MFoCS questions should be done by MFoCS students, although everyone is encouraged to try them; we may not have time to go through them in classes. Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

- 1. Let $\mathcal{A} \subset \mathcal{P}(n)$ be an upset and $\mathcal{B} \subset \mathcal{P}(n)$ be a downset. Prove that $|\mathcal{A} \cap \mathcal{B}| \leq 2^{-n} |\mathcal{A}| \cdot |\mathcal{B}|.$
- 2. (a) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be an intersecting set system. Must there be a finite set A such that $\{F \cap A : F \in \mathcal{F}\}$ is an intersecting system?
 - (b) What if $\mathcal{F} \subset \mathbb{N}^{(r)}$?
- 3. A sunflower is a sequence F_1, \ldots, F_k of sets such that for some set S, and all i < j,

$$F_i \cap F_j = S.$$

Let $r, s \ge 1$. Prove that there is m = m(r, s) such that every sequence of m sets from $\mathbb{N}^{(r)}$ has a subsequence of length s that forms a sunflower.

[Bonus question: explain the term *sunflower* by means of a nice picture.]

4. The *i*-compression operator π_i is defined by $\pi_i(A) = A \setminus \{i\}$ and, for a set system \mathcal{A} ,

$$\pi_i(\mathcal{A}) = \{\pi_i(A) : A \in \mathcal{A}\} \cup \{A \in \mathcal{A} : \pi_i(A) \in \mathcal{A}\}.$$

Let $\mathcal{F} \subset \mathcal{P}(n)$ be a set system and $\mathcal{A} = \pi_i(\mathcal{F})$ for some $i \in [n]$. Show that $\operatorname{tr}_{\mathcal{A}}(S) \leq \operatorname{tr}_{\mathcal{F}}(S)$ for every $S \subset [n]$.

- 5. Let \mathcal{F} be the collection of all convex sets in \mathbb{R}^2 . Show that \mathcal{F} does not have bounded VC-dimension.
- 6. Let $\mathcal{F} \subset \mathcal{P}(X)$. The *dual system* \mathcal{F}^* has vertex set \mathcal{F} , and for each $x \in X$, there is an edge $\{F \in \mathcal{F} : x \in F\}$ (we ignore duplicate edges). Prove that for every positive integer *d* there is a constant f(d) such that if \mathcal{F} has VC-dimension at most *d* then \mathcal{F}^* has VC-dimension at most f(d).
- 7. Suppose that $\mathcal{F}_1, \ldots, \mathcal{F}_s \subset \mathcal{P}(n)$ are intersecting families. Prove that $|\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_s| \leq 2^n 2^{n-s}$.

8. A function $f : \mathcal{P}(n) \to \mathbb{R}$ is monotone increasing if $f(A) \leq f(B)$ whenever $A \subset B$. Prove that if f and g are nonnegative, monotone increasing functions on $\mathcal{P}(n)$ then

$$\sum_{A \subset [n]} f(A)g(A) \ge 2^{-n} \sum_{A \subset [n]} f(A) \sum_{A \subset [n]} g(A).$$

- 9. (MFoCS) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be the set system $\{N_k : k \in \mathbb{N}\}$, where $N_k = \{k, 2k, 3k, \ldots\}$. Does \mathcal{F} have bounded VC-dimension?
- 10.⁺ Let \mathcal{F} be the collection of all half-spaces in \mathbb{R}^k . Show that \mathcal{F} has bounded VC-dimension. Can you determine the VC-dimension exactly?

scott@maths.ox.ac.uk