Combinatorics C8.3 Problems 1 ADS MT2020

MFoCS questions should be done by MFoCS students, although everyone is encouraged to try them; we may not have time to go through them in classes. Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

- 1. Write down all antichains contained in $\mathcal{P}(1)$ and $\mathcal{P}(2)$. How many different antichains are there in $\mathcal{P}(3)$?
- 2. Let $k \leq n/2$, and suppose that \mathcal{F} is an antichain in $\mathcal{P}(n)$ such that every $A \in \mathcal{F}$ has $|A| \leq k$. Prove that $|\mathcal{F}| \leq {n \choose k}$.
- 3. Let (P, \leq) be a poset. Suppose that every chain in P has at most k elements. Prove that P can be written as the union of k antichains.
- 4. Suppose $\mathcal{F} \subset \mathcal{P}(n)$ is a set system containing no chain with k+1 sets.
 - (a) Prove that

$$\sum_{i=0}^{n} \frac{|\mathcal{F}_i|}{\binom{n}{i}} \le k,$$

where $\mathcal{F}_i = \mathcal{F} \cap [n]^{(i)}$ for each *i*.

- (b) What is the maximum possible size of such a system?
- 5. (a) Look up Stirling's Formula. Use it to find an asymptotic estimate of form (1 + o(1))f(n) for $\binom{n}{n/2}$.
 - (b) Now do the same for $\binom{n}{pn}$ where $p \in (0, 1)$ is a constant. Write your answer in terms of the binary entropy function $H(p) = -p \log p (1-p) \log(1-p)$.
- 6. Let \mathcal{A} be an antichain in $\mathcal{P}(n)$ that is not of the form $[n]^{(r)}$. Must there exist a maximal chain disjoint from \mathcal{A} ?
- 7. Let (P, \leq) be an infinite poset. Must P contain an infinite chain or antichain?

- 8. (MFoCS) Let f(n) be the number of subsets $\mathcal{A} \subset \mathcal{P}(n)$ such that \mathcal{A} is an antichain.
 - (a) Prove that $f(n) \ge 2^{\binom{n}{\lfloor n/2 \rfloor}}$ for every n.
 - (b) Prove that, for every $\epsilon > 0$, $f(n) \le 2^{\epsilon 2^n}$ for all sufficiently large n.
 - $(c)^+$ Prove that there is a constant C > 0 such that

$$f(n) \le C^{\binom{n}{\lfloor n/2 \rfloor}}$$

for every n.

- 9.⁺ Consider the poset $P = (\mathcal{P}(\mathbb{N}), \subseteq)$ (in other words, the elements of P are sets of natural numbers, and $A \leq B$ if $A \subseteq B$).
 - (a) Show that P contains an uncountable antichain.
 - (b) Does P contain an uncountable chain?

scott@maths.ox.ac.uk