B4.2 Functional Analysis II - Sheet 3 of 4

Reread Chapter 2, read Chapter 3 and prove the few statements whose proofs were left out as an exercise. (Not to be handed in.)

Do:

Q1. Let X and Y be real Hilbert spaces and $T \in \mathscr{B}(X, Y)$ be surjective. Show that there exists a unique bounded linear operator $R \in \mathscr{B}(Y, X)$ such that $TR = I_Y$ and $||Ry|| \leq ||x||$ for all $x \in X$ and $y \in Y$ satisfying Tx = y.

[*Hint: Follow the strategy of the proof of Theorem 2.3.4.*]

Q2. Let X be a Hilbert space and $T \in \mathcal{B}(X)$. Show that the graph $\Gamma(T)$ of T is a closed subspace of $X \times X$ and that

$$\Gamma(T)^{\perp} = \{ (-T^*x, x) : x \in X \}.$$

By considering the corresponding orthogonal decomposition of (x, 0), prove that $I + T^*T$ maps X onto X. Here the space $X \times X$ is endowed with the product inner product

$$\langle (x_1, x_2), (y_1, y_2) \rangle_{X \times X} = \langle x_1, y_1 \rangle_X + \langle x_2, y_2 \rangle_X.$$

Q3. Let X and Y be real Banach spaces and $T \in \mathscr{B}(X, Y)$. Assume that Z = TX is a finite-codimensional subspace of Y and let $\{y_1 + Z, \ldots, y_m + Z\}$ be a basis for Y/Z. Define $\hat{T} : X \oplus \mathbb{R}^m \to Y$ by

$$\hat{T}(x, (v_1, \dots, v_m)) = T(x) + \sum_{j=1}^m v_j y_j.$$

Show that \hat{T} is a surjective bounded linear operator. Hence, by applying the open mapping theorem, deduce that Z is closed.

- **Q**4. Let X be a Banach space.
 - (a) Show that if a sequence (x_n) in X converges weakly, then its weak limit is unique.

- (b) Suppose that $x_n \to x$ in X and $\ell_n \to \ell$ in X^* . Show that $\ell_n(x_n) \to \ell(x)$.
- (c) Suppose in addition that X is a Hilbert space. Show that if $x_n \rightharpoonup x$ in X and if $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$.
- (d) Prove (c) when the assumption that X is a Hilbert space is replaced by the assumption that X is uniformly convex: for every $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that if ||x|| = ||y|| = 1 and if $||x - y|| \ge \varepsilon$, then $||x + y|| \le 2(1 - \delta)$. [*Hint: Consider the sequence* $\frac{1}{2}(x_n + x)$ and use Theorem 3.2.2.]
- Q5. All sequence spaces in this question are real.
 - (a) Let $1 . Show that a sequence <math>(x_n) \subset \ell^p$ converges weakly to x if and only if it is bounded and $x_n(j) \to x(j)$ for every j. [*Hint: Use weak sequential compactness* or the inequality

$$\left|\sum_{j} \alpha(j)\beta(j)\right| \leq \left\{\sum_{j} |\alpha(j)|^{p}\right\}^{1/p} \left\{\sum_{j} |\beta(j)|^{q}\right\}^{1/q}.$$

(b*) Show that a sequence in ℓ^1 is weakly convergent if and only if it is strongly convergent.

[Hint: For given $\varepsilon > 0$, construct inductively increasing sequences n_k and m_k such that $\sum_{j \le m_{k-1}} |x_{n_k}(j)| < \varepsilon/8$ and $\sum_{j > m_k} |x_{n_k}(j)| < \varepsilon/8$. Then test the weak convergence against $b \in \ell^{\infty}$ given by $b(j) = sign(x_{n_k}(j))$ for $m_{k-1} < j \le m_k$.]

- (c) Let $1 \leq p < \infty$ and let $e_n \in \ell^p$ denote the sequence $(\delta_{nj})_{j=1}^{\infty}$ where δ is the Kronecker delta. Does (e_n) converge weakly or strongly in ℓ^p ? If it converges (weakly or strongly), identify its limit.
- **Q**6. A sequence (ℓ_n) in the dual space X^* of a Banach space X is said to be weak^{*} convergent to $\ell \in X^*$ if

$$\ell_n(x) \to \ell(x)$$
 for all $x \in X$.

(a) Show that weak^{*} convergent sequences are bounded.

(b) Show that if X is separable, then the unit ball of X^* is weak* sequentially compact, i.e. every sequence (ℓ_n) in X^* with $\|\ell_n\|_* \leq 1$ has a weak* convergent subsequence. [*Hint: Let* (x_n) be a dense subset of X. Mimic the proof of the weak

sequential compactness of the unit ball to construct a subsequence (ℓ_{n_k}) such that $\ell_{n_k}(x_m)$ is convergent for every m.]