B4.2 Functional Analysis II - Sheet 4 of 4

Read Chapter 4 & 5 and prove the few statements whose proofs were left out as an exercise. (Not to be handed in.)

Do:

Q0. (Not to be handed in.) This problem recalls a result in Part A Integration.

Let $f \in L^1_{loc}(\mathbb{R}), a \in \mathbb{R}$ and define

$$F(x) = \int_{a}^{x} f(t) \, dt.$$

- (i) Show that F is continuous.
- (ii) Show that if φ is a smooth function, then integration by parts hold:

$$\int_{b}^{c} F(x) \varphi'(x) dx = [F\varphi]_{b}^{c} - \int_{b}^{c} f(x) \varphi(x) dx.$$

[Hint: First prove the statement for the case b = a by expressing the left hand side as a repeated integral and then appealing to Fubini's theorem.]

- (iii) Show that if F is constant, then f = 0 a.e.
- **Q1.** (a) Use Theorem 4.6.1 to prove the localisation property of Fourier series: if two (continuous) 2π -periodic functions f and g are equal in an open interval containing 0, then their Fourier series either both converge at 0 or both diverge at 0.
 - (b) In the lecture, we prove that there is a continuous function whose Fourier series diverges at 0. Use (a) to construct a continuous function whose Fourier series diverges at 0 and $\pi/2$.
- **Q**2. Consider the system $\{e_n = \frac{1}{\sqrt{2\pi}}e^{inx}\}_{n \in \mathbb{Z}}$ as a subset of $X = L^1(-\pi, \pi)$.
 - (a) Show that $||e_n|| = \sqrt{2\pi}$ for all n and $||e_n e_m|| = \frac{8}{\sqrt{2\pi}}$ for all $n \neq m$.
 - (b*) Show that $\{e_n = \frac{1}{\sqrt{2\pi}}e^{inx}\}_{n\in\mathbb{Z}}$ is a basis of $L^1(-\pi,\pi)$, i.e. the closed linear span of $\{e_n = \frac{1}{\sqrt{2\pi}}e^{inx}\}_{n\in\mathbb{Z}}$ is $L^1(-\pi,\pi)$.

Q3. Let X be the closed subspace of $C[-\pi,\pi]$ consisting of all continuous (on $[-\pi,\pi]$) functions f such that $f(-\pi) = f(\pi)$. For $n \in \mathbb{Z}$, define $e_n \in X$ by $e_n(t) = \frac{1}{\sqrt{2\pi}} e^{int}$ and let

$$\widehat{f}(n) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(t) e^{-int} dt$$

for $f \in X$. Let $\{\alpha_n\}_{n \in \mathbb{Z}}$ be a sequence in \mathbb{C} , and assume that for each $f \in X$ there exists a unique element $g \in X$ such that $\widehat{g}(n) = \alpha_n \widehat{f}(n)$ for all $n \in \mathbb{Z}$. Let Tf = g.

- (a) Show that T is linear and has closed graph. Deduce that $T \in \mathscr{B}(X)$.
- (b) Show that $Te_n = \alpha_n e_n$ for all $n \in \mathbb{Z}$ and that the sequence $\{\alpha_n\}_{n \in \mathbb{Z}}$ is bounded.
- (c) Show that there exists a bounded linear functional φ on X such that $\varphi(e_n) = \alpha_n$ for all $n \in \mathbb{Z}$.
- **Q**4. Consider the right shift operator on sequences $R(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Show that as an operator on ℓ^2 , R satisfies $\sigma_p(R) = \emptyset$, $\sigma_r(R) = \{\lambda : |\lambda| < 1\}$ and $\sigma_c(R) = \{\lambda : |\lambda| = 1\}$.

[To put thing in perspective, compare Question 7 of Sheet 4 of B4.1 from MT: If we consider T as an operator on ℓ^{∞} , then $\sigma_p(R) = \emptyset$, $\sigma_r(R) = \{\lambda : |\lambda| \le 1\}$ and $\sigma_c(R) = \emptyset$.]

- **Q**5. Let X be a complex Hilbert space and $A \in \mathscr{B}(X)$ be normal (i.e. $A^*A = AA^*$).
 - (a) Show that

$$\operatorname{rad}(\sigma(A)) = \|A\|.$$

Deduce that if P is a polynomial, then

$$||P(A)|| = \sup_{\lambda \in \sigma(A)} |P(\lambda)|.$$

(b) Let P be a Laurent polynomial, i.e. $P(z) = \sum_k a_k z^k$ where the summation range is finite but may contains positive as well as negative powers. Show that if A is unitary, then

$$||P(A)|| = \sup_{\lambda \in \sigma(A)} |P(\lambda)|.$$

- **Q**6. Let X be a complex Hilbert space and S and T be two self-adjoint bounded linear operators on X.
 - (a) Let $\lambda \notin \sigma(T)$. Use the fact that $\sigma((T \lambda I)^{-1}) = (\sigma(T) \lambda)^{-1}$ (a form of spectral mapping theorem) and Gelfand's formula to show that

$$\|(T - \lambda I)^{-1}\| = \frac{1}{\operatorname{dist}(\lambda, \sigma(T))}.$$

Deduce that $I + (T - \lambda I)^{-1}(S - T)$ is invertible if

$$||S - T|| < \operatorname{dist}(\lambda, \sigma(T)).$$

Hence, show under this latter assumption that $\lambda \notin \sigma(S)$.

(b) Use (a) to show that

$$||S - T|| \ge \operatorname{dist}_H(\sigma(S), \sigma(T))$$

where the Hausdorff distance $\operatorname{dist}_{H}(A, B)$ between two closed subsets A and B of \mathbb{C} is defined by

$$\operatorname{dist}_{H}(A,B) = \max(\sup_{a \in A} \min_{b \in B} |a - b|, \sup_{b \in B} \min_{a \in A} |a - b|).$$