Algebraic Number Theory: Problem Sheet 3. 2020/21.

Topics covered: factorisation of ideals.

- 1. Prove that the equivalence relation defined in the lectures on the set of non-zero ideals is indeed an equivalence relation.
- 2. Let P be a prime ideal of \mathcal{O}_K , the ring of integers of a number field K. Show that if $\alpha \in P$, $\alpha \neq 0$, is chosen so that $|\operatorname{Norm}_{K/\mathbb{Q}}(\alpha)|$ is minimal, then α is an irreducible element. Deduce that if \mathcal{O}_K is a UFD then every prime ideal is principal, and so \mathcal{O}_K is a PID.
- 3. The rings $\mathbb{Z}[\sqrt{6}]$ and $\mathbb{Z}[\sqrt{7}]$ are PIDs. Exhibit generators for their ideals $(3,\sqrt{6}), (5,4+\sqrt{6}), (2,1+\sqrt{7}).$ [Hint: Compute the norm of each of the given ideals of the form (p,α) and find an element $\beta \in \mathcal{O}_K$ of suitable norm.]
- 4. Find the prime factorisations of the ideals (3), (5) and (7) in $\mathbb{Z}[\sqrt{-5}]$. Show that the prime ideal factors of (7) are not principal.
- 5. Let $K \subseteq L$ be fields and let I be an ideal of \mathcal{O}_K . Define $I \cdot \mathcal{O}_L$ to be the ideal of \mathcal{O}_L generated by the products $i\ell$, such that $i \in I, \ell \in \mathcal{O}_L$. Show that, for any ideals I, J of \mathcal{O}_K , any $n \in \mathbb{N}$ and any principal ideal $(a) = a\mathcal{O}_K$ of \mathcal{O}_K , $(IJ) \cdot \mathcal{O}_L = (I \cdot \mathcal{O}_L)(J \cdot \mathcal{O}_L)$, $I^n \cdot \mathcal{O}_L = (I \cdot \mathcal{O}_L)^n$ and $(a) \cdot \mathcal{O}_L = a\mathcal{O}_L$ (the principal ideal of \mathcal{O}_L generated by the same element). Let $K = \mathbb{Q}(\sqrt{-13})$ and let $I = (2, \sqrt{-13} + 1)$. Show that $I^2 = (2)$ and that I is not principal. Let $L = \mathbb{Q}(\sqrt{-13}, \sqrt{2})$. Show that $I \cdot \mathcal{O}_L$ is the principal ideal of \mathcal{O}_L generated by $\sqrt{2}$ (we say that I has been $made\ principal\ in$ the extension).
- 6. Let P, Q be distinct nonzero prime ideals in \mathcal{O}_K . Show that $P+Q = \mathcal{O}_K$ and $P \cap Q = PQ$.
- 7. Let $d \not\equiv 1 \mod 4$ be a square-free integer and define $K := \mathbb{Q}(\sqrt{d})$; so $\mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$. Let p be a rational prime. Suppose that $d \equiv a^2 \mod p$. Define $P := (p, a + \sqrt{d}), P' := (p, a \sqrt{d}) \subseteq \mathcal{O}_K$. Show that P and P' are both prime ideals with N(P) = N(P') = p, and that (p) = PP'. Show that P = P' if and only if p|2d.
- 8. Let $d \equiv 1 \mod 4$ be a square-free integer, with $d \neq 1$. Show that the ring $\mathbb{Z}[\sqrt{d}]$ is never a UFD. [Hint: Consider factoring d-1.]

Further Practice: Exercises in Chapter 5 of Stewart and Tall.