Sheet 2. Prerequisites: sections 1-8. Week 5

Q1. Consider the ideals $\mathfrak{p}_1 := (x, y)$, $\mathfrak{p}_2 := (x, z)$ and $\mathfrak{m} := (x, y, z)$ of K[x, y, z], where K is a field. Show that $\mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition of $\mathfrak{p}_1 \cdot \mathfrak{p}_2$. Determine the isolated and the embedded prime ideals of $\mathfrak{p}_1 \cdot \mathfrak{p}_2$.

Solution. For future reference, note that we have

$$\mathfrak{m}^2 = ((x) + (y) + (z))^2 = (x^2, y^2, z^2, xy, xz, yz)$$

and

$$\mathfrak{p}_1 \cdot \mathfrak{p}_2 = ((x) + (y))((x) + (z)) = (x^2, xz, yx, yz).$$

We have $\mathfrak{p}_1 \cdot \mathfrak{p}_2 \subseteq \mathfrak{p}_1 \cap \mathfrak{p}_2$ and that we also clearly have $\mathfrak{p}_1 \cdot \mathfrak{p}_2 \subseteq \mathfrak{m}^2$ since $\mathfrak{p}_1, \mathfrak{p}_2 \subseteq \mathfrak{m}$. Thus we have $\mathfrak{p}_1 \cdot \mathfrak{p}_2 \subseteq \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. Note that \mathfrak{p}_1 and \mathfrak{p}_2 are prime since the rings $K[x, y, z]/\mathfrak{p}_1 \simeq K[z]$ and $K[x, y, z]/\mathfrak{p}_2 \simeq K[y]$ are domains. Note also that \mathfrak{m} is a maximal ideal, since $K[x, y, z]/\mathfrak{m} \simeq K$ is a field. Thus $\mathfrak{p}_1, \mathfrak{p}_2$ and \mathfrak{m}^2 is primary (see after Lemma 6.4 for the latter). The radicals of the ideals $\mathfrak{p}_1, \mathfrak{p}_2$ and \mathfrak{m}^2 are $\mathfrak{p}_1, \mathfrak{p}_2$ and \mathfrak{m} (see again Lemma 6.4 for the latter). These three ideals are distinct. Finally, we have $\mathfrak{p}_1 \not\supseteq \mathfrak{p}_2 \cap \mathfrak{m}^2$ (because $z^2 \notin \mathfrak{p}_1$ but $z^2 \in \mathfrak{p}_2 \cap \mathfrak{m}^2$), $\mathfrak{p}_2 \not\supseteq \mathfrak{p}_1 \cap \mathfrak{m}^2$ (because $y^2 \notin \mathfrak{p}_2$ but $y^2 \in \mathfrak{p}_1 \cap \mathfrak{m}^2$) and $\mathfrak{m}^2 \not\supseteq \mathfrak{p}_1 \cap \mathfrak{p}_2$ (because $x \notin \mathfrak{m}^2$ but $x \in \mathfrak{p}_2 \cap \mathfrak{p}_2$). Hence if $\mathfrak{p}_1 \cdot \mathfrak{p}_2 = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ then this decomposition is indeed primary and minimal. Thus we only have to show that $\mathfrak{p}_1 \cdot \mathfrak{p}_2 \subseteq \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. From the above, we have to show that

$$(x,y) \cap (x,z) \cap (x^2, y^2, z^2, xy, xz, yz) \subseteq (x^2, xz, yx, yz)$$

Now note that we have $P(x, y, z) \in (x, y)$ iff P(0, 0, z) = 0 (because a polynomial lies in (x, y) iff it has no monomial containing only the variable z). Similarly, we have $P(x, y, z) \in (x, z)$ iff P(0, y, 0) = 0. Thus we have $P(x, y, z) \in (x, y) \cap (x, z)$ iff P(0, y, 0) = P(0, 0, z) = 0.

Now an element Q(x, y, z) of $(x^2, y^2, z^2, xy, xz, yz)$ has the form

$$Q(x, y, z) = P_1(x, y, z)x^2 + P_2(x, y, z)y^2 + P_3(x, y, z)z^2 + P_4(x, y, z)xy + P_5(x, y, z)xz + P_6(x, y, z)yz$$

and Q(x, y, z) will thus lie in $(x, y) \cap (x, z)$ iff

$$Q(0, y, 0) = Q(0, 0, z) = P_2(0, y, 0) = P_3(0, 0, z) = 0.$$

In other words, the element $Q(x, y, z) \in (x^2, y^2, z^2, xy, xz, yz) = \mathfrak{m}^2$ will lie in $(x, y) \cap (x, z)$ iff $P_2(x, y, z) \in (x, z)$ and $P_3(x, y, z) \in (x, y)$. Consequently, if $Q(x, y, z) \in \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ then

$$Q(x,y,z) \in (x^2) + (x,z)(y^2) + (x,y)(z^2) + (xy) + (xz) + (yz) = (x^2, xy^2, zy^2, xz^2, yz^2, xy, xz, yz) = (x^2, xy, xz, yz) = \mathfrak{p}_1 \cdot \mathfrak{p}_2 + (xy^2, zy^2, zy^2,$$

as required.

The prime ideals associated with the decomposition are $\mathfrak{p}_1 = \mathfrak{r}(\mathfrak{p}_1)$, $\mathfrak{p}_2 = \mathfrak{r}(\mathfrak{p}_2)$ and $\mathfrak{m} = \mathfrak{r}(\mathfrak{m}^2)$. The ideal \mathfrak{m} contains \mathfrak{p}_1 and \mathfrak{p}_2 and there are no other inclusions between the prime ideals. So \mathfrak{m} is an embedded ideal and \mathfrak{p}_1 and \mathfrak{p}_2 are isolated ideals.

Q2. Let K be a field. Show that the ideal $(x^2, xy, y^2) \subseteq K[x, y]$ is a primary ideal, which is not irreducible.

Solution. We first show that (x^2, xy, y^2) is primary. This simply follows from the fact that (x, y) is maximal ideal and from the fact that $(x^2, xy, y^2) = (x, y)^2$ (see after Lemma 6.4).

Now note that $(x^2, xy, y^2) = (x^2, y) \cap (x, y^2)$. Indeed, we clearly have $(x^2, xy, y^2) \subseteq (x^2, y) \cap (x, y^2)$. On the other hand, if $P(x, y) \in (x^2, y)$ then P(x, y) has the form $P_1(x, y)x^2 + P_2(x, y)y$. Since $P_1(x, y)x^2$ is

already in (x^2, xy, y^2) , we thus only have to show that a polynomial of the form $P_2(x, y)y$, which lies in (x, y^2) , necessarily lies in (x^2, xy, y^2) . A polynomial in (x, y^2) is of the form $Q_1(x, y)y^2 + Q_2(x, y)x$. Now if we have $P_2(x, y)y = Q_1(x, y)y^2 + Q_2(x, y)x$ then $Q_2(x, y)$ is divisible by y and hence $Q_2(x, y)x = Q'_2(x, y)xy$ for some polynomial $Q'_2(x, y)$ so that $P_2(x, y)y \in (y^2, xy) \subseteq (x^2, xy, y^2)$, as required.

Q3. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a finite subgroup of the group of automorphisms of T as a R-algebra. Let T^G be the fixed point set of G (ie the subset of T, which is fixed by all the elements of G).

- Show that T is integral over T^G .

- Show that T^G is a subring of T, which contains R and that T^G is finitely generated over R.

Solution. It is clear from the definitions that T^G is a subring which contains R. Let $t \in T$. Then t satisfies the polynomial equation

$$\prod_{g \in G} (t - g(t)) = 0$$

The polynomial $M_t(x) := \prod_{g \in G} (x - g(t))$ has coefficients in T^G , because the coefficients are symmetric functions in the g(t), which are invariant under G. Hence t is integral over T^G . Since t was arbitrary, Tis integral over T^G . Since T is also finitely generated as a T^G -algebra (because it is finitely generated as a R-algebra, and $R \subseteq T$), we thus see that T is finite over T^G (see after Lemma 6.6). Hence T^G is finitely generated over R by the Theorem of Artin-Tate.

Q4. Show that \mathbb{Z} is integrally closed and that the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$.

Solution. We first prove that \mathbb{Z} is integrally closed. Let $p/q \in \mathbb{Q}$, where p and q are coprime integers, and let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$ be a monic polynomial. Suppose that P(p/q) = 0. Then we have

$$q^{n}P(p/q) = p^{n} + a_{n-1}p^{n-1}q + a_{n-2}p^{n-2}q^{2} + \dots + a_{0}q^{n} = 0.$$

Since $a_{n-1}p^{n-1}q + a_{n-2}p^{n-2}q^2 + \cdots + a_0q^n$ is divisible by q and p^n is coprime to q, this implies that $q = \pm 1$, so $p/q \in \mathbb{Z}$.

To prove that the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$, note first that $\mathbb{Z}[i]$ is part of the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$. Indeed we have $(a + ib)^2 - 2a(a + ib) + a^2 + b^2 = 0$ for any $a, b \in \mathbb{Z}$. So we only have to prove that $\mathbb{Z}[i]$ is integrally closed in $\mathbb{Q}(i)$ (see Lemma 8.6). Note furthermore that $\mathbb{Q}(i)$ is the fraction field of $\mathbb{Z}[i]$. To see this, write let $r + it \in \mathbb{Q}(i)$, where $r, t \in \mathbb{Q}$ (any element of $\mathbb{Q}(i)$ can be written in this form because $\mathbb{Q}(i) \simeq \mathbb{Q}[x]/(x^2+1)$). Let r = p/q and t = u/v. We then have r + it = (vp + uqi)/(vq), which is a fraction of elements of $\mathbb{Z}[i]$, proving our claim. Finally, recall that we know from Rings and Modules that $\mathbb{Z}[i]$ is a Euclidean domain, where the Euclidean function is given by the norm (the norm of c + id is $c^2 + d^2$ if $c + id \in \mathbb{Z}[i]$). In particular, $\mathbb{Z}[i]$ is a PID and every ideal in $\mathbb{Z}[i]$ is generated by an element of smallest norm.

To prove that $\mathbb{Z}[i]$ is integrally closed in $\mathbb{Q}(i)$, we may now proceed as for \mathbb{Z} . Let

$$P(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{0} \in \mathbb{Z}[i](x)$$

and let r + it = B/A, where $A, B \in \mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is a PID, it is factorial and we may thus assume that $(A, B) = \mathbb{Z}[i]$. We can now write as before

$$A^{n}P(B/A) = B^{n} + a_{n-1}B^{n-1}A + a_{n-2}B^{n-2}A^{2} + \dots + a_{0}A^{n} = 0.$$

Since $a_{n-1}B^{n-1}A + a_{n-2}B^{n-2}A^2 + \cdots + a_0A^n$ is divisible by A and B^n is coprime to A, this implies that A is a unit, so $B/A \in \mathbb{Z}[i]$.

Note that the proof above actually shows that any UFD (Unique Factorisation Domain) is integrally closed.

Q5. Let S be a ring and let $R \subseteq S$ be a subring of S. Suppose that R is integrally closed in S. Let $P(x) \in R[x]$ and suppose that P(x) = Q(x)J(x), where $Q(x), J(x) \in S[x]$ and Q(x) and J(x) are monic. Show that $Q(x), J(x) \in R[x]$. Use this to give a new proof of the fact that if $T(x) \in \mathbb{Z}[x]$ and $T(x) = T_1(x)T_2(x)$, where $T_1(x), T_2(x) \in \mathbb{Q}[x]$ are monic polynomials, then $T_1(x), T_2(x) \in \mathbb{Z}[x]$.

Solution. We first prove the

Lemma. Let A be a ring and let $U(x) \in A[x]$ be a non zero monic polynomial. Then there exists a ring B containing A, which is integral over A and such that

$$U(x) = \prod_{i=1}^{\deg(U)} (x - b_i)$$

for some $b_i \in B$, where we set $\prod_{i=1}^{\deg(U)} (x - b_i) = 1$ if $\deg(U) = 0$.

Proof of the lemma. By induction on the degree $d = \deg(U)$ of U(x). If d = 0, 1, there is nothing to prove. So suppose that d > 1 and that the result holds for any smaller value of d. The ring C := A[y]/(P(y)) is integral over A by Proposition 8.2. The element y of C satisfies the equation P(y) = 0 by construction. By Euclidean division (see Preamble), we thus have P(x) = (x - y)Z(x) for some $Z(x) \in C[x]$. Since Z(x) has degree < d, we may apply the inductive hypothesis and we obtain a ring B, which contains C and where Z(x) splits. The polynomial P(x) also splits in B, so we are done. \Box

We now apply the lemma to Q(x) and J(x) successively and we obtain a ring B, which contains S, such that B is integral over S and such that

$$Q(x) = \prod_{i=1}^{\deg(Q)} (x - b_i)$$

and

$$J(x) = \prod_{i=1}^{\deg(J)} (x - c_i)$$

where $b_i, c_i \in B$. Now we have $P(b_i) = P(c_i) = 0$ by construction, so the b_i and c_i are actually integral over R. Since the integral closure of R in B is a subring, we conclude that the coefficients of Q(x) and J(x)are integral over R (and in S, by assumption). But since R is integrally closed in S, this means that these coefficients lie in R.

Note that we did not actually use the fact that B was integral over S in the proof.

Q6. Let *R* be a subring of a ring *T* and suppose that *T* is integral over *R*. Let \mathfrak{p} be prime ideal of *R* and let \mathfrak{q} be a prime ideal of *T*. Suppose that $\mathfrak{q} \cap R = \mathfrak{p}$. Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \cdots \subseteq \mathfrak{p}_k$ be primes ideal of *R* and suppose that $\mathfrak{p}_1 = \mathfrak{p}$. Show that there are prime ideals $\mathfrak{q}_1 \subseteq \mathfrak{q}_2 \subseteq \cdots \subseteq \mathfrak{q}_k$ of *T* such that $\mathfrak{q}_i \cap R = \mathfrak{p}_i$ for all $i \in \{1, \ldots, k\}$.

Solution. By induction on k, we only need to treat the case k = 2. Consider the extension of rings $R/\mathfrak{p} \subseteq T/\mathfrak{q}$. This is also an integral extension. Furthermore, there is a unique prime ideal \mathfrak{p}'_2 in R/\mathfrak{p} , which corresponds to \mathfrak{p}_2 via the quotient map. By Theorem 8.8, there is a prime ideal \mathfrak{q}'_2 in T/\mathfrak{q} , which is such that $\mathfrak{q}'_2 \cap R/\mathfrak{p} = \mathfrak{p}'_2$. The prime ideal \mathfrak{q}_2 corresponding to \mathfrak{q}'_2 via the quotient map has the required properties.

Q7. Let R be a ring. Let S be the set of ideals in R, which are not finitely generated.

(i) Let I be maximal element of \mathcal{S} (with respect to the relation of inclusion). Show that I is prime.

(ii) Suppose that all the prime ideals of R are finitely generated. Prove that R is noetherian.

[Hint: exploit the fact that R/I is noetherian.]

Solution.

(i): Let $x, y \notin I$ and suppose for contradiction that $x, y \in I$. Let $I_x := (x) + I$ and $I_y = (y) + I$. Write $J := I_x \cdot I_y$. By assumption I_x, I_y and hence J are finitely generated, and we have $J \subseteq I$. Consider the image $I \pmod{J}$ of I in the R/I_y -module I_x/J . Note that I_x/J is finitely generated as a R/I_y -module since I_x is finitely generated as a R-module. Note also that the ring R/I_y is noetherian, since every ideal of R/I_y is the image of either the zero ideal or of an ideal of R strictly containing I. Hence $I \pmod{J}$ is also finitely generated as a R/I_y -module by Lemma 7.4. Let m_1, \ldots, m_k be preimages in I of a finite set of generators of $I \pmod{J}$ as a R/I_y -module and let y_1, \ldots, y_l be generators of J. Then $m_1, \ldots, m_k, y_1, \ldots, y_l$ is a finite set of generators of I, which is a contradiction.

(ii): If \mathcal{T} is a totally ordered subset of \mathcal{S} then the ideal $J := \bigcup_{H \in \mathcal{S}} H$ also lies in \mathcal{S} (because if J were finitely generated then a finite set of generators of J would lie in one of the ideals in \mathcal{T} , and thus generate it, which is a contradiction). The ideal J is an upper bound for \mathcal{T} and thus we may apply Zorn's lemma to conclude that there are maximal elements in \mathcal{S} , if \mathcal{S} is not empty. By definition, \mathcal{S} is empty iff R is noetherian. Hence, by (i), if R is not noetherian, there is a prime ideal, which is not finitely generated. The contraposition of this implication gives (i).

Q8. (optional). Let R be a ring. Let S be the set of non-principal ideals in R. Let I be a maximal element of S. Prove that I is a prime ideal.

Solution.

Let $x, y \notin I$ and suppose for contradiction that $xy \in I$. Let $I_x := (x) + I$. By assumption, we have $I_x = (g_x)$ for some $g_x \in R$. Let $\phi : R \to I_x$ be the surjection of *R*-modules given by the formula $\phi(r) = rg_x$. We then have $I \subseteq \phi^{-1}(I)$.

Suppose first that $I = \phi^{-1}(I)$. In other words, for all $r \in R$, we have $rg_x \in I$ iff $r \in I$. This contradicts the fact that $yg_x \in I$. So we conclude that $I \subsetneq \phi^{-1}(I)$. From the definition of I, we then see that $\phi^{-1}(I)$ is a principal ideal of R, and hence so is $I = \phi(\phi^{-1}(I))$. This is a contradiction, so we cannot have $xy \in I$ if $x, y \notin I$. In other words, I is prime.