MFoCS questions should be done by MFoCS students, although everyone is encouraged to try them; we may not have time to go through them in classes. Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

- 1. What are the 50th, 51st and 52nd elements of $\mathbb{N}^{(3)}$ in the colex order? What about in lex?
- 2. Let $\mathcal{F} \subset [10]^{(3)}$, and suppose $|\mathcal{F}| = 29$.
 - (a) What is the minimum possible size of $\partial \mathcal{F}$?
 - (b) Find a family that achieves this minimum.
- 3. Suppose that $\mathcal{F} \subset [n]^{(r)}$, and let \mathcal{A} denote the first $|\mathcal{F}|$ elements of $[n]^{(r)}$ in colex order. If $|\partial F| = |\partial A|$ must we have $\mathcal{F} = \mathcal{A}$? [You should give an answer for every $r \geq 2$.]
- 4. The upper shadow $\partial^+(\mathcal{F})$ of a set $\mathcal{F} \subset [n]^{(r)}$ is the set

$$\partial^+(\mathcal{F}) := \{ A \in [n]^{(r+1)} : A \supset B \text{ for some } B \in \mathcal{F} \}.$$

Give a version of the Kruskal-Katona Theorem for the upper shadow.

- 5. Give a proof of Hall's Theorem using Dilworth's Theorem.
- 6. Prove that in any sequence of $n^2 + 1$ real numbers there is an increasing subsequence of length n+1 or a decreasing subsequence of length n+1. [Bonus: try to find more than one proof.]
- 7. We say that $A \subset \mathcal{P}(n)$ is a *downset* if, for every $A \in A$, every subset of A belongs to A. Prove that if A is a downset then the average size of sets in A is at most n/2.
- 8. Prove that every intersecting family $\mathcal{F} \subset \mathcal{P}(n)$ is contained in an intersecting family of size 2^{n-1} .
- 9. Let A_1, \ldots, A_m and B_1, \ldots, B_m be subsets of [n] such that $|A_i \cap B_i|$ is odd for all i and $|A_i \cap B_j|$ is even for all $i \neq j$. Show that $m \leq n$. [Hint: Consider the characteristic vectors of the sets A_i . We will prove this result later in the course, but try to do it without looking ahead!]

- 10. (MFoCS) Let A be an m by n matrix with all entries in $\{0,1\}$. We say that A is row-lexicographic if the rows r_1, \ldots, r_m of A (considered as words of length n) are in lexicographic order, and that A is column-lexicographic if the columns c_1, \ldots, c_m of A are in lexicographic order. It is always possible to permute the rows or columns of a matrix so that it is (respectively) row-lexicographic or column-lexicographic.
 - Is it always possible to permute the rows of A, and then the columns of the resulting matrix, to obtain a matrix that is both row-lexicographic and column-lexicographic?
- 11.⁺ Suppose that $A \subset \mathcal{P}(n)$ does not contain distinct sets A_1, A_2, A_3 with $A_1 \cup A_2 = A_3$. Prove that $|A| \leq C\binom{n}{\lfloor n/2 \rfloor}$ for some absolute constant C > 0.