Suppose that for each $x \in X$ and $y \in Y$, the linear maps $B^x: Y \to Z$ and $B_y: X \to Z$ defined

$$B^x(y) = B(x, y) = B_y(x)$$

are continuous. Use the principle of uniform boundedness to prove that there exists a constant K such that $||B(x,y)|| \leq K||x|| ||y||$ for all $x \in X$ and $y \in Y$. Deduce that B is continuous.

(b) Let X and Y both be the subspace of $L^1(0, 1)$ consisting of polynomials, $Z = \mathbb{R}$, and

$$B(f,g) = \int_{0}^{1} fgdt.$$

Show that the bilinear form B is continuous in each variables but it is not continuous.

[To put things in perspective, please note that even on \mathbb{R}^2 , for nonlinear functions, separate continuity does not imply joint continuity. A standard example is the function $f(x, y) = \frac{xy}{x^2+y^2}$ for $(x, y) \neq 0$ and f(0, 0) = 0.]