Combinatorics C8.3 Problems 0 ADS MT2020

There will not be classes on this problem sheet, but solutions will be available on the course webpage from the end of Week 0.

Part B Graph Theory is not a prerequisite for the course, but we will use a little standard notation, as well as Hall's Theorem on matchings in bipartite graphs (this can can be found in the Part B Graph Theory notes). All graphs below are assumed to be finite.

- 1. Let G be a bipartite graph with bipartition (A, B). Suppose that every vertex in G has the same degree d > 0.
 - (a) Show that |A| = |B|.
 - (b) Look up Hall's theorem. Use this result to prove that G contains a complete matching.
 - (c) Show that the edge set of G can be partitioned into d edge disjoint complete matchings.
- 2. Let $\mathcal{P}(n)$ denote the power set of $[n] := \{1, \ldots n\}$. For $A, B \in \mathcal{P}(n)$, we define the symmetric difference of A and B is $A \triangle B := (A \setminus B) \cup (B \setminus A)$.
 - (a) Suppose $\mathcal{A} \subset \mathcal{P}(n)$, and there do not exist $A, B \in \mathcal{A}$ with $|A \triangle B| = 1$. How large can $|\mathcal{A}|$ be?
 - (b) For $n \ge 1$, give two examples of \mathcal{A} with maximal size. Are there any others?
- 3. Let $[n]^{(i)} := \{A \subset \{1, \dots, n\} : |A| = i\}$ and suppose that $i \leq n/2$. Prove that there is a bijection $f : [n]^{(i)} \to [n]^{(i)}$ such that $A \cap f(A) = \emptyset$ for every A.
- 4. (a) Prove that $|\mathcal{P}(n)| = 2^n$.
 - (b) Suppose a set $A \in \mathcal{P}[n]$ is selected uniformly at random. Let X denote the random variable given by X(A) := |A|. Prove that $\mathbb{E}(X) = n/2$ and $\operatorname{var}(X) = n/4$.
 - (c) Use Chebyshev's inequality and (b) to show that given $\epsilon > 0$ there is C > 0 such that at least $(1 - \epsilon)2^n$ sets $A \subset [n]$ satisfy $||A| - \frac{n}{2}| \leq C\sqrt{n}$.