Sheet 1. Prerequisites: sections 1-5. Week 3.

Q1. Let R be a ring. Show that the Jacobson radical of R coincides with the set $\{x \in R \mid 1 - xy \text{ is a unit for all } y \in R\}$.

Solution. Suppose x lies in the Jacobson radical of R. Suppose for contradiction that 1-xy is not a unit for some $y \in R$. Let \mathfrak{m} be a maximal ideal containing 1-xy. We know that $xy \in \mathfrak{m}$ since $x \in \mathfrak{m}$ and thus we conclude that $1 \in \mathfrak{m}$, a contradiction.

Suppose now that $x \in R$ and that 1 - xy is a unit for all $y \in R$. Suppose for contradiction that there is a maximal ideal \mathfrak{m} such that $x \notin \mathfrak{m}$. Then $x \pmod{\mathfrak{m}}$ is a unit in R/\mathfrak{m} and hence there is a $y \in R$ such that $xy \pmod{\mathfrak{m}} = 1 \pmod{\mathfrak{m}}$. In other words, $1 - xy \in \mathfrak{m}$ and so 1 - xy is not a unit.

$\mathbf{Q2}$. Let R be a ring.

- (i) Show that if $P(x) = a_0 + a_1 x + \cdots + a_k x^k \in R[x]$ is a unit of R[x] then a_0 is a unit of R and a_i is nilpotent for all i > 1.
- (ii) Show that the Jacobson radical and the nilradical of R[x] coincide.

Solution.

- (i) Let $Q(x) = b_0 + \cdots + b_t x^t \in R[x]$ be an inverse of P(x). Then $P(0)Q(0) = a_0b_0 = 1$ so that a_0 and b_0 are units. Now suppose for contradiction that a_i is not nilpotent for some i > 0. Then a_i is not in the nilradical of R, so there is a prime ideal \mathfrak{p} in R, such that $a_i \notin \mathfrak{p}$. Let $j \geq i$ be the largest integer so that $a_j \pmod{\mathfrak{p}} \neq 0$ and let $l \geq 1$ be the largest integer so that $b_l \pmod{\mathfrak{p}} \neq 0$ (we have $l \geq 1$ because $b_0 \pmod{\mathfrak{p}}$ is a unit). Since P(x)Q(x) = 1, we have $a_ib_l = 0 \pmod{\mathfrak{p}}$. This is a contradiction, since R/\mathfrak{p} is a domain.
- (ii): We only have to show that any element of the Jacobson radical if R[x] is nilpotent. So let $P(x) \in R[x]$ be an element of the Jacobson radical. By Q1, we know that for any $T(x) \in R[x]$, the element 1 P(x)T(x) is a unit. In particular, 1 P(x) is a unit. Writing $P(x) = a_0 + P_1(x)$, where $P_1(0) = 0$, we deduce from (i) that all the coefficients of $P_1(x)$ are nilpotent. In particular, $P_1(x)$ is nilpotent and so lies in nilradical of R[x], and so in particular in the Jacobson radical of R[x]. Hence a_0 lies in the Jacobson radical of R[x]. Hence $1 a_0Q(x)$ is a unit for all polynomials $Q(x) \in R[x]$. Setting Q(x) = x, we see that $1 a_0x$ is a unit and we deduce from (i) that a_0 is nilpotent. Hence all the coefficients of P(x) are nilpotent, so that P(x) is nilpotent.
- **Q3.** Let R be a ring and let $N \subseteq R$ be its nilradical. Show that the following are equivalent:
- (i) R has exactly one prime ideal.
- (ii) Every element of R is either a unit or is nilpotent.
- (iii) R/N is a field.
- **Solution.** (i) \Rightarrow (ii): Let \mathfrak{p} be the unique prime ideal. Suppose that $r \in R$ is not a unit. Then r is a contained in a maximal ideal, which must coincide with \mathfrak{p} . Since \mathfrak{p} is the only prime ideal, the ideal \mathfrak{p} is the nilradical N of R and hence r is nilpotent.
- (ii) \Rightarrow (iii): Suppose that R/N is not a field. Then either R/N is the zero ring or there is an element $x \in (R/N)^*$, which is not a unit. If R/N is the zero ring, then every element of R is nilpotent (and in fact R is the zero ring). If there is an element $x \in (R/N)^*$, let $x_1 \in R$ be a preimage of x. Then x_1 is not a unit and is not nilpotent. So we have proven the contraposition of (ii) \Rightarrow (iii).

(iii) \Rightarrow (i): We prove the contraposition. If R has more than one prime ideal then R/N has a non zero prime ideal (since any prime ideal contains N). But this contradicts the fact that R/N is a field.

Q4. Let R be a ring and let $I \subseteq R$ be an ideal. Let $S := \{1 + r \mid r \in I\}$.

- (i) Show that S is a multiplicative set.
- (ii) Show that the ideal generated by the image of I in R_S is contained in the Jacobson radical of R_S .
- (iii) Prove the following generalisation of Nakayama's lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M. Then there exists $r \in R$, such that $r - 1 \in I$ and such rM = 0.

Solution. (i): This is clear.

- (ii): The ideal I_S generated generated by I in R_S consists of the elements a/b such that $a \in I$ and $b \in S$. By Q1, we thus only have to show that if a/b is such that $a \in I$ and $b \in S$, then 1 (a/b)(c/d) is a unit for all $c \in R$ and $d \in S$. Now 1/b and 1/d are units of R_S , hence we only have to show that bd ac is a unit for a, b, c, d as in the previous sentence. Now $bd = (1 + b_1)(1 + d_1) = 1 + b_1 + d_1 + b_1d_1$ for some $b_1, d_1 \in I$, and thus $bd ac = 1 + b_1 + d_1 + b_1d_1 ac$. Since $b_1 + d_1 + b_1d_1 ac \in I$ we see that $bd ac = 1 + b_1 + d_1 + b_1d_1 ac \in S$ and hence is a unit of R_S .
- (iii) If IM = M we clearly have $I_SM_S = M_S$. Hence by (ii) and the form of Nakayama's lemma proven in the course, we have $M_S = 0$. Now m_1, \ldots, m_k be generators of M. Since M is the kernel of the natural map $M \to M_S$ (since $M_S = 0$), there is an element $s_i \in S$ such that $s_i m_i = 0$ for all i (see the beginning of section 5). Let $s = \prod_i s_i$. Then s annihilates all the m_i and hence M. By construction, $s 1 \in I$ so we are done.
- **Q5**. Let R be a ring and let M be a finitely generated R-module. Let $\phi: M \to M$ be a surjective homomorphism of R-modules. Prove that ϕ is injective, and is thus an automorphism. [Hint: use ϕ to construct a structure of R[x]-module on M and use the previous question.]

Solution. View M as an R[x]-module by setting $P(x) \cdot m = P(\phi)(m)$. We have (x)M = M by construction and hence by Q4 (iii), there is a polynomial $Q(x) \in R[x]$ such that $Q(x) - 1 \in (x)$ and Q(x)M = 0. Let $m_0 \in \ker(\phi)$. Then $Q(x)(m_0) = m_0$ and hence $m_0 = 0$. Thus ϕ is injective.

Q6. Let R be a ring. Let S be the subset of the set of ideals of R defined as follows: an ideal I is in S iff all the elements of I are zero-divisors. Show that S has maximal elements (for the relation of inclusion) and that every maximal element is a prime ideal. Show that the set of zero divisors of R is a union of prime ideals.

Solution. If \mathcal{T} is a totally ordered subset of \mathcal{S} , then the union of its elements is an ideal, and it clearly consists of zero divisors. So every totally ordered subset of \mathcal{T} has upper bounds and thus by Zorn's lemma, the ordered set \mathcal{T} has maximal elements. Note that we may refine this reasoning as follows. Let $I \in \mathcal{S}$. Consider the subset \mathcal{S}_I of \mathcal{S} , which consists of ideals containing I. By a completely similar reasoning, the subset \mathcal{S}_I has maximal elements for the relation of inclusion. We contend that if $J \in \mathcal{S}_I$ is a maximal element, then it is also maximal in \mathcal{S} . Indeed, suppose that $J' \supseteq J$ for some ideal $J' \in \mathcal{S}$. Then $J' \in \mathcal{S}_I$ and hence J' = J. Now note that

$$\{\text{zero-divisors of } R\} = \bigcup_{r \in R, r \text{ a zero-div.}} (r) \subseteq \bigcup_{r \in R, r \text{ a zero-div.}} J(r)$$

where J(r) a maximal element of S containing the ideal (r). Since J(r) also consists of zero-divisors, we conclude that

$$\{\text{zero-divisors of } R\} = \bigcup_{r \in R, r \text{ a zero-div.}} J(r)$$

Hence we only have to prove that the maximal elements of S are prime ideals.

Let I be a maximal element of S. Let $x, y \in R \setminus I$ and suppose for contradiction that $xy \in I$. Then we have

$$((x) + I)((y) + I) \subseteq I$$

By maximality of I, there are elements $a \in (x) + I$ and $b \in (y) + I$, which are not zero divisors. Hence $ab \in I$ so that ab is a zero divisor, which is contradiction (note that the set of non zero divisors is a multiplicative set). So we must have $x \in I$ or $y \in I$, so I is prime.

Q7. Let R be a ring. Consider the inclusion relation on the set $\operatorname{Spec}(R)$. Show that there are minimal elements in $\operatorname{Spec}(R)$.

Solution. Let \mathcal{T} be a totally ordered subset of $\operatorname{Spec}(R)$ for the relation \supseteq . Note that the maximal elements for the relation \supseteq are the minimal elements for the inclusion relation (which is \subseteq). Let $I := \cap_{\mathfrak{p} \in \mathcal{T}}$. Then I is an ideal. We claim that I is prime.

To see this, let $x, y \in R$ and suppose for contradiction that $x, y \in R \setminus I$ and that $xy \in I$. By assumption there are prime ideals $\mathfrak{p}_x, \mathfrak{p}_y \in \mathcal{T}$ such that $x \notin \mathfrak{p}_x$ and $y \notin \mathfrak{p}_y$. Suppose without restriction of generality that $\mathfrak{p}_x \supseteq \mathfrak{p}_y$ (recall that \mathcal{T} is totally ordered). We have $xy \in \mathfrak{p}_y$ and thus either x or y lies in \mathfrak{p}_y . This contradicts the fact that $x, y \notin \mathfrak{p}_y$ and so we conclude that either x or y lies in I. The ideal I thus lies in Spec(R) and it is a lower bound for \mathcal{T} . We may thus apply Zorn's lemma to conclude that there are minimal elements in Spec(R).