Exercise sheet 3. Prerequisites: sections 1-10. Week 7

Q1. Let R be a subring of a ring 7. Suppose that T is integral over R. Let p be a prime ideal of R and
let q1, 92 be prime ideals of T such that g1 " R = g2 N R = p and q; # q2. Show that we have q; € g2 and

g2 Z q1-

Solution. By symmetry, we only have to show that q; Z gq2. Suppose for contradiction that q; C gq2. The
ring R/p is can be viewed as a subring of T'/q; and by assumption we have g2 (mod q1) N R/p = (0). We may
thus assume wrog that R and T to be domains and that gq; and p are zero ideals. Now let e € g2\{0} and
let P(z) € R[z] be a non zero monic polynomial such that P(e) = 0. Since T is a domain, we may assume
that the constant coefficient of P(x) is non zero (otherwise replace P(z) by P(x)/z* for a suitable k > 1).
But then P(0) is a linear combination of positive powers of e (since P(e) = 0), so P(0) € RNqz = (0). This

is a contradiction, since P(0) # 0.

Q2. Let R be a ring. Show that the two following conditions are equivalent:

(i) R is a Jacobson ring.

(i) If p € Spec(R) and R/p contains an element b such that (R/p)[b~!] is a field, then R/p is a field.
Here we write (R/p)[b~!] for the localisation of R/p at the multiplicative subset 1,b,b%,. ...

Solution.

(i) = (ii) : If R is a Jacobson, then so is R/p for any p € Spec(R). Hence (ii) follows from Lemma 10.2.

(ii) = (i) : Note first that R is a Jacobson ring iff any prime ideal of R is the intersection of the maximal
ideals containing it (this is straightforward). Now suppose that R is not Jacobson. Then there is a prime
ideal p of R and an element e ¢ p such that e is in the Jacobson radical of p. In other words, e (mod p) # 0
and e (modp) lies in the Jacobson radical of R/p. Now let q be a maximal ideal among the prime ideals
of R/p, which do not contain e (modp). The ideal q is prime, because it corresponds to a maximal ideal
of (R/p)[(e (modp))~!] by Lemma 5.6, and it is not maximal, since e (mod p) lies in the intersection of all
the maximal ideals of R/p. The ring (R/p)/q has by construction the property that any of its non zero
prime ideals contains (e (modp)) (modq). In particular, the ring ((R/p)/q)[((e (modp)) (modq))~!] is a
field, because it is a domain and its only prime ideal is the zero ideal. On other hand, ((R/p)/q) is a not
field, since q is not maximal. Now if we let ¢ : R — R/p be the quotient map, we have ((R/p)/q) ~ R/q~*(q)

and thus this contradicts (ii). We have thus proven the contraposition of the implication (ii) = (i).

Q3. Let k be field and let R be a finitely generated algebra over k. Show that the two following conditions

are equivalent:
(i) Spec(R) is finite.
(ii) R is finite over k.

Solution. (i) = (ii) : Suppose that Spec(R) is finite. By Noether’s normalisation lemma, there is an
injection k[z1,...,x4] — R, which makes R into a finite k[z1,...,z4]-algebra. Since the corresponding map
of spectra Spec(R) — Spec(k[z1, ..., 24]) is surjective by Theorem 8.8, this implies that Spec(k[z1,. .., zq4]) is
finite. In particular, k[x1, ..., 24] has only finitely many maximal ideals, say my, ..., m;. Since k[z1,...,z4)
is a Jacobson ring by Theorem 10.5, we have N;m; = t((0)) = 0 and so we may deduce from the Chinese
remainder theorem that k[x1,...,z4] ~ ®;R/m;. Since k[z1,...,zq4] is a domain, this implies that ¢ = 1.

In particular, k[z1,...,z4] is field, which is only possible if d = 0 (otherwise, 1 is a non unit). Hence R is



finite over k.
(ii) = (i) : This follows from Proposition 8.12.
Q4. Let k be an algebraically closed field. Let Py,..., P; € k[x1,...,24]. Suppose that the set

{(y1,---,Ya) Ekd|Pi(y17...,yd):OVi€{1,...,d}}

is finite. Show that
Spec(k[z1,...,zq]/(P1,..., P1))
is finite.

Solution. From Corollary 9.5 and Corollary 9.3, we deduce that v(((Py,...,P;)) is the intersection of
finitely many maximal ideals of k[z1,...,xq4], say my,...m;. From the Chinese remainder theorem, we
deduce that

kw1, ., zal /e((Py, ... Pa)) = [ [ kla, .. zal/mi = [ ] %,
In particular, Spec(k[z1,...,zq]/t((P1,...,Py))) is finite. Now we have
Spec(klz1, ..., zq)/t((Py,..., Pa))) ~ Spec(k[z1,...,zq]/(P1,-.., Pi))
(see the remark after Lemma 4.4) so the conclusion follows.

Q5. Let R be a ring and let Ry be the prime ring of R (see the preamble of the notes for the definition).
Suppose that R is a finitely generated Rp-algebra. Suppose also that R is a field. Prove that R is a finite
field.

Solution. Since Ry is contained in a field, it is a domain and so Ry is either a finite field or it is isomorphic
to Z. Suppose first that Ry is a finite field. Then R is a finite field extension of a finite field by the weak
Nullstellensatz and hence R is a finite field. Now suppose that R ~ Z. Then R contains the fraction field
Q of Z and R is a finitely generated (Q-algebra, which is a field. By the weak Nullstellensatz again, we
conclude that R is a finite field extension of Q. From Corollary 10.3, we deduce that Z ~ Q (note that Z is

a Jacobson ring), which is a contradiction. So Ry must be finite field and so R is a finite field.

Q6. Let k be a field and let m be a maximal ideal of k[z1,...,24). Show that there are polynomials
Pl(l’l),PQ($1,1’2),P3($1,1’2,$3), e ,Pd(:cl, N 71‘,1) such that m = (Pl, e 7Pd).

Solution. By induction on d > 1. If d = 1 then this follows from the fact that k[z1] is a PID. We suppose
that the statement holds for d — 1. Let K = k[z1,...,z4]/m. By the weak Nullstellensatz, this is a finite
field extension of k. Let ¢ : k[z1,...,24] — K be the natural surjective homomorphism of k-algebras. Let
L = ¢(k[x1,...,24-1]). This is a domain and by Lemma 8.9, L is a field, since it contains k and is contained
inside an integral extension of k. Let ¢ : k[x1,...,24-1] — L be the surjective homomorphism of k-algebras

arising by restricting ¢. The map 1 induces a surjective homomorphism of k-algebras
U klx, ..., 2] = (K[z1, ..., xa-1])[za] = L]xd]
and there is a surjective homomorphism of L-algebras
A L[zg) — K,

which sends z4 to ¢(x4). By construction, we have ¢ = A o U. In particular, we have m := W~1(A~1(0)).
Since L[x4] is a PID and ¢(z4) is algebraic over k, we have A=1(0) = (P(z4)) for some non zero polynomial
P(zq4) € L[zg4]. Now let Py(z1,...,zq) € (k[z1,...,24-1])[z4] be a preimage by ¥ of P(z4).
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We claim that m = (ker(¥), P;). To see this, note that W¥((ker(V),P;)) = (P(zq4)) and so we have
(ker(¥), Py) € m. On the other hand, if e € m then ¥(e) € (P(zq)) and thus there is an element e’ € (P;)
such that W(e) = ¥(e’) (since U is surjective). In particular, we have e—e’ € ker(¥), so that e € (ker(¥), Py).

Now by the inductive assumption, ker(¥) is generated by polynomials
Pri(z1), Pa(21,22), Ps(21,22,23), ..., Pa—1 (21, ..., Ta—1)

and so m is generated by Py (z1), Pa(z1,22), P3(z1,%2,23), ..., Pi(z1,...,24).
Q7. Let R be a domain. Show R[z] is integrally closed if R is integrally closed.
Here are some hints for this exercise. Let K be the fraction field of R.

(i) Show first that it suffices to show that R[x] is integrally closed in K[z] (ie that the integral closure of
R[z] in K[z] is Rx]).

(i) Consider Q(z) € K|[z] and suppose that Q(z) is integral over R[z]. Show that Q(z) + z! satisfies an
integral equation with coefficients in R[z], whose constant coefficient is a monic polynomial, if ¢ is sufficiently

large.
(iii) Conclude.
Solution.

Suppose that R is integrally closed in its fraction field K. The fraction field of R[z] is K (z) = Frac(K|z]).
Let Q(z) € K(z) and suppose that Q(x) is integral over R[z]. Then Q(z) is in particular integral over K|z]
and we saw that in the solution of Q4 that K|[z] is integrally closed, since it is a PID. So we deduce that
Q(x) € Kla].
Now let

Q"+ PaQ '+ + P =0

be a non trivial integral equation for @ over R[x] (so that P; € R[z] and n > 1). Let ¢ be a natural number,
which is strictly larger than the degrees of all the P; and of Q. Let T = @ — zt. The polynomial T is monic

by construction and we have
(T+ 2"+ P, (T +2)" '+ + P =0
so that T satisfies an integral equation of the type
T+ H, 1 T" '+ -+ Hy=0

where
Hy=F, +£L‘tP1 +x2tP2 + - +.27tn.

Now note that Hy is a monic polynomial, because tn > ti + deg(P;) for all ¢ € {0,...,n — 1}. Finally, note

that in view of the last equation, we have
T(T”_l + anlTn_Z + -+ Hl) =—H,

and by Q5 of sheet 2, we have T € R[xz] (because Hy € R[z] and Hy and T are monic). Since z* € R[z] we
see that we also have @ € R[z], which is what was to be proven.
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